首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 233 毫秒
1.
为考察椰壳炭对水中阿莫西林的吸附特性,以活性炭为参照进行了吸附动力学、吸附等温线、吸附热力学研究,结合扫描电镜、孔径与比表面积分析仪、傅里叶红外光谱仪对椰壳炭、活性炭形貌结构和物化性质的表征,分析了椰壳炭对阿莫西林的吸附机制。结果表明,25℃时椰壳炭对阿莫西林的吸附量是50.50 mg/g,高于活性炭的吸附量(48.02 mg/g);2种炭材料对阿莫西林的吸附均符合准二级动力学方程(R~20.991 9),表明吸附过程受2种以上因素共同影响;采用Langmuir与Freundlich方程对吸附等温结果进行了拟合,后者(R~20.938 7)拟合结果优于前者(R~20.928 8),表明炭材料对阿莫西林的吸附不是单分子层吸附;吸附热力学结果发现2种炭材料对阿莫西林的吸附过程是自发(ΔG0)吸热(ΔH0)熵变增大(ΔS0)的过程且吸附过程主要为物理吸附(ΔH40 kJ/mol)。  相似文献   

2.
落叶松木屑快速热解炭制备活性炭工艺及结构表征   总被引:2,自引:0,他引:2  
以落叶松木屑快速热解炭为原料,采用水蒸气活化法制备了活性炭,其最佳活化工艺为:温度800℃,时间20 min.该条件下活化得率为51%,活性炭亚甲基蓝吸附值为232 mg/g,碘吸附值为968 mg/g,脱色性能优异.微观结构分析表明,快速热解炭主要由微孔组成,外表面包裹沉积吸附层,活化过程中活化剂能够有效去除沉积吸附...  相似文献   

3.
为进一步明晰低温空气氧化生物炭吸附苯系污染物的作用机制,以竹屑为原料、CaCl2为活化剂,通过两步活化法制备低温空气氧化生物炭,并综合吸附试验、炭结构表征和密度泛函理论(density functional theory, DFT)计算,解析低温空气氧化生物炭吸附苯酚、苯胺、对苯二酚、对硝基苯酚等4种苯系污染物的过程与行为。结果表明:低温空气氧化生物炭对苯系污染物的吸附性能受生物炭孔隙结构和表面官能团的协同作用影响,生物炭通过微孔结构的孔隙填充作用在空间几何尺度调控苯系污染物的吸附存储过程。低温空气氧化生物炭后,氧原子以羟基、醛基和羧基的形式赋存于生物炭碳骨架表面,从电子尺度影响碳骨架的电子结构排布、改变碳骨架与苯系污染物间的吸附位置及作用类型,通过静电引力及氢键等作用,显著增强生物炭对苯系污染物的吸附能力,其中,羟基和羧基的氢原子作为氢键的供体,醛基的氧原子作为氢键的受体。  相似文献   

4.
以聚氨酯泡沫作为载体材料对1株降酚菌株进行固定化,并与游离菌、海藻酸钠固定化微生物含酚废水处理效果比较,研究温度、pH对聚氨酯泡沫固定化微生物酚废水降解效果的影响.结果表明:聚氨酯泡沫作为固定化材料,因其吸附能力强等优势而优于海藻酸钠,在酚浓度较低时,主要是以聚氨酯材料吸附为主,当酚浓度达到一定程度时,固定化微生物酚降解效果较为显著;在温度30℃、pH为7时,苯酚去除效果较好.  相似文献   

5.
以稻壳为原料,采用磷酸活化法制备活性炭,考察了原材料与活化剂的配比、活化温度和活化时间等因素对活性炭吸附性能的影响,确立了调控活性炭性能的工艺方法和工艺条件.利用扫描电镜观察了活性炭的形貌特征,利用X射线衍射分析了稻壳活性炭中微晶的晶体结构.研究结果表明,以稻壳为原料、磷酸为活化剂在实验室的马弗炉中制备活性炭的适宜工艺条件为:活化剂/炭为3,活化温度为400℃,活化时间为2h,所制得的活性炭的碘吸附值为809 mg/g.  相似文献   

6.
试验以油茶饼粕为材料,采用磷酸活化法制备活性炭,以苯酚的吸附量来评价其吸附性能,初步考察了活化 剂体积分数、活化温度、活化时间和碳化温度对活性炭制备的影响,通过L9(34)正交实验进一步优化油茶饼粕活 性炭磷酸活化法制备工艺;并较为深入地探讨了吸附温度和苯酚初始浓度对油茶饼粕活性炭吸附苯酚的动力学差 异,采用Langmuir吸附模型对活性炭吸附苯酚溶液的动力学进行了拟合.研究结果表明:活化剂体积分数、活化 温度、活化时间和碳化温度等4个单因素对磷酸活化法制备油茶饼粕活性碳均达到了极显著水平;因此,以油茶饼 粕为生物原料,在碳化温度300℃下,采用磷酸活化法制备活性炭的最佳工艺为:活化剂体积分数为40%,活化时 间为90min,活化温度为600℃;在活性炭对苯酚吸附过程中,随着吸附温度的升高及苯酚初始质量浓度的增加, 对苯酚的吸附速率呈下降趋势,并在100min后趋于平衡;且Langmuir吸附模型的准一级动力学速率方程能较好 地描述油茶饼粕活性炭对苯酚的吸附过程.  相似文献   

7.
以木质素替代部分二乙二醇制备阻燃性高、成本低、环境友好的硬质聚氨酯泡沫材料,研究了木质素对硬质聚氨酯泡沫性能的影响。结果表明,当木质素质量分数为15%时,木质素基硬质聚氨酯泡沫的热稳定性能和阻燃性能最佳。添加15%木质素的硬质聚氨酯泡沫(LRPUF3)较纯硬质聚氨酯泡沫(RPUF)氧指数高,热释放速率峰值和总释放热小,质量损失率低,表明木质素替代部分聚醇可提高硬质聚氨酯泡沫的耐热性能和阻燃性能。在添加15%木质素的基础上,不同阻燃剂复配合成的硬质聚氨酯泡沫(LFRPU1、LFRPU2),其氧指数较LRPUF3高,热释放速率峰值、总释放热均较LRPUF3低,表明阻燃剂可进一步提高硬质聚氨酯泡沫的阻燃性能。通过SEM观测炭层,探讨其阻燃机理。  相似文献   

8.
以酚醛树脂为原料、KOH为活化剂制备双电层电容器用高比表面积活性炭.考察KOH与酚醛树脂炭的质量比对所制得的活}生炭的吸附性能、孔径分布和比电容的影响.实验结果表明,随着碱炭比的增大,所得活性炭的BET比表面积、总孔容积和中孔容积不断增大,碘吸附值和亚甲基蓝吸附值也不断增大,比电容则先增大后减小并在碱炭比为4时达到最大值74.2F/g.以这种高比表面积活性炭组装成的电容器具有良好的充放电性能和循环性能,既能在大电流下快速充放电也能在小电流下缓慢充放电。  相似文献   

9.
以木质纤维素为原料,采用限氧热解法制备木质纤维素生物炭,以亚甲基蓝和四环素为目标污染物,通过批试验方法考察了生物炭热解温度和溶液初始pH值条件等对吸附的影响,以及吸附的动力学和热力学.研究结果发现,热解温度为300℃时木质纤维素生物炭对2种污染物的吸附能力最强.酸化和未酸化处理木质纤维素生物炭对2种污染物的吸附能力有明显的差异,溶液初始pH值条件对吸附过程有较大影响.吸附动力学研究表明,2种污染物在木质纤维素生物炭上的吸附可能以化学吸附为主.由Langmuir吸附等温方程知,298 K时木质纤维素生物炭对亚甲基蓝和四环素的最大吸附量分别达到437.6 mg/g和1090.1 mg/g.热力学分析证明生物炭对2种污染物的吸附过程均为自发和吸热过程.  相似文献   

10.
实验选用KOH、Fe_3O_4纳米粒子制备磁性夏威夷果壳活性炭,并从磁化活性炭(M-AC)的改性机理、除铀(U)机理、最佳使用条件对磁性夏威夷果壳活性炭除U进行分析。结果表明:磁性活性炭在pH为5时对U去除效率最好,反应140 min后达到吸附平衡,最大吸附量为9.63 mg·g~(-1),去除率可达94.6%。同时实验制备的M-AC在循环实验5次后对U(Ⅵ)去除率仍能达到91%,具有明显的磁选回收再利用能力。吸附等温模型表明吸附过程为单层吸附和多层吸附并存,热力学分析显示吸附过程属于吸热反应,动力学拟合结果则说明吸附过程以化学吸附为主,物理吸附为辅。SEM-EDS、FT-IR、XPS等表征结果进一步说明,由于M-AC在制备、活化过程中增加了醚基、羰基、羧基含量,同时比表面积上升,使得对U(Ⅵ)吸附的有效吸附面积和吸附官能团位点显著增加,提高了普通生物炭的吸附能力。磁性夏威夷果壳活性炭的制备与吸附研究,对于果壳等废料应用提供一种新的思路。  相似文献   

11.
[目的]研究无患子活性炭制备的最佳工艺及其对苯酚的吸附。[方法]以H3PO4为活化剂制备无患子残渣活性炭,通过正交试验对制备工艺进行优化,探讨浸渍比、活化温度、活化时间对活性炭亚甲基蓝和碘吸附值的影响。利用N2吸脱附试验、SEM,对活性炭的结构与性能进行表征。选取了投炭量、苯酚溶液pH、苯酚初始浓度、吸附温度为单因素,探讨其对苯酚吸附的影响。[结果]浸渍比为1∶1、活化温度为500℃、活化时间为60 min时,制备的活性炭对亚基蓝的吸附值为82 mg/g、碘吸附值为773 mg/g、BET比表面为738m2/g、总孔容达0.669 2 cm3/g、平均孔径为3.625 7 nm。活性炭在中性条件下对苯酚吸附效果最佳;低温有利于吸附,但温度的影响不大。[结论]所制备的活性炭具有良好的苯酚吸附效果。  相似文献   

12.
以山竹壳作为原料,KOH、K_2CO_3、NaOH和Na_2CO_3为活化剂,采用化学活化法制备山竹壳基活性炭。用傅里叶变换红外光谱(FTIR)和扫描电子显微镜(SEM)表征山竹壳基活性炭。按照国标方法测定不同活化剂制备的活性炭吸附值,通过循环伏安法、恒流充放电和电化学阻抗谱考察其电化学性能。结果表明,以KOH为活化剂制备的活性炭性能最好,其碘吸附值为1 657 mg/g;在3 mol/L KOH电解液中,电流密度为10 A/g时,比电容为198 F/g;在电流密度为5 A/g时进行2 000 s恒流充放电测试,比电容保持达到90%以上。说明活化剂有助于改善所制备的活性炭的性能,且碱性越强,活化效果越好。  相似文献   

13.
蒋卉 《安徽农业科学》2010,38(35):20239-20240
[目的]研究棉杆活性炭制备的最佳试验条件及其孔隙结构特征。[方法]以农业废弃物棉杆为原料、ZnCl2为活化剂,马弗炉加热制备活性炭,用正交试验方法得出活性炭制备的最佳试验条件。同时,用扫描电镜对其结构进行观察。[结果]在活化剂浓度为50%、浸泡时间16 h、反应温度600℃、反应时间70 min的工艺条件下,可得产率13%、碘吸附值1 008.1 mg/g、亚甲基蓝吸附值489.6mg/g的活性炭,亚甲基蓝吸附值达到国家木质净水一级活性炭标准的3.62倍,并且棉杆活性炭具有丰富和发达的蜂窝状孔隙结构。[结论]该研究为拓宽活性炭生产的原料来源提供了一定的理论依据。  相似文献   

14.
[目的]制备油茶壳活性炭,并对其吸附性能进行研究。[方法]以油茶壳为原料,通过磷酸活化法制备油茶壳活性炭,考察磷酸浓度、浸渍比、活化温度、活化时间对活性炭的得率和吸附性能的影响;并对制得的活性炭结构进行表征。[结果]当磷酸浓度为70%,浸渍比为1∶3,活化温度为600℃,活化时间为90 min时,活性炭得率可达34%以上;碘吸附值、亚甲基蓝吸附值分别大于1 000、150mg/g;所得活性炭结构以微孔为主,且富含一定比例的中孔,孔径分布相对集中在1.4~5.0 nm。[结论]该研究为油茶壳的综合利用提供了新的途径。  相似文献   

15.
卢辛成  何跃  蒋剑春  林玉锁  孙康  刘雪梅  徐凡 《安徽农业科学》2011,39(7):4162-4164,4166
以小麦秸秆为原料采用磷酸活化法制备活性炭,考察了制备条件对活性炭性质的影响,并结合氮气吸附、TG-DDTG、SEM对其结构进行了表征。结果表明:在浸渍比为3∶1、活化温度450℃、升温速率3℃/m in的条件下活化60 m in,制得的麦秆基活性炭比表面积为1 279 m2/g,总孔容积为1.36 cm3/g,平均孔径为4.2 nm,有丰富的中孔,可用做大分子吸附材料。麦秆适合作为制备具有丰富大中孔的活性炭的原料。  相似文献   

16.
巴旦杏核壳活性炭表征分析   总被引:1,自引:0,他引:1  
以南疆地区盛产的巴旦杏核壳为原料,采用微波辐照磷酸法制备了巴旦杏核壳活性炭,使用物理吸附仪、扫描电镜(SEM)、傅里叶红外光谱(FTIR)、X射线衍射(XRD)等测试方法研究了其性能。结果表明:巴旦杏核壳活性炭经热解、活化后,残留有机官能基团,活性炭晶型均以非晶态为主。巴旦杏核壳活性炭表面分布着大量孔洞,且孔洞以为微孔为主,BET比表面积达418.2 m2/g,总孔容达0.366 cm3/g,亚甲基蓝吸附值达231.5 mg/g。  相似文献   

17.
磷酸活化棉秆制备活性炭的研究   总被引:1,自引:0,他引:1  
[目的]磷酸活化棉秆制备活性炭.[方法]以棉秆为原料,磷酸为活化剂,采用一步法制备活性炭,考察了浸渍比、活化温度、活化时间对活性炭吸附性能和活化得率的影响.[结果]棉秆制备活性炭的最佳工艺条件:浸渍比为1.5,活化温度450℃,活化时间60 min.此时,活性炭的碘吸附值为1 376 mg/g,亚甲基蓝吸附值为163.5 mg/g,活化得率为35.67%.制得的活性炭比表面积为1 462 m2/g,总孔体积为1.178 cm3/g,中孔体积为0.792 cm3/g,平均孔径为4.4nm,最可几孔径为3.9nm.[结论]该研究对于扩大制备活性炭的原料,带动产棉区的农业经济发展具有重要的意义.  相似文献   

18.
曹伟  王晓雪  贾斌  陈龙  钟成华 《安徽农业科学》2014,(27):9495-9498,9634
[目的]探讨鸭粪作为活性炭制备原料的资源化利用可行性.[方法]以鸭粪为原料,采用氢氧化钾为活化剂制备活性炭,以碘吸附值和亚甲基蓝吸附值为评价指标,研究鸭粪活性炭制备过程中固液比、活化剂浓度、活化时间、活化温度等因素对活性炭产率和吸附性能的影响.[结果]鸭粪活性炭最佳制备工艺条件:固液比为1∶2.5、KOH浓度为40%、活化时间为45 min、活化温度为800℃,其活性炭产率、碘吸附值和亚甲基蓝吸附值分别为32.3%、388 mg/g和53 ml/g.在最佳制备工艺条件下添加25%的锯木屑,能明显提高活性炭的吸附性能.[结论]该研究结果为鸭粪的资源化利用提供了一种新型环保的技术.  相似文献   

19.
[目的]研究活性炭微孔结构对丁烷吸附的影响。[方法]选用8个不同原料、不同工艺生产的活性炭,通过测定活性炭物理性能,研究了活性炭的微孔对丁烷吸附性能的影响。[结果]活性炭样品的比表面积、孔容积和孔分布与丁烷吸附有着密切的关系。微孔中的1.2~2.0nm 范围内的孔容积越大,活性炭丁烷活性越大;0.5~0.9nm的孔容积越大,活性炭丁烷持附性越大,导致BWC会越小。[结论]为活性炭的吸附研究提供参考。  相似文献   

20.
利用热解活化法制备高吸附性能的椰壳活性炭并对其热解活化机理进行研究。结果表明,在热解活化温度为900℃,保温5 h,升温速率为10℃/min时,可以制备比表面积为1 047.65 m~2/g的椰壳活性炭,其中总孔容为0.51 cm~3/g,微孔孔容为0.44 cm~3/g。该活性炭的碘吸附值为1 302 mg/g,亚甲基蓝吸附值为195 mg/g。结果表明:在不添加任何活化气体或化学试剂的情况下,热解活化制备高吸附性能椰壳活性炭的机理可能是由于热解活化过程中,热解释放气体,造成一部分孔隙;高温下未炭化物芳构化形成石墨微晶,键断裂时释放部分气体;这些气体作为活化剂对椰壳原料进行了自活化,生成一定孔隙;在密闭的情况下,热解产生气体,使得反应器内产生微压力,对孔隙的形成有一定作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号