首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Three experiments were conducted to examine the effects of an Aspergillus oryzae extract containing alpha-amylase activity on performance and carcass characteristics of finishing beef cattle. In Exp. 1, 120 crossbred steers were used in a randomized complete block design to evaluate the effects of roughage source (alfalfa hay vs. cottonseed hulls) and supplemental alpha-amylase at 950 dextrinizing units (DU)/kg of DM. Significant roughage source x alpha-amylase interactions (P < 0.05) were observed for performance. In steers fed cottonseed hulls, supplemental alpha-amylase increased ADG through d 28 and 112 and tended (P < 0.15) to increase ADG in all other periods. The increases in ADG were related to increased DMI and efficiency of gain during the initial 28-d period but were primarily related to increased DMI as the feeding period progressed. Supplemental alpha-amylase increased (P = 0.02) the LM area across both roughage sources. In Exp. 2, 96 crossbred heifers were used in a randomized complete block design with a 2 x 3 factorial arrangement of treatments to evaluate the effects of corn processing (dry cracked vs. high moisture) and supplemental alpha-amylase concentration (0, 580, or 1,160 DU/kg of DM). Alpha-amylase supplementation increased DMI (P = 0.05) and ADG (P = 0.03) during the initial 28 d on feed and carcass-adjusted ADG (P = 0.04) across corn processing methods. Longissimus muscle area was greatest (quadratic effect, P = 0.04), and yield grade was least (quadratic effect, P = 0.02) in heifers fed 580 DU of alpha-amylase/kg of DM across corn processing methods. In Exp. 3, 56 crossbred steers were used in a randomized complete block design to evaluate the effects of supplemental alpha-amylase (930 DU/kg of DM) on performance when DMI was restricted to yield a programmed ADG. Alpha-amylase supplementation did not affect performance when DMI was restricted. We conclude that dietary alpha-amylase supplementation of finishing beef diets may result in increased ADG through increased DMI under certain dietary conditions and that further research is warranted to explain its mode of action and interactions with dietary ingredients.  相似文献   

2.
Three experiments were conducted to determine the effects of whole cottonseed or cottonseed products on performance and carcass characteristics of beef cattle. In Exp. 1, 120 beef steers (initial BW = 381 +/- 31.7 kg) were fed steam-flaked corn-based finishing diets with 10% (DM basis) basal roughage, and whole cottonseed or individual cottonseed components (cottonseed hulls, meal, and oil). Over the entire feeding period, ADG did not differ (P = 0.95), but DMI increased (P = 0.07) and G:F decreased (P = 0.06) for steers fed the cottonseed diets compared with the control diet. Dressing percent (P = 0.02) and marbling scores (P = 0.02) of carcasses from steers fed the cottonseed diets were less than for steers fed the control diet. In Exp. 2, 150 beef steers (initial BW = 364 +/- 9.9 kg) were used to determine the effects of whole cottonseed or pelleted cottonseed (PCS) on performance and carcass characteristics. Cattle were fed steam-flaked corn-based finishing diets in which whole cottonseed or PCS replaced all of the dietary roughage, supplemental fat, and supplemental natural protein of the control diet. Over the entire feeding period, steers fed the cottonseed diets had lower (P = 0.04) DMI and greater (P < 0.01) G:F than steers fed the control diet. Carcass characteristics did not differ (P = 0.16 to 0.96) among dietary treatments. In Exp. 3, 150 beef heifers (initial BW = 331 +/- 17.1 kg) were used to determine the effects of PCS or delinted, whole cottonseed (DLCS) on performance and carcass characteristics. Heifers were fed rolled corn-based finishing diets in which cottonseed replaced the dietary roughage, supplemental fat, and all or part of the supplemental natural protein of the control diet. Over the entire feeding period, ADG, DMI, and G:F of heifers fed the control diet did not differ (P = 0.19 to 0.80) from those of the cottonseed diets; however, heifers fed the diets containing PCS had greater ADG (P = 0.03) and G:F (P = 0.09) than heifers fed diets containing DLCS. Carcass characteristics of heifers fed the control diet did not differ (P > or = 0.28) from those fed the cottonseed diets. Heifers fed the diets containing PCS had greater (P < or = 0.03) HCW, dressing percent, and LM area than those fed DLCS. Based on our results, whole cottonseed, or products derived from processing whole cottonseed, can replace feedstuffs commonly used in beef cattle finishing diets with no adverse effects on animal performance or carcass characteristics.  相似文献   

3.
The objective of two experiments was to correlate plasma levels of urea N (PUN) and the percentage of urine N in the form of urea (UUN) to weight gain in response to different dietary protein regimens for growing Angus steers. In Exp. 1, 60 steers (302 kg BW) were assigned to various levels of dietary N (control plus supplemental N to provide from 100 to 400 g more crude protein daily) within two sources of supplemental N (soybean meal [SBM] or a mixture of two parts corn gluten meal:one part blood meal [CGM:BM]). In Exp. 2, 27 steers (229 kg BW) were fed two levels of SBM, and half of the steers received growth-promoting implants. Steers were housed in groups of 12 and fed individually for 84 d in both experiments. Corn silage was fed at a restricted rate to minimize orts. Jugular blood and urine samples were collected during the experiments. In Exp. 1, maximal ADG of steers fed SBM (1.0 kg) was reached with 671 g/d total crude protein, or 531 g/d metabolizable protein. Maximal ADG of steers fed CGM:BM (0.91 kg) was reached with 589 g/d total crude protein, or 539 g/d metabolizable protein. The DMI was higher (P < 0.07) for steers fed SBM (6.37 kg/d) than for steers fed CGM:BM (6.14 kg/d). Increasing ruminal escape protein from 36% (SBM) to 65% (CGM:BM) of CP decreased (P < 0.05) endogenous production of urea, as evidenced by lower concentrations of urea in blood and lower UUN. In Exp. 2, increasing supplemental protein from 100 to 200 g/d increased (P < 0.05) ADG and PUN. Implants lowered (P < 0.05) UUN, particularly at the higher level of supplemental protein. Protein supplementation of growing steers can be managed to maintain acceptable ADG yet decrease excretion of urea in the urine.  相似文献   

4.
A feedlot growth performance experiment and 2 metabolism experiments were conducted to evaluate dietary roughage concentration and calcium magnesium carbonate in steers fed a high-grain diet. In Exp. 1, one hundred ninety-two crossbred yearling steers (320 +/- 10 kg of initial BW) were fed diets based on steam-flaked corn with 0, 0.75, or 1.5% CaMg(CO(3))(2). There were no effects (P > or = 0.13) on ADG, DMI, G:F, or total water intake due to CaMg(CO(3))(2). In Exp. 2, five ruminally and duodenally fistulated steers (263 +/- 9 kg of initial BW) were used in a 5 x 5 Latin square design, with 5 dietary treatments arranged in a 2 x 2 + 1 factorial: 1) 3.8% dietary roughage and no CaMg(CO(3))(2); 2) 7.6% dietary roughage and no CaMg(CO(3))(2); 3) 11.4% dietary roughage and no CaMg(CO(3))(2); 4) 3.8% dietary roughage and 1.5% CaMg(CO(3))(2); and 5) 7.6% dietary roughage and 1.5% CaMg(CO(3))(2). Water consumption was less (quadratic, P = 0.003) when 7.6% dietary roughage was fed compared with 3.8 or 11.4% dietary roughage. Intake of DM was not affected (P > or = 0.16) by dietary roughage or by CaMg(CO(3))(2). Poststomach and total tract starch digestion decreased (linear, P < 0.01) as dietary roughage increased. Ruminal pH tended (P = 0.08) to increase as dietary roughage increased but was not affected (P = 0.60) by CaMg(CO(3))(2). In Exp. 3, DMI and ruminal pH were continuously monitored in a 6 x 6 Latin square design using 6 ruminally and duodenally fistulated Holstein steers (229 +/- 10 kg of initial BW). A 3 x 2 factorial treatment structure was utilized, with factors consisting of dietary roughage concentration (4.5, 9.0, or 13.5%) and CaMg(CO(3))(2) inclusion (0 or 1.0%) to replace MgO and partially replace lime-stone. A dietary roughage x CaMg(CO(3))(2) interaction (P = 0.01) occurred as steers consuming 13.5% roughage, 1.0% CaMg(CO(3))(2) had greater DMI per meal than those consuming 4.5% dietary roughage, no CaMg(CO(3))(2) and 9.0% dietary roughage, 1.0% CaMg(CO(3))(2). Steers consuming 13.5% dietary roughage, 1.0% CaMg(CO(3))(2) and 9.0% dietary roughage, no CaMg(CO(3))(2) had greater meal length (min/meal; P = 0.01) than steers consuming 4.5% dietary roughage, no CaMg(CO(3))(2). Total tract OM digestibility decreased linearly (P = 0.01), and ruminal pH increased linearly (P = 0.01) with increasing dietary roughage concentration. Inclusion of CaMg(CO(3))(2) can replace limestone and MgO but did not produce ruminal pH responses similar to those observed by increasing dietary roughage in high-concentrate diets.  相似文献   

5.
Feedlot performance was studied in a 262-d trial using 126 crossbred beef steers (182 kg initial BW) to determine whether source of dietary roughage influences performance and carcass characteristics by steers fed growing (112 d) and finishing (150 d) diets with various flake densities (FD) of steam-processed sorghum grain. A 3 x 3 arrangement of treatments (two pens of seven steers each) was used, with dietary roughages being chopped alfalfa hay or 50:50 mixtures (equal NDF basis) of cotton-seed hulls or chopped wheat straw with alfalfa hay; sorghum grain was steam-flaked to densities of 386, 322, and 257 g/L (SF30, SF25, and SF20, reflecting bushel weight in pounds). The effects of these same FD on nutrient digestibilities were determined in three experiments with 24 crossbred steers fed finishing diets containing each of the roughage sources. No interactions between FD and roughage type were detected in any performance or carcass measurements (P > .10). Intake of DM decreased linearly (P < .05) in response to decreased FD. Daily rate and efficiency of gain were not altered (P >.10) by FD. Decreasing FD decreased linearly (P < .05) dressing percentage and fat thickness, but not other carcass measurements. Dietary roughage did not affect (P >.10) daily gains or carcass measurements, but DM intake was lower and feed efficiencies were superior (P < .05) when alfalfa hay was the sole source of roughage. Cottonseed hulls and wheat straw were relatively less valuable in the low roughage finishing diets than in higher roughage growing diets. Digestibilities of starch increased linearly as FD was decreased (P = .02) when steers were fed diets containing wheat straw, but not for alfalfa hay or cottonseed hull diets. Digestibilities of DM did not vary with changes in FD; however, changes in CP, NDF, and ADF digestibilities due to FD seemed to differ among experiments. In conclusion, performance and carcass measurement responses by growing-finishing steers to differences in sorghum grain FD were not related to source of dietary roughage, but diets with alfalfa hay as the only source of roughage were most efficient. Decreasing FD of sorghum grain below 386 g/L (30 lb/bu) was not advantageous in improving performance or carcass merit by growing-finishing steers.  相似文献   

6.
Two experiments were conducted to determine the effects of supplemental CP source and level of urea on intestinal amino acid (AA) supply and feedlot performance of lambs fed diets based on alkaline hydrogen peroxide-treated wheat straw (AHPWS). In Exp. 1, five cannulated (ruminal, duodenal, and ileal) crossbred wethers (61 kg) were used in a 5 x 5 Latin square design. Treatments consisted of different sources of CP and included soybean meal (SBM), a combination of urea, distillers dried grains (DDG), and fish meal, each provided an equal portion of supplemental CP (UDF), and three levels of urea (17, 33, and 50% of supplemental CP) fed in combination with DDG (U17, U33, and U50). Organic matter and N digestibilities decreased (P less than .05) when lambs were fed U17 compared with those fed SBM. There were no differences (P greater than .05) in bacterial N or AA flows to the duodenum due to CP source despite large differences in ruminal NH3 N concentrations and lower ruminal OM digestion when lambs were fed U17. Duodenal nonbacterial N and AA flows were highest (P less than .05) in lambs fed U17 and UDF and lowest when lambs were fed U50 and SBM. Lysine concentration in duodenal digesta decreased with incremental increases in DDG. In Exp. 2, 30 individually penned ram lambs (33 kg) were allotted to five CP treatments in a randomized complete block design. Treatments were similar to those of Exp. 1, with the exception that U17 was replaced by a 14% CP diet with SBM as the supplemental CP source; all other diets were formulated to contain 12% CP. Lambs fed U50 had decreased (P less than .08) ADG and gain/feed compared with all other treatments, and lambs fed UDF had greater (P less than .05) ADG and gain/feed than lambs fed U33. It was concluded that 17% of the supplemental CP from urea seems adequate to maximize bacterial protein synthesis and that no more than 33% of the supplemental CP should be provided by urea in diets based on AHPWS. Feeding a combination of ruminally resistant protein sources with complementary AA profiles of lysine and methionine (UDF) may enhance quality of protein entering the duodenum and feedlot performance.  相似文献   

7.
Two experiments were conducted to evaluate combinations of wet corn gluten feed (WCGF) and barley, as well as the particle size of dry-rolled barley and corn, in finishing steer diets containing WCGF. In Exp. 1, 144 crossbred steers (initial BW = 298.9 +/- 1.4 kg) were used to evaluate barley (0.566 kg/L and 23.5% NDF for whole barley) and WCGF combinations in finishing diets containing 0, 17, 35, 52, or 69% WCGF (DM basis), replacing barley and concentrated separator byproduct. A sixth treatment consisted of corn (0.726 kg/L and 11.1% NDF for whole corn), replacing barley in the 35% WCGF treatment. In Exp. 2, 144 crossbred steers (initial BW = 315.0 +/- 1.5 kg) were used to evaluate coarse or fine, dry-rolled barley or corn (0.632 and 0.699 kg/L; 26.6 and 15.9% NDF for whole barley and corn, respectively) in finishing diets containing WCGF. A factorial treatment design was used; the factors were grain source (corn or barley) and degree of processing (coarse or fine). The diets contained 50% WCGF, 42% grain (corn or barley), 5% alfalfa hay, and 3% supplement (DM basis). In Exp. 1, DMI and ADG responded quadratically (P < or = 0.03), peaking at 35 and 52% WCGF, respectively. The efficiency of gain was not affected (P > or = 0.42) by dietary treatment. Steers fed dry-rolled corn and 35% WCGF had heavier HCW, lower DMI, greater ADG, increased G:F, increased s.c. fat thickness at the 12th rib, and greater yield grades compared with steers fed dry-rolled barley and 35% WCGF (P < or = 0.04). The apparent dietary NEg was similar among the barley and WCGF combinations (P > or = 0.51); however, the corn and 35% WCGF diet was 25% more energy dense (P < 0.001) than was the barley and 35% WCGF diet. In Exp. 2, no grain x processing interactions (P > or = 0.39) were observed. Particle size was 2.15 and 2.59 mm for fine- and coarse-rolled barley and was 1.90 and 3.23 mm for fine- and coarse-rolled corn. Steers fed a combination of corn and WCGF had increased ADG, greater G:F, heavier HCW, larger LM area, more s.c. fat thickness at the 12th rib, greater yield grades, increased marbling, and more KPH compared with steers fed a combination of barley and WCGF (P < or = 0.03). Fine-rolling of the grain increased fat thickness (P = 0.04). The addition of WCGF to the barley-based diets increased DMI and gain. Decreasing grain particle size did not greatly affect performance of the steers fed the 50% WCGF diets; however, carcasses from the steers fed the fine-rolled grain contained more fat.  相似文献   

8.
Three trials were conducted to compare effects of restricted intake of high-concentrate diets vs ad libitum intake of corn silage diets during the growing phase on feedlot cattle performance. In Trial 1, 120 steers (initial BW, 246 kg) were fed 1) a corn silage-based diet ad libitum, 2) a high-moisture corn-corn silage-based diet with intake restricted to a level 20% less than that of the corn silage diet or 3) a high-moisture corn-based diet with intake restricted to a level 30% less than that of the corn silage diet. Steers fed the 20% restricted corn-corn silage-based diet tended (P = .07) to gain slower than those fed the corn silage or 30% restricted high-concentrate diet. Feed efficiency and diet digestibility were greatest for steers fed the 30% restricted-intake, high-concentrate diet (P less than .01). Performance of steers during the subsequent 118-d finishing period was not affected (P greater than .65) by source of energy during the growing period. In Trial 2, ADG of steers fed the 30% intake-restricted, high-concentrate diet was lower (P less than .01) than that of steers with ad libitum access to corn silage. During the 84-d growing period, steers fed supplemental blood meal had 8.3% greater gains and a 6% greater efficiency of feed use than those fed supplemental soybean meal (P less than .01). Monensin did not affect (P = .82) performance of steers fed 30% restricted-intake diets. During the 76-d finishing period, gains and feed conversion were improved (P less than .01) for steers fed the restricted-intake diet in the growing period compared with those given ad libitum access to corn silage. During the growing period in Trial 3, ADG of steers restricted-fed an all-concentrate diet were slightly greater (P less than .10) than ADG of those given ad libitum access to corn silage. Gains did not differ (P = .37) during the subsequent finishing period when steers were switched to 85 or 100% concentrate diets. We concluded that intake of all concentrate diets can be restricted to achieve gains equal to those of steers given ad libitum access to corn silage-based diets without detrimental effects on finishing performance.  相似文献   

9.
In four feeding trials with beef steers, corn silage (CS), alfalfa hay (AH), and alfalfa silage (AS) were compared as roughage sources in dry-rolled (DRC); dry whole (DWC); ground, high-moisture (GHMC); and whole, high-moisture corn (WHMC) fattening diets. In processed corn diets (DRC and GHMC), steers fed CS had lower DMI (P less than .05) and feed:gain ratios (P less than .10) than steers fed AS as the roughage source. In a separate trial, greater gains (P less than .10) and lower feed:gain ratios (P less than .05) were found during the initial feeding period, which included the adaptation phase, for steers fed CS vs steers fed AH as the roughage source. Over the entire feeding period, lower (corn type x roughage source interaction, P less than .05) feed:gain ratios were found in GHMC diets when CS was fed as the roughage source; feed:gain ratios were similar in steers fed DRC diets containing either CS or AH. Over the entire feeding period, similar performance was found among steers fed the various roughage sources in DWC diets; however, with WHMC diets, steers fed AS as the roughage source had lower feed:gain ratios than did steers fed AH (P less than .05) or CS (P greater than .10). In the processed corn diets, high correlations were found between diet NDF digestibility and gain (r = .80), intake (r = .68), and feed:gain ratios (r = -.66); similar trends were found in WHMC diets but not in DWC diets. These results suggest that the ideal roughage source to complement finishing diets may depend on corn processing method and feeding period (adaptation vs finishing).  相似文献   

10.
Two experiments were conducted to evaluate L-carnitine supplementation to cattle fed grain-based diets. In Exp. 1, seven Angus-cross steers (216 kg) were used in a 7 x 4 incomplete Latin square experiment to evaluate the effects of supplemental L-carnitine on N balance and blood metabolites. Steers were fed a corn-based diet (17.5% CP) at 2.5% of BW. Treatments were 0, 0.25, 0.5, 1.0, 1.5, 2.0, and 3.0 g/d of supplemental carnitine. The 18-d periods included 13 d for adaptation and 5 d for collection of feces and urine. Blood was collected before feeding and 3 and 6 h after feeding on d 18 of each period. Dry matter intakes tended to be highest when 1.5 g/d of carnitine was supplied, but N retention was not affected by carnitine and averaged 29.3 g/d. Plasma carnitine concentrations and urinary excretion increased with increasing carnitine supply, indicating that at least some of the carnitine escaped ruminal degradation and was absorbed by the steers. Plasma concentrations of NEFA demonstrated a treatment x time interaction; they decreased linearly in response to carnitine before feeding but increased linearly in response to carnitine at 6 h after feeding. Serum insulin and plasma glucagon, IGF-I, cholesterol, triglyceride, and amino acids were not affected by carnitine. Plasma concentrations of glucose, glycerol, urea, and beta-hydroxybutyrate all were increased by some of the levels of carnitine supplementation, but results for these measurements did not follow easily described patterns and seemed to be related to differences in DMI. In Exp. 2, 95 crossbred steers (357 kg initial BW) were fed finishing diets (14.5% CP) for 129 d. Diets were based on steam-flaked corn and contained 6% alfalfa and 4% tallow. Feed intakes, gains, and feed efficiencies were not affected by supplementation with 2 g/d L-carnitine. However, steers receiving L-carnitine tended to have fatter carcasses, as indicated by tendencies (P < 0.2) for thicker backfat, higher marbling scores, and higher yield grades. In conclusion, carnitine supplementation did not alter lean deposition in growing steers but it did alter plasma NEFA concentrations of growing steers fed a corn-based diet and also seemed to increase fat deposition in finishing cattle.  相似文献   

11.
Two experiments with a randomized complete block design were conducted to determine the effects of phase feeding of CP on performance, blood urea nitrogen (BUN), manure N:P ratio, and carcass characteristics of steers fed in a feedlot. In Exp. 1, 45 crossbred steers (initial BW = 423 +/- 3.3 kg) were individually fed a diet formulated to contain 13.0% CP (DM basis) for 62 d. On d 63, the dietary CP was maintained at 13.0% or formulated to contain 11.5 or 10.0% CP until slaughter. Actual CP values were 12.8, 11.8, and 9.9%, respectively. Reducing the CP concentration of the diet did not affect ADG of steers from d 62 to 109 (P = 0.54) or over the 109-d feeding period (1.45, 1.50, and 1.49 kg/d for 13.0, 11.5, and 10.0% CP, respectively; P = 0.85). No differences (P > 0.12) among treatments were detected for BUN concentrations on d 0, 62, or 109. Gain:feed, DMI, and carcass characteristics did not differ among treatments (P > 0.10). In Exp. 2, 2 trials were conducted using 184 (initial BW = 406 +/- 2.6 kg) and 162 (initial BW = 342 +/- 1.9 kg) crossbred steers. Data from the 2 trials were pooled for statistical analysis, and trial effect was added to the statistical model. Steers were fed a diet formulated to contain 13.0% CP until reaching approximately 477 kg. When the average BW of the pen was 477 kg, diets were maintained at 13.0% CP or reduced to contain 11.5 or 10.0% CP. Actual CP values were 12.4, 11.5, and 9.3% CP for treatments 13.0, 11.5, and 10.0% CP, respectively. Reducing the CP content of the diet did not affect ADG after the diet changed (P = 0.16) or throughout the finishing period (P = 0.14). Immediately before slaughter, steers fed the 13.0% CP diet had greater (P < 0.001) BUN concentrations than steers fed the 11.5 and 10.0% CP diets. Carcasses from cattle fed the 11.5% CP diet had greater (P = 0.02) fat thickness than the 13.0 and 10.0% CP treatments, whereas carcasses from cattle fed 13.0% CP had greater (P = 0.004) marbling scores than steers fed the 11.5 or 10.0% CP diets. Other carcass characteristics, DMI, and G:F did not differ (P > 0.10) among treatments. The N:P ratio was increased with the 10.0% CP diet (P = 0.02) compared with the 11.5 or 13.5% CP treatments; however, manure composition did not differ (P > 0.10) among treatments. These results indicate that reduced CP concentration during the finishing period does not affect feedlot performance but can improve the N and P relationship in the manure.  相似文献   

12.
Two experiments were conducted to evaluate the effects of feeding different levels of wet corn gluten feed (WCGF) and dietary roughage on performance, carcass characteristics, and feeding behavior of feedlot cattle fed diets based on steam-flaked corn (SFC). In Exp. 1, crossbred steers (n = 200; BW = 314 kg) were fed 4 dietary treatments (DM basis): a standard SFC-based diet containing 9% roughage (CON) and 3 SFC-based diets containing 40% WCGF, with either 9, 4.5, or 0% roughage. A linear (P = 0.04) increase in final BW and DMI (P < 0.01) was observed in diets containing WCGF as dietary roughage increased. Steers fed WCGF and higher levels of roughage had greater (P = 0.01) ADG than steers fed lower levels of roughage. Steers fed the CON diet had lower (P = 0.04) daily DMI and greater (P = 0.03) G:F than those fed WCGF. Most carcass characteristics of steers fed CON did not differ (P > 0.10) from those of steers fed WCGF. Based on feed disappearance and visual scan data, consumption rate did not differ (P > 0.10) among treatments; however, feeding intensity (animals present at the bunk after feeding) was greater for steers fed CON (P < 0.01) than for steers fed WCGF. In Exp. 2, yearling crossbred steers (n = 1,983; BW = 339 kg) were fed 4 dietary treatments (DM basis): a standard SFC-based control diet that contained 9% roughage (CON) and 3 SFC-based diets containing either 20% WCGF and 9% roughage or 40% WCGF with 9 or 4.5% roughage. Steers fed the CON diet tended to have lower final BW (P = 0.14), ADG (P = 0.01), and DMI (P < 0.01) than steers fed diets containing WCGF. Steers fed the 20% WCGF diet had greater (P = 0.08) G:F than steers fed the 40% WCGF diets. With 40% WCGF, increasing roughage from 4.5 to 9% decreased (P < 0.01) G:F and increased (P = 0.06) DMI. Gain efficiency was improved (P < 0.01) for steers fed CON vs. those fed diets containing WCGF, whereas HCW (P = 0.02) and dressing percentage (P < 0.01) were greater for steers fed WCGF. Percentage of cattle grading USDA Choice was greater (P = 0.02) for cattle fed WCGF. Results suggest that replacing SFC with up to 40% WCGF increased ADG and decreased G:F when 4.5 to 9.0% roughage was supplied. More CON steers were present at the feed bunk during the first hour after feeding than WCGF steers, suggesting that including WCGF at 40% of the diet affected feeding behavior.  相似文献   

13.
Two finishing trials were conducted to determine the effects of adding different types of corn bran, a component of corn gluten feed, on cattle performance. In Trial 1, 60 English crossbred yearling steers (283 +/- 6.7 kg) were used in a completely randomized design with four dietary treatments. Treatments were diets with no corn bran, dry corn bran (86% DM), wet corn bran (37% DM), and rehydrated dry bran (37% DM). Bran was fed at 40% of dietary DM. All finishing diets had (DM basis) 9% corn steep liquor with distillers solubles, 7.5% alfalfa hay, 3% tallow, and 5% supplement. Gain efficiency and ADG were greater (P < 0.01) for cattle fed no corn bran compared with all treatments containing corn bran; however, no differences were detected across corn bran types. In Trial 2, 340 English crossbred yearling steers (354 +/- 0.6 kg) were used in a randomized block design with treatments assigned based on a 2 x 4 + 2 factorial arrangement (four pens per treatment). One factor was the corn processing method used (dry-rolled corn, DRC; or steam-flaked corn, SFC). The other factor was corn bran type: dry (90% DM), wet (40% DM), or dry bran rehydrated to 40 or 60% DM. Bran was fed at 30% of dietary DM, replacing either DRC or SFC. Two control diets (DRC and SFC) were fed with no added bran. All finishing diets contained (DM basis) 10% corn steep liquor with distiller's solubles, 3.5% alfalfa hay, 3.5% sorghum silage, and 5% supplement. Corn bran type did not affect DMI (P = 0.61), ADG (P = 0.53), or G:F (P = 0.10). Dry matter intake was greater (P < 0.01) by steers fed bran compared with those fed no bran, and was greater by steers fed DRC than by steers fed SFC (P < 0.01). Interactions occurred (P < 0.01) between grain source and bran inclusion for ADG and G:F. The ADG by steers fed the SFC diet without bran was greater (P < 0.01) than by steers fed SFC diets with bran, whereas the ADG by steers fed DRC diets with or without bran was similar. Daily gain was 15.2% greater (P < 0.01) by steers fed SFC without bran than by steers fed DRC without bran. Gain efficiency was 16.9% greater (P < 0.01) for steers fed SFC without bran compared with steers fed DRC without bran. In DRC and SFC diets, feeding bran decreased (P < 0.01) G:F by 5.2 and 13.8%, respectively. The moisture content of corn bran had no effect on finishing steer performance, and drying corn bran did not affect its energy value in finishing cattle diets.  相似文献   

14.
Two finishing trials and a metabolism trial were conducted to evaluate the effect of forage source and particle size in dry-rolled corn finishing diets. In Exp. 1, 224 crossbred yearling steers (BW = 342+/-11 kg) were used in a randomized complete block design consisting of seven treatments. Treatments were an all-concentrate diet or diets containing equal NDF levels provided by alfalfa hay or wheat straw (three treatments each) with each forage source ground to pass through a .95-, 7.6-, or 12.7-cm screen. Steers fed diets containing forage had greater (P < .05) DMI than steers fed an all-concentrate diet. Steers fed alfalfa diets gained faster (P < .05) with a greater (P < .05) concentrate efficiency than steers fed either all-concentrate or straw diets. In Exp. 2, 120 crossbred yearling steers (BW = 307+/-2 kg) were used in a completely randomized design and fed dry-rolled corn diets containing 10% alfalfa ground to pass through either a .95- or 7.6-cm screen. Alfalfa particle size had no effect on performance or carcass measurements. In Exp. 3, six ruminally fistulated steers (BW = 508+/-34 kg) were used in a 6 x 6 Latin square design and fed an all-concentrate diet or diets containing equal NDF levels provided by alfalfa hay, wheat straw, or ground corncobs with alfalfa and straw ground to pass through either a 2.54- or 12.7-cm screen. Steers fed straw diets spent more time (P < .10) chewing than those receiving the other diets. In conclusion, forage particle size had no effect on finishing cattle performance or ruminal metabolism data. However, cattle consuming different forage sources in dry-rolled corn finishing diets may not respond similarly in animal performance.  相似文献   

15.
Three experiments were conducted to evaluate effects of supplemental protein vs energy level on dormant forage intake and utilization. In Exp. 1, 16 ruminally cannulated steers were blocked by weight (avg wt = 242 kg) and assigned randomly to a negative control or to one of three isocaloric supplement treatments fed at .4% BW: 1) control, no supplement (NS); 2) 12% CP, low protein (LP); 3) 28% CP, moderate protein (MP); 4) 41% CP, high protein (HP). In Exp. 2 and 3, 16 ruminally cannulated steers were blocked by weight (avg wt = 332 kg, Exp. 2; 401 kg, Exp. 3) and assigned randomly to a 2 x 2 factorial arrangement of treatments. The treatments contrasted low (LP) and high (HP) levels of supplemental protein (.66 g CP/kg BW vs 1.32 g CP/kg BW) with low (LE) and high (HE) levels of supplemental ME (9.2 kcal/kg BW vs 18.4 kcal/kg BW). In Exp. 1, forage DMI as well as ruminal DM and indigestible ADF fill at 4 h postfeeding were greater (P less than .10) with the MP and HP steers than with control and LP steers. Total DM digestibility increased (P less than .10) for supplemented steers (35.5% for control vs 47.3 for supplemented steers); however, LP depressed (P less than .10) NDF digestibility. In Exp. 2, forage DMI, indigestible ADF flow and liquid flow were depressed (P less than .10) in LP-HE supplemented steers. In Exp. 3, HP steers had greater (P less than .10) forage DMI, indigestible ADF fill values (4 h postfeeding), liquid volume and tended (P = .11) to have greater ruminal DM fill (4 h postfeeding). In summary, increased levels of supplemental protein increased intake and utilization of dormant tallgrass-prairie forage (less than 3% CP). Increasing supplemental energy without adequate protein availability was associated with depressed intake and digestibility.  相似文献   

16.
Two feedlot studies were conducted to investigate the timing and duration of supplemental vitamin A withdrawal from feedlot cattle (Bos taurus) diets to reduce intramuscular adipose tissue vitamin A concentration and improve carcass quality. In Exp. 1, Angus crossbred steers (n = 84, BW = 211 ± 4 kg) were allotted to 4 treatments: no supplemental vitamin A for 227 d, no supplemental vitamin A for 112 d followed by 115 d of supplemental vitamin A, supplemental vitamin A for 112 d followed by no supplemental vitamin A for 115 d, or supplemental vitamin A for 227 d. In Exp. 2, Angus crossbred steers (n = 80, BW = 210 ± 5 kg) were allotted to 4 treatments: early weaning with or without supplemental vitamin A, and traditional weaning with or without supplemental vitamin A. In both experiments, serum vitamin A concentrations were greatest (P < 0.05) 56 d after cattle were weaned and placed in the feedlot, regardless of feedlot dietary vitamin A concentration. Hepatic vitamin A stores were dramatically decreased (P < 0.05) in the first 56 d and remained depressed as long as steers were not supplemented with vitamin A. At the end of the finishing period, vitamin A concentrations were less in intramuscular than subcutaneous adipose tissue. Growth was not affected by finishing cattle without supplemental dietary vitamin A (P > 0.10). Dietary vitamin A supplementation did not affect USDA yield grades. However, in Exp. 2, cattle without supplemental vitamin A had greater (P < 0.001) ether extractable lipid in the LM. Ether extractable lipid in the LM or marbling scores were enhanced when intramuscular adipose tissue vitamin A concentration was reduced in response to feeding diets without supplemental vitamin A.  相似文献   

17.
Three trials were conducted to determine the influence of dietary CP concentration on health and performance of market-transport-stressed feeder calves (Exp. 1 and 2) and on repletion of nutrients lost during a 3-d feed and water deprivation period in steers fed at maintenance energy intake (Exp. 3). In Exp. 1 (84 calves) and 2 (256 calves), feeder calves averaging 184 kg were transported from Tennessee to Texas. In Exp. 1, calves were fed receiving diets containing either 12 or 16% CP. In Exp. 2, calves were fed diets containing 12 or 16% CP and .8 or 1.3% potassium in a 2 x 2 factorial arrangement of treatments. In Exp. 3, four Hereford steers averaging 253 kg were used in an N balance trial. Steers were deprived of feed and water for 3 d and then were limit-fed (1 x maintenance energy requirements) diets calculated to meet 100, 120, 140 or 160% of CP maintenance requirements for 14 d in a 4 x 4 Latin square design. In Exp. 1, calves fed the 16% CP diet had faster (P less than .05) daily gains and higher (P less than .10) feed consumption than calves fed the 12% CP diet during the first 14 d. In Exp. 2, calf performance was not affected by diet CP or K content. Calves fed the 16CP-1.3K diet had lower (P less than .10) mortality than calves on the remaining treatments. In Exp. 3, N balance and serum urea N increased linearly (P less than .05) with increasing dietary CP. Results of these studies are interpreted to indicate that the CP requirement (g/d) of market-transport-stressed feeder calves is similar to requirements of nonstressed calves; however, the CP concentration of the diet of stressed calves may need to be increased when feed intakes are low.  相似文献   

18.
Six steers (468 kg) with ruminal and duodenal cannulas were fed diets formulated for two levels of energy containing three crude protein (CP) sources in a 6 X 6 Latin square with a 2 X 3 factorial arrangement of treatments. Energy levels were 2.17 and 2.71 Mcal metabolizable energy (ME)/kg dry matter (DM) provided by hay-corn (H) and corn silage-corn (CS) diets, respectively. Soybean mean (SBM), corn gluten meal-urea (CGM) and urea (U) provided 33% of dietary CP in 12% CP diets. Apparent organic matter (OM) digested in the stomach was not affected (P greater than .05) by energy level or CP source, but OM truly digested in the stomach was greater (P less than .05) when steers were fed the CS compared with the H diet. Duodenal flow of non-NH3 N was greater (P less than .05) when steers were fed CS compared with H and when fed SBM or CGM compared with U. Efficiency of bacterial protein synthesis and duodenal bacterial N flow were increased (P less than .05) when steers were fed CS, but non-NH3, nonbacterial N flow to the duodenum was increased (P less than .05) when steers were fed H. When steers were fed CS rather than H, flows (g/d) of bacterial amino acids were greater (P less than .05), but flows of nonbacterial amino acids tended (P less than .08) to be less. Total amino acid flows were not affected (P greater than .05) by energy level. Duodenal flows of total amino acids tended (P less than .06) to be greater when steers were fed CGM compared with SBM or U, due mainly to an increased (P less than .05) flow of nonessential amino acids.  相似文献   

19.
Effects of supplemental Bermuda grass hay (BG) or ground corn on intake, digestion and performance of cattle consuming endophyte-infected fescue (I) were studied. In Exp. 1, a Latin square study, five growing Holstein steers (158.1 kg) consumed I ad libitum and were offered 0, .3, .6, .9 or 1.2% body weight (BW) of BG daily. Total dry matter (DM) intake rose linearly (P less than .05) with increasing BG, although intake was numerically similar with .6, .9 and 1.2% BW of BG. Digestibility was constant with diet (P greater than .10). Six growing Holstein steers used in Exp. 2, a Latin square with a 2 x 3 factorial arrangement of treatments, ingested I or noninfected (NI) fescue hay ad libitum with 0, .5 or 1.0% BW of ground corn. Total DM intake increased linearly as the level of corn rose (P less than .05). Total intake with I increased more with the first than with the second addition of corn, and the opposite occurred with NI (interaction between fescue infection and the quadratic effect of corn level, P less than .10). Organic matter digested (g/d) was greater for NI than for I and rose linearly with increasing corn ingestion (P less than .05). Ninety-six crossbred beef heifers and steers (184.2 kg avg initial live weight) were used in a 77-d fall grazing experiment (Exp. 3) with a 2 x 3 factorial treatment arrangement. Cattle grazed I or NI paddocks and were given no supplement or .34% BW of BG or .65% BW of ground corn on a daily basis (DM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Source and level of supplemental protein for growing lambs   总被引:3,自引:0,他引:3  
Two 3 x 2 factorial growth trials and a companion metabolism trial with 13, 15, or 17% dietary CP (DM basis), with or without 3% of the DM replaced with slowly degraded menhaden fish meal, were conducted to determine if level of dietary protein influences whether slowly degraded protein improves lamb growth and protein use. The growth trials included 32 and 34 pens of two weanling lambs initially weighing 23 to 26 kg and fed for 42 d. The metabolism trial included 12 additional lambs fed in metabolism cages with a 2-wk adjustment period, a 1-wk preliminary period, and a 7-d collection period. Plasma urea N (PUN) was measured in all lambs at the conclusion of the second growth trial and at the end of the metabolism trial. There was a protein level x protein source interaction (P = 0.05) for PUN of the 12 lambs in the metabolism trial but not for the 68 lambs in the second growth trial. Replacement of part of the soybean meal protein with protein from fish meal did not affect ADG or G:F at any protein level, but it lowered (P = 0.08) PUN in the second growth trial. Plasma urea N values were higher (P = 0.002) in lambs fed diets with 15 or 17% CP; however, ADG (P = 0.037 in Exp. 1 and P = 0.055 in Exp. 2), and G:F (P = 0.094 in Exp. 1 and P = 0.003 in Exp. 2) were lower for lambs fed the diets with 13% CP. There was little difference in ADG or G:F between lambs fed the diets with 15 or 17% CP, suggesting that a CP level of 15% with supplemental protein from soybean meal would be optimal for 25- to 40-kg growing Finnsheep x Dorset lambs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号