首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In many coarse textured soils, limited root development and biomass production are attributed to adverse physical conditions in the subsoil. The current study was undertaken on an Arenic Acrisol located in Northeast Thailand (i) to assess whether subsoil physical characteristics influence crop rooting depth, and (ii) to compare the benefits associated with conventional tillage with that of localised subsoil loosening on crop performance and selected soil attributes. Control plots consisted of disk ploughing; the implemented treatments were conventional deep-ripping and localised slotting below the planting line. A crop rotation consisting of a legume followed by maize was established annually to assess the impact of these treatments on crop performance. In the control treatment, root development was restricted to the topsoil (0–20 cm) due to high subsoil bulk density (>1.6 Mg m−3). After deep-ripping, no improvement was observed in bulk density, rooting depth and in crop performance. The implementation of a slotting treatment systematically improved root development in the slotted subsoil, root impact frequency increasing from <0.2 to 0.6–0.8 (P = 0.01) despite no change in the bulk densities of the subsoil. This systematic improvement in root development could be explained by (i) reduced slumping that enable root development prior to recompaction and/or (ii) preferential drainage in the slot and therefore decreased resistance to root penetration. In a dry year maize yield was improved by 78% (P = 0.01); the deep-rooting legume Stylosanthes was tested only a wet year and its biomass production increased by >40% (P = 0.03). This study highlights the detrimental impact of subsoil compaction on root development and the potential role of slotting in coarse textured soils as a long-term management tool in addressing adverse subsoil physical characteristics that limit deep-rooting.  相似文献   

2.
不同机械深耕的改土及促进作物生长和增产效果   总被引:2,自引:0,他引:2  
长期不合理耕作导致土壤结构性能恶化、土壤耕性变差,限制作物根系下扎、影响土壤生产潜力发挥。为了改善土壤耕层构造,该试验采用自主研发的改土机械ES-210型深松犁和前置式心土(亚表层)耕作犁进行深耕,以灭茬旋耕(常规耕作)为对照,进行大区耕作对比试验。结果表明:1)深松、亚表层耕作处理与对照相比,耕层土壤固相率分别降低1.6%~3.3%、2.8%~4.5%,液相、汽相相对增加,三相比更趋于合理化;打破犁底层,降低耕层土壤硬度,其中20~35 cm土层效果更为明显;耕层土壤有效水含量上升1.1%~1.2%、0.9%,束缚水(无效水)含量下降0.4%~1.1%、0.5%~0.9%。2)深松、亚表层耕作处理比对照根长增长,其中甜菜增长5.1%、2.9%,大豆增长11.5%、13.2%;干物质积累量增加,其中甜菜增加2.3%~4.1%、3.1%~4.8%,大豆增加7.8%~10.0%、10.4%~13.6%;3)深松、亚表层耕作处理与对照相比,其中甜菜增产8.5%、12.6%;大豆增产5.0%、6.1%;深松及亚表层耕作改土处理分别比对照增收1003.3、1454.4元/hm2,其中收益大小为亚表层耕作处理深松处理对照。可见,采用ES-210深松犁及心土耕作犁深耕改土,改变了土壤耕层构造,起到扩库增容的效果;改善了作物根系生长环境,提高了作物产量,为今后农业耕作机械的发展提供了技术支撑。  相似文献   

3.
长期秸秆还田免耕覆盖措施导致沿淮区域砂姜黑土耕层变浅、下表层(10~30 cm)容重增加、土壤养分不均衡等问题凸显,限制了小麦-玉米周年生产力的提高。耕作和秸秆还田措施合理的搭配组合是解决这一问题的有效方法。通过8年的小麦-玉米一年两熟田间试验,设置4个处理:1)玉米季免耕-小麦季免耕秸秆不还田(N);2)玉米季深耕-小麦季深耕秸秆不还田(D);3)玉米季秸秆免耕覆盖还田+小麦秸秆免耕覆盖还田(NS);4)玉米季秸秆免耕覆盖还田+小麦季秸秆深耕还田(DS)。通过分析作物收获后不同土壤深度(0~60 cm)总有机碳(TOC)、颗粒态碳(POC)、微生物生物量碳(MBC)、易氧化态碳(KMnO4-C)、可溶性有机碳(DOC)和土壤碳库管理指数(CPMI),并结合小麦-玉米的周年产量变化,以期获得培肥砂姜黑土的最佳模式。研究结果表明:1)相对于长期免耕措施(N),DS处理能够提高0~30 cm土层TOC、POC、MBC、KMnO4-C等组分含量和CPMI;而NS措施仅提高土壤表层(0~10 cm)TOC、活性有机碳组分含量和CPMI;2)DS处理显著提升了小麦-玉米的周年生产力,其麦玉的周年产量均值分别比N、D和NS处理高出14.7%、12.9%和8.5%;3)MBC和KMnO4-C对于耕作和秸秆还田措施都是较为敏感指示因子。总的来说,玉米季小麦秸秆覆盖还田+小麦季玉米秸秆深耕还田(DS)是改善沿淮地区砂姜黑土土壤碳库、提高小麦-玉米周年产量的一种有效农田管理模式。  相似文献   

4.
研究深松深度对砂姜黑土耕层特性、作物产量和水分利用效率的影响,可为构建砂姜黑土合理耕层的耕作深度指标提供依据。本研究基于多年定位大田试验,采用大区对比设计,设置4个深松深度(30 cm、40 cm、50 cm、60 cm)处理,以旋耕(RT,平均耕作深度为15 cm)作为对照,研究不同深松深度对土壤紧实度、土壤三相比(R)值、作物根系形态、作物产量和水分利用效率的影响。研究结果表明,深松深度增加能显著降低土壤紧实度,使土壤的三相比(R)更加合理,进而促进作物根系生长。不同深松深度中,深松60 cm处理的土壤紧实度和三相比(R)值与对照相比降幅最大,深松40 cm处理的冬小麦根系生物量最大,深松50 cm处理的夏玉米根系生物量最大。深松不仅增加作物产量,还提高作物水分利用效率。深松30 cm处理的周年作物产量最高,比对照增产12.2%,但与深松40 cm处理差异不显著。深松50 cm处理的周年水分利用效率最高,但与深松30 cm和深松40 cm处理差异不显著。深松30 cm、40 cm和50 cm的周年水分利用效率比对照分别增加9.1%、8.8%和12.7%。因此,砂姜黑土适宜的深松深度为30~40 cm。  相似文献   

5.
The aim of this study was to quantify the effects of compaction on water flow patterns at the soil profile scale. Control and trafficked plots were established in field trials at two sites. The trafficked treatment was created by four passes track‐by‐track with a three‐axle dumper with a maximum wheel load of 5.8 Mg. One year later, dye‐tracing experiments were performed and several soil mechanical, physical and hydraulic properties were measured to help explain the dye patterns. Penetration resistance was measured to 50 cm depth, with saturated hydraulic conductivity (Ks), bulk density, and macroporosity and mesoporosity being measured on undisturbed soil cores sampled from three depths (10, 30 and 50 cm). Significant effects of the traffic treatment on the structural pore space were found at 30 cm depth for large mesopores (0.3–0.06 mm diameter), but not small mesopores (0.06–0.03 mm) or macroporosity (pores > 0.3 mm). At one of the sites, ponding was observed during the dye‐tracing experiments, especially in the trafficked plots, because of the presence of a compacted layer at plough depth characterized by a larger bulk density and smaller structural porosity and Ks values. Ponding did not induce any preferential transport of the dye solution into the subsoil at this site. In contrast, despite the presence of a compacted layer at 25–30 cm depth, a better developed structural porosity in the subsoil was noted at the other site which allowed preferential flow to reach to at least 1 m depth in both treatments.  相似文献   

6.
深松对土壤特性及玉米产量的影响(英文)   总被引:9,自引:3,他引:6  
土壤压实和缺水成为制约华北平原作物产量的2个重要因素,为了提高半干旱地区旱地对自然降水的利用率,打破犁底层,达到节约用水、提高作物产量的目的,该文于2011年至2013年,在济宁进行了深松和当地旋耕2种耕作方式对土壤物理性质和玉米产量影响的试验研究。试验采用随机化完全区组设计,并采用方差分析评价不同耕作方式的耕作效果。试验结果表明,除了表层土(0~15 cm),在作物的所有生长时期,深松耕作下的土壤容重和紧实度明显小于旋耕,尤其是玉米吐丝期。另外,在玉米吐丝期,深松下的25~35 cm土层含水量比旋耕高出9.45%(2012年)和8.64%(2013年)。深松能显著提高玉米产量达6.08%~7.23%,但2种耕作方式对玉米的千粒质量影响相差不大。该研究对为华北平原提供一种更可持续的耕作方式—深松耕作具有重要意义。  相似文献   

7.
The successful production of organic vegetables relies heavily on mechanical weeding, flame weeding and stale seedbeds. These operations involve repeated passes by tractors. Mechanical weeding also involves regular tillage. This combination of repeated tillage and compaction changes soil structure. We studied these structural changes in two fields of organic carrots and one field of beans in eastern Scotland. Structure was described by measuring soil strength with a vane shear tester and a cone penetrometer, by measuring bulk density and by visual assessment. Under beans, vane shear strength below the growing root zone was highly variable and in some areas was high enough to restrict root growth (>50 kPa). The carrots were grown in beds containing crop rows separated by bare soil. The bare soil was regularly weeded mechanically. The structure of this weeded soil in the top 10 cm layer of a loam eventually became disrupted and compacted enough to deter root growth (vane shear strength of 70 kPa). In addition the topsoil and subsoil in the wheel-tracks between the beds became very compact with little distinguishable structure. This compaction extended to the subsoil and persisted into the next cropping season (cone resistance >3 MPa at 35–50 cm depth). Reduced tillage by discing without ploughing was used to incorporate the straw used to protect the carrots overwinter and prepare the soil for the next crop. The resulting topsoil quality was poor leading to anaerobic growing conditions which restricted growth of the following crop and led to losses of the greenhouse gas nitrous oxide. The greatest threat to soil quality posed by mechanical weeding was subsoil compaction by tractor wheeling.  相似文献   

8.
Abstract Application of organic residues to soil is generally assumed to improve soil tilth. Only few studies have reported the long‐term effects on the more subtle aspects of soil porosity, and no reports have considered the potential effects of organic amendments on the pore system in the subsoil. We sampled undisturbed soil cores (100 cm3 and 6280 cm3) using metal cylinders in differently fertilized plots in the long‐term field experiment at Askov Experimental Station, Denmark. We selected the 0–60 cm soil layer of plots dressed for a century with either mineral fertilizers (labelled NPK) or animal manure (labelled AM) and unfertilized plots (UNF) as a reference. Both fertilization treatments were studied at two levels of nutrient application: ‘normal’ (labelled ‘1’) and 1.5 times ‘normal’ (labelled ‘1½’). Water retention, air permeability and air diffusivity were measured on the small cores, and we used the large cores for measuring near‐saturated and saturated hydraulic conductivity. In the plough layer, the AM and NPK soils displayed identical pore volumes in size fractions that were larger as well as smaller than 30 μm, while the UNF soil had a significantly smaller volume of pores < 30 μm. No clear trends were found in treatment effects on pore organization as calculated from air diffusivity and air permeability measurements. No significant differences in hydraulic conductivity were found in the plough layer. For the subsoil below ploughing depth, significantly larger macropore volumes and near‐saturated hydraulic conductivities were found for soil of plots receiving the larger (‘1½’) amount of nutrients compared with the ‘normally’ dressed soil. This effect was independent of fertilization system (AM or NPK). We attribute the larger volume of macropores to the improved root growth conditions in the soil with the higher nutrient level. We conclude that addition of animal manure at rates realistic in agriculture has only a modest effect on soil pore characteristics of the plough layer soil compared with the use of mineral fertilizers. For the subsoil below ploughing depth, a high level of nutrient application may increase soil macroporosity and near‐saturated hydraulic conductivity, but the origin of nutrients is of no significance.  相似文献   

9.
In a field study, conducted on 10 conventionally managed field sites in Germany, the effects of high axle loads (15–25 Mg) on soil physical properties were investigated. Soil texture classes ranged from loamy sand to silty clay loam. All sites were annually ploughed, and one site was additionally subsoiled to 40 cm depth. In the context of common field operations wheeling was performed either by a sugar beet harvester (45 Mg total mass, 113 kPa average ground contact pressure) or a slurry spreader (30 Mg total mass, 77 kPa average ground contact pressure). Soil moisture conditions varied from 3.2 to 32 kPa water tension during this pass. Penetration resistance was measured before the pass. Soil cores were collected in a grid scheme at each site before and after the machine passed. Bulk density, aggregate density, air-filled porosity and air permeability at seven distinct soil water tensions ranging from 0.1 to 32 kPa were determined in these cores taken from three layers (topsoil, plough pan and subsoil).At most sites, a pass by the sugar beet harvester or slurry spreader strongly affected topsoil properties. Bulk density and aggregate density increased while air-filled porosity and air permeability decreased. The plough pan was already severely compacted before wheeling: therefore changes were small. The subsoil showed no changes or only minor signs of compaction. Only at one site, which was subsoiled the year before, significant signs of compaction (i.e. changes in bulk density, air-filled porosity and air permeability) were detected in subsoil layers.The results show that using present-day heavy agricultural equipment does not necessarily lead to severe subsoil compaction in soils where a compacted plough pan already exists. However, fields which were subsoiled leading to an unstable soil structure are in serious danger of becoming severely compacted.  相似文献   

10.
Mechanically loosened subsoil has been shown to be prone to recompaction. We addressed a sandy loam that had been mechanically loosened by a subsoiler to a depth of 35 cm in 1997 and again in 1998. Perennial grass/clover was grown with limited traffic intensity in 1999 and 2000. A recompaction experiment was conducted in 2001 and 2002 when the soil was grown with oat and winter wheat, respectively. Using the formerly loosened plots, on-land ploughing was compared with traditional mouldboard ploughing with the tractor wheels in the furrow. In addition, the loosened plots were either light-trafficked (<6 Mg axle load and <100 kPa inflation pressure) or heavy-trafficked (10–18 Mg axle load and 200 kPa inflation pressure), respectively. Finally, the soil loosened by non-inversion deep tillage was referenced with a conventional ploughing–harrowing tillage system that never received the subsoil treatment. The conventional treatment was also grown with the grass/clover in 1999 and 2000. On-land ploughing and light traffic was applied in 2001 and 2002 instead of traditional ploughing and traffic for the conventional treatment. Penetration resistance and bulk density was recorded in the field. Undisturbed soil cores were taken in 1998, 1999 and 2002 from the 7–14, 18–27 and 25–30 cm layer and used for measuring total porosity, pores >30 μm and air permeability at −100 hPa matric potential. The results showed that on-land ploughing mitigated recompaction of the upper part of the formerly loosened subsoil. In contrast, only small differences in recompaction between heavy and light traffic were observed. The mitigation of subsoil recompaction was needed for the loosened soil to provide an upper subsoil with similar—not better—pore characteristics than the non-loosened soil in the conventional treatment. The structural conditions in the plough pan improved for the conventional treatment from 1998 to 2002 as indicated by an almost doubling in air permeability. This was interpreted as being related to the growing of grass/clover ley in 1999 and 2000 combined with a shift from traditional tillage and traffic to on-land ploughing and light traffic when growing cereals in 2001 and 2002. Results on root growth and crop yield are reported in an adjoining paper.  相似文献   

11.
覆盖作物根系对砂姜黑土压实的响应   总被引:2,自引:0,他引:2  
轮作直根系的覆盖作物被认为是缓解土壤压实的有效手段,但不同覆盖作物对土壤压实的适应性在不同气候和土壤条件下存在较大差异.为筛选更适宜缓解砂姜黑土压实的覆盖作物品种(模式),在安徽典型砂姜黑土设置不压实(Non-compacted,NC)与压实(Compacted,C)处理,通过种植不同覆盖作物(休闲、苜蓿、油菜、萝卜+...  相似文献   

12.
Detailed information on the profile distributions of agronomically important soil properties in the planting season can be used as criteria to select the best soil tillage practices. Soil cores (0–60 cm) were collected in May, 2012 (before soybean planting), from soil transects on a 30‐yr tillage experiment, including no‐tillage (NT), ridge tillage (RT) and mouldboard plough (MP) on a Brookston clay loam soil (mesic Typic Argiaquoll). Soil cores were taken every 19 cm across three corn rows and these were used to investigate the lateral and vertical profile characteristics of soil organic carbon (SOC), pH, electrical conductivity (EC), soil volumetric water content (SWC), bulk density (BD), and penetration resistance (PR). Compared to NT and MP, the RT system resulted in greater spatial heterogeneity of soil properties across the transect. Average SOC concentrations in the top 10 cm layer were significantly greater in RT than in NT and MP (= 0.05). NT soil contained between 0.8 and 2.5% (vol/vol) more water in the top 0–30 cm than RT and MP, respectively. MP soil had lower PR and BD in the plough layer compared to NT and RT soils, with both soil properties increasing sharply with depth in MP. The RT had lower PR relative to NT in the upper 35 cm of soil on the crop rows. Overall, RT was a superior conservation tillage option than NT in this clay loam soil; however, MP had the most favourable soil conditions in upper soil layers for early crop development across all treatments.  相似文献   

13.
Irrigation of crops in Mediterranean countries can produce some conditions that favour soil compaction processes. The SIMWASER model takes into account the effects of subsoil compaction on water balance and crop yield. The objectives of this paper were: (i) to test the mentioned model using the data set collected, during three years (1991–1993), from irrigation experiments with maize (Zea mays L., cv. Prisma) on a sandy soil (Cambisols (FAO, 1990) or Xerocrepts (USDA, 1998)) in SW Spain and (ii) to estimate the influence of subsoil compaction on soil water balance and crop yield assuming long lasting heavy subsoil compaction that may be developed under irrigation for the SW Spain conditions. The model was run to simulate soil water content, evapotranspiration, drainage below the root zone, and crop yield for the same period in which the experiment was carried out. Results of simulation were compared with the experimental results in order to know the agreement between them. The results obtained show a fairly good agreement between simulated and measured values for most of the parameters considered. For the scenario in which subsoil compaction is developed under irrigation, the results simulated by the model indicate a reduction of the rooting depth. However, the effects on water balance and crop yield in this sandy soil were not relevant under the SW Spain conditions.  相似文献   

14.
Subsoil compaction may reduce the availability and uptake of water and plant nutrients thereby lowering crop yields. Among the management options for remediating subsoil compaction are deep tillage and the selection of crop rotations with deep-rooted crops, but little is known of the effects of applications of organic amendments on subsoil compaction. The objectives of this study were to determine the effects of subsoil compaction on corn yield and N availability in a sandy-textured soil and to evaluate the use of deep tillage and surface applications of poultry manure to remediate subsoil compaction. A field experiment planted to corn (Zea mays L.) was conducted from 2000 to 2001 on a Reelfoot fine sandy loam (fine-silty, mixed thermic Aquic Argiudolls) formed in silty alluvium located in southeast Missouri near the Mississippi River. Treatments were arranged in a factorial design with three levels of subsoil compaction and subsoiling and four rates (averaging 0, 6, 11 and 18 Mg ha−1) of poultry manure. Subsoil tillage to a depth of 30 cm had multiple effects, including overcoming a natural or tillage-induced dense layer or pan and increasing volumetric soil water content and crop N uptake, especially in the 2001 cropping year with low early season precipitation. N recovery efficiency (NRE) was significantly higher in the subsoil treatment compared to the highest compaction treatment in 2001. No significant interactions between manure rates and compaction and subsoiling treatments were observed for corn grain and silage yields, N uptake and NRE. Average increases in corn grain yields over all manure rates due to subsoil tillage of compacted soil were 2002 kg ha−1 in 2000 and 3504 kg ha−1 in 2001. Application of poultry manure had a consistent positive effect on increasing grain yields and N uptake in 2000 and 2001 but did not significantly alter measured soil physical properties. The results of this study suggest that deep tillage and applications of organic amendments are management tools that may overcome restrictions in both N and soil water availability due to subsoil compaction in sandy-textured soils.  相似文献   

15.
A computerized empirical model for estimating the crop yield losses caused by machinery-induced soil compaction and the value of various countermeasures is presented, along with some examples of estimations made with it. The model is based mainly on results of Swedish field trials, and predicts the effects of compaction in a tillage system that includes mouldboard ploughing. It is designed for use at farm level and predicts four categories of effects: (1) Effects of recompaction after ploughing. The calculations are based on the wheel track distribution in the field and the relationship between “degree of compactness” of the plough layer and crop yield. (2) Effects of plough layer compaction persisting after ploughing. Crop yield losses are estimated from traffic intensity in Mgkm ha−1 (Mgkm = the product of the weight of a machine and the distance driven), soil moisture content, tyre inflation pressure and clay content. (3) Effects of subsoil compaction. The calculations are similar to those presented under point (2), but only vehicles with high axle load are considered. These effects are the most persistent. (4) Effects of traffic in ley crops. The estimations are based on wheel track distribution, soil moisture content and several other factors.  相似文献   

16.
A field experiment based on controlled traffic concept was conducted over three rainy seasons in a bimodal rainfall area during 1982–1983 with the objective of, firstly, determining the effects of traffic-induced compaction on soil physical properties, root growth and leaf nutrient concentration in maize (Zea mays L.) cowpea (Vigna unguiculata (L.) Walp) and soya bean (Glycine max Merr.) and secondly, characterizing soil compaction by evaluating soil physical properties which closely correlated with crop yields. Main treatments of tillage methods compared discing (to 20 cm depth followed by harrowing) to a no-tillage system. Traffic treatments of 0, 2 and 4 passes of a 2-Mg roller were subplots in a split-plot design experiment. The roller simulated field traffic in the 1.5–2.5 Mg weight range and exerted an average contact pressure of 113 kPa per pass on soil. Traffic-induced compaction decreased water infiltration rate and increased soil dry density and penetrometer resistance. Vertical root growth of maize and cowpea was consequently reduced down to 21 cm depth and that of soya bean down to 14 cm depth. Lateral root distribution was also markedly reduced. In the third consecutive growing season, traffic-induced soil compaction reduced the leaf nutrient concentration of Mg in no-tillage and P, Ca, K and Mn in discing for maize; Mg in discing for cowpea; and Ca in discing for soya bean. Traffic-induced soil compaction reduced grain yields of maize, cowpea and soya bean in all three seasons under both no-till and disced treatments, but the severity of this compaction increased considerably in the third consecutive season and was particularly more marked on the disced plots than on the no-till plots. The water infiltration rate was found to be the most sensitive soil property in characterizing soil compaction on this Alfisol in relation to crop yield.  相似文献   

17.
We measured microbial biomass C and soil organic C in soils from one grassland and two arable sites at depths of between 0 and 90 cm. The microbial biomass C content decreased from a maximum of 1147 (0–10 cm layer) to 24 g g-1 soil (70–90 cm layer) at the grassland site, from 178 (acidic site) and 264 g g-1 soil (neutral site) at 10–20 cm to values of between 13 and 12 g g-1 soil (70–90 cm layer) at the two arable sites. No significant depth gradient was observed within the plough layer (0–30 cm depth) for biomass C and soil organic C contents. In general, the microbial biomass C to soil organic C ratio decreased with depth from a maximum of between 1.4 and 2.6% to a minimum of between 0.5 and 0.7% at 70–90 cm in the three soils. Over a 24-week incubation period at 25°C, we examined the survival of microbial biomass in our three soils at depths of between 0 and 90 cm without external substrate. At the end of the incubation experiment, the contents of microbial biomass C at 0–30 cm were significantly lower than the initial values. At depths of between 30 and 90 cm, the microbial biomass C content showed no significant decline in any of the four soils and remained constant up to the end of the experiment. On average, 5.8% of soil organic C was mineralized at 0–30 cm in the three soils and 4.8% at 30–90 cm. Generally, the metabolic quotient qCO2 values increased with depth and were especially large at 70–90 cm in depth.  相似文献   

18.
The results of an experiment to study the effects of subsoil loosening on root growth and water use of barley plants grown in 1.0-m-deep, 65-mm-diameter plastic tubes are reported. Changes in the dry bulk density (1280–1530 kg m−3) of the 0.2-m-deep soil layer immediately below the plough layer hand disproportionate effects on rates of root growth, and following this on crop water use and dry matter yield. Increasing the number of large pores in the sieved sandy loam soil at a depth of between 0.2 and 0.4 m allowed roots to proliferate easily and at the same time to extract the water held at relatively low suctions. When no extra water was added, these plants came under water stress sooner than those grown in containers with relatively compacteds ubsoil. Reduced rates of root growth meant that water was made available over a longer period of time. The variable and unpredictable yield responses of crops to subsoil loosening reported in the literature must be owing in part to the patterns of rainfall distribution during the season in relation to root growth and the development stage of the crop. Under certain conditions subsoil loosening will increase crop water stress and reduce yield.

The validity of the techniques used for observing root growth was supported by the linear (β=1.09) relationship obtained at the end of the experiment between the length of root at the soil/plastic interface and the corresponding number of root ends observed at the centre of the soil core (r2=70%, N=216), although there was still a considerable degree of scatter in the position of individual points.  相似文献   


19.
The objectives of this study were to evaluate the contribution of arbuscular mycorrhizal (AM) fungal hyphae to 15N uptake from vineyard cover crop litter (Medicago polymorpha), and to examine the soil microbial community under the influence of mycorrhizal roots and extraradical hyphae. Mycorrhizal grapevines (Vitis vinifera) were grown in specially designed containers, within which a polyvinyl chloride (PVC) mesh core was inserted. Different sizes of mesh allowed mycorrhizal roots (mycorrhizosphere treatment) or extraradical hyphae (hyphosphere treatment) to access dual labeled 15N and 13C cover crop litter that was placed inside the cores after 4 months of grapevine growth. Mesh cores in the bulk soil treatment, which served as a negative control, had the same mesh size as the hyphosphere treatment, but frequent rotation prevented extraradical hyphae from accessing the litter. Grapevines and soils were harvested 0, 7, 14, and 28 days after addition of the cover crop litter and examined for the presence of 15N. Soil microbial biomass and the soil microbial community inside the mesh cores were examined using phospholipid fatty acid analysis. 15N concentrations in grapevines in the hyphosphere treatment were twice that of grapevines in the bulk soil treatment, suggesting that extraradical hyphae extending from mycorrhizal grapevine roots may have a role in nutrient utilization from decomposing vineyard cover crops in the field. Nonetheless, grapevines in the mycorrhizosphere treatment had the highest 15N concentrations, thus highlighting the importance of a healthy grapevine root system in nutrient uptake. We detected similar peaks in soil microbial biomass in the mycorrhizosphere and hyphosphere treatments after addition of the litter, despite significantly lower microbial biomass in the hyphosphere treatment initially. Our results suggest that although grapevine roots play a dominant role in the uptake of nutrients from a decomposing cover crop, AM hyphae may have a more important role in maintaining soil microbial communities associated with nutrient cycling.  相似文献   

20.
《Soil & Tillage Research》2005,80(1-2):159-170
Plough pans have been shown to severely hamper root development, limit rooting depth and reduce crop yields. We evaluated the effect of plough pan re-compaction on root and yield response for winter wheat in a field trial conducted in two neighbouring fields on a sandy loam. Plots were mechanically loosened by a subsoiler to a depth of 35 cm in 1997 and 1998. In 2 years following the loosening operation, perennial grass/clover was grown with limited traffic intensity. Subsequently oats were established and followed by winter wheat. On-land ploughing was compared with traditional mouldboard ploughing. In addition, the plots were either heavy-trafficked (10–18 Mg axle load and ∼200 kPa inflation pressure) or light-trafficked (<6 Mg axle load and <100 kPa inflation pressure). The loosened treatments were referenced by non-loosened soil. Root growth of winter wheat was followed applying the minirhizotron technique. In one of the fields, these measurements were supplemented with core sampling for root length determination approximately at anthesis. Soil water content was followed in one of the fields using time domain reflectometry (TDR). Grain yield and nitrogen content in grain were determined. The adjoining study showed that the combination of heavy traffic and traditional ploughing caused strong recompaction of loosened soil, whereas the combination of light traffic and on-land ploughing produced moderate recompaction. For the loosened plots in one field, the strongly recompacted soil produced 7% lower yield than moderately recompacted soil, whereas no clear difference was found for the other field. No clear difference between the loosened treatments on root growth was observed. Surprisingly, the non-loosened soil performed similar or even better than the loosened and moderately compacted soil. The non-loosened soil facilitated higher root intensity at depth and produced similar yield and N-uptake. Our results suggest that mechanical subsoil loosening of humid sandy loams only is recommendable in case of very severe subsoil compaction. Natural alleviation of subsoil structure induced by changes in soil management may comprise a favourable alternative to mechanical subsoil loosening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号