共查询到17条相似文献,搜索用时 78 毫秒
1.
[目的/意义]针对小麦叶片病虫害在自然环境下形态和颜色特征较为复杂、区分度较低等特点,提出一种高质量高效的病虫害检测模型,即YOLOv8-SS (You Only Look Once Version 8-SS),为病虫害的预防与科学化治理提供准确的依据。[方法]基于YOLOv8算法,采用改进的轻量级卷积神经网络ShuffleNet V2作为主干网络提取图像特征即YOLOv8-S,在保持检测精度的同时,减少模型的参数数量和计算负载;在此基础上增加小目标检测层和注意力机制SEnet (Squeeze and Excitation Network),对YOLOv8-S进行改进,在不降低检测速度和不损失模型轻量化程度的情况下提高检测精度,提出YOLOv8-SS小麦叶片病虫害检测模型。[结果与讨论]YOLOv8-SS模型在实验数据集上的平均识别精度和检测准确率分别达89.41%和91.00%,对比原模型分别提高10.11%和7.42%。因此,本研究所提出的方法可显著提高农作物病虫害的检测鲁棒性,并增强模型对小目标图像特征的提取能力,从而高效准确地进行病虫害的检测和识别。[结论]本研究使用的方法具... 相似文献
2.
针对现阶段小麦生育期信息获取需依靠人工观测,效率低、主观性强等问题,本文构建包含冬小麦越冬期、返青期、拔节期和抽穗期4个生育期共计4599幅小麦图像数据集,并提出一种基于FasterNet的轻量化网络模型FSST(Fast shuffle swin transformer),开展4个关键生育期的智能识别。在FasterNet部分卷积的基础上引入Channel Shuffle机制,以提升模型计算速度。引入Swin Transformer模块来实现特征融合和自注意力机制,用来提升小麦关键生育期识别准确率。调整整个模型结构,进一步降低网络复杂度,并在训练中引入Lion优化器,加快网络模型收敛速度。在自建的数据集上进行模型验证,结果表明,FSST模型参数量仅为1.22×107,平均识别准确率、F1值和浮点运算量分别为97.22%、78.54%和3.9×108,与FasterNet、GhostNet、ShuffleNetV2和MobileNetV3 4种模型相比,FSST模型识别精度更高,运算速度更快,并且识别时间分别减少84.04%、73.74%、72.22%和77.01%。提出的FSST模型能够较好地进行小麦关键生育期识别,并且具有识别快速精准和轻量化的特点,可以为大田作物生长实时监测提供信息技术支持。 相似文献
3.
除草是保证农业丰产的重要环节,杂草识别是自动化除草的关键。为了满足在中小型除草机器人上的使用,将轻量级深度学习模型Mobile Net-SSD应用于杂草识别。选取豆角苗和杂草作为实验对象,将实验目标细分为大目标和普通目标,针对大目标改动了Mobile Net-SSD模型的特征层。对比原模型、改动模型和标准SSD模型,以Mobile Net作为主干网络时识别速度提升了2倍。改动模型比原模型在普通目标检测上精度降低了3.15%,对大目标检测精度提高了3.23%。实验表明:Mobile Net-SSD模型与改动模型都具有体积小、识别率高、检测速度快等优点,在检测普通目标与大目标时各有优劣。 相似文献
4.
为实时准确地检测到自然环境下背景复杂的荔枝病虫害,本研究构建荔枝病虫害图像数据集并提出荔枝病虫害检测模型以提供诊断防治。以YOLO v4为基础,使用更轻、更快的轻量化网络GhostNet作为主干网络提取特征,并结合GhostNet中的核心设计引入更低成本的卷积Ghost Module代替颈部结构中的传统卷积,得到轻量化后的YOLO v4-G模型。在此基础上使用新特征融合方法和注意力机制CBAM对YOLO v4-G进行改进,在不失检测速度和模型轻量化程度的情况下提高检测精度,提出YOLO v4-GCF荔枝病虫害检测模型。构建的数据集包含荔枝病虫害图像3725幅,其中病害种类包括煤烟病、炭疽病和藻斑病3种,虫害种类包括毛毡病和叶瘿蚊2种。试验结果表明,基于YOLO v4-GCF的荔枝病虫害检测模型,对于5种病虫害目标在训练集、验证集和测试集上的平均精度分别为95.31%、90.42%和89.76%,单幅图像检测用时0.1671s,模型内存占用量为39.574MB,相比改进前的YOLO v4模型缩小84%,检测速度提升38%,在测试集中检测平均精度提升4.13个百分点,同时平均精度比常用模型YOLO v4-tiny、EfficientDet-d2和Faster R-CNN分别高17.67、12.78、25.94个百分点。所提出的YOLO v4-GCF荔枝病虫害检测模型能够有效抑制复杂背景的干扰,准确且快速检测图像中荔枝病虫害目标,可为自然环境下复杂、非结构背景的农作物病虫害实时检测研究提供参考。 相似文献
5.
认真调查了2014年临汾市小麦白粉病发生情况,分析了该病发生较重的原因,并结合其危害特点,提出了针对性的防治措施,以期对防治小麦白粉病提供有益的参考。 相似文献
6.
基于方向一致性特征的小麦条锈病与白粉病识别方法 总被引:1,自引:0,他引:1
针对小麦条锈病、白粉病这2种病斑颜色特征相近、形状特征不明显,但在方向分布的一致性上却存在较大差别这一特点,提出了一种方向一致性描述方法。通过不同的方向核与图像卷积得到多个方向图和边缘,对每个方向图依据边缘图进行统计得到图像的方向分布直方图;并计算方向分布直方图的标准差,作为图像方向分布的一致性特征。该方法能够较好地抑制噪声影响,得到的结果符合图像的实际分布情况。利用该方法对小麦病斑进行特征提取,并应用于小麦条锈病与白粉病的病斑识别实验中。实验结果表明,所提出的方向一致性特征使条锈病与白粉病的区别度较大,准确识别率达到99%。 相似文献
7.
8.
为在保证识别性能前提下,对叶片病害检测模型进行有效轻量化,基于主干替换、模型剪枝以及知识蒸馏技术构建了一种模型轻量化方法,对以YOLO v5s为基础的叶片黄化曲叶病检测模型开展轻量化试验。首先,通过常见的性能优异的轻量级主干特征提取神经网络结构(Lightweight convolutional neural networks,LCNN)替换YOLO v5s主干对模型主体进行缩减;然后利用模型稀疏化训练和批归一化层(Batch normalization layer)的缩放因子分布状况,筛选并删减不重要的通道;最后,通过微调重新训练以及知识蒸馏,将模型精度调整到接近剪枝前的水平。试验结果表明,经轻量化处理的模型精确率、召回率和平均精度分别为91.3%、87.4%和92.7%,模型内存占用量为1.4 MB,台式机检测帧率81.0f/s,移动端检测帧率1.2f/s,相比原始YOLO v5s叶片病害检测模型,精确率、召回率和平均精度下降3.7、4.6、2.7个百分点,内存占用量仅为处理前的10%,台式机和移动端检测的帧率分别提升近27%和33%。本文所提出的方法在保持模型性能的前提下对模型有效轻量化,为移动端叶片病害检测部署提供了理论基础。 相似文献
9.
含杂率是小麦机械化收获重要指标之一,但现阶段我国小麦收获过程含杂率在线检测难以实现。为了实现小麦机械化收获过程含杂率在线检测,本文提出基于结合注意力的改进U-Net模型的小麦机收含杂率在线检测方法。以机收小麦样本图像为基础,采用Labelme手工标注图像,并通过随机旋转、缩放、剪切、水平镜像对图像进行增强,构建基础图像数据集;设计了结合注意力的改进U-Net模型分类识别模型,并在torch 1.2.0深度学习框架下实现模型的离线训练;将最优的离线模型移植到Nvidia jetson tx2开发套件上,设计了基于图像信息的含杂率量化模型,从而实现小麦机械化收获含杂率在线检测。试验结果表明:针对不同模型的训练结果,结合注意力的改进U-Net模型籽粒和杂质分割识别F1值分别为76.64%和85.70%,比标准U-Net高10.33个百分点和2.86个百分点,比DeepLabV3提高10.22个百分点和11.62个百分点,比PSPNet提高18.40个百分点和14.67个百分点,结合注意力的改进U-Net模型对小麦籽粒和杂质的识别效果最好;在台架试验和田间试验中,装置在线检测含杂率均值分别为1... 相似文献
10.
针对跟踪模型泛化能力差、跟踪模型正样本选取质量低、深层模型参数量大不利于部署等问题,本文提出了超轻量化孪生网络模型Siamese-remo。首先结合传统随机采样方法和go-turn方法,设计出新型的正负样本选取策略,增加模型泛化能力;其次采用shiftbox-remo的数据增强方式均匀正样本分布,并提升正样本采集质量;然后通过改进后的超轻量化Mobileone-remo网络提取特征,一定程度减少深层网络对跟踪平移不变性的破坏,并预设不同特征融合参数,单独训练网络分类和回归;最终加入Center-rank loss函数,根据样本点位置影响置信度、IOU排名,对网络分类回归策略进行优化。实验证明,自然场景下奶牛单目标跟踪模型期望平均重合度(Expected average overlap, EAO)达到0.475,相对于基线模型提升0.078,与现有跟踪器对比取得了较好的成绩,且参数量仅为现有主流算法的1/20,为后续自然场景下奶牛身份识别与目标跟踪系统提供了技术支持。 相似文献
11.
12.
特征提取和相似性度量是基于图像处理的农作物病虫害识别方法中的两大关键问题。以感染小麦白粉病的叶片为研究对象,提出了一种基于椭圆型度量学习的小麦叶部病害严重度识别算法。该算法首先给出了一种滑窗最大值(Moving window maximum, MWM)特征提取方法,对分割后的病斑图像采用滑窗法提取HSV颜色特征和LBP纹理特征,在同一水平条滑窗上取每一维特征的最大值作为这一水平条的特征,这种MWM特征表示方法能有效减弱小麦叶片弯曲、倾斜、拍摄角度不同等对识别率的影响;然后,引入对样本数据具有更好区分性的椭圆型度量,根据样本的类内与类间高斯分布的对数似然比定义椭圆型度量矩阵,为了保持最大化的分类信息,将特征子空间学习和椭圆型度量学习同时进行;最后,利用得到的椭圆型度量计算特征向量之间的距离实现不同严重度病害的识别。对比实验结果表明,本文算法使得小麦白粉病严重度的识别正确率达到了100%,优于SVM方法的88.33%、BP神经网络方法的90%。 相似文献
13.
奶牛体况评分是评价奶牛产能与体态健康的重要指标。目前,随着现代化牧场的发展,智能检测技术已被应用于奶牛精准养殖中。针对目前检测算法的参数量多、计算量大等问题,以YOLO v5s为基础,提出了一种改进的轻量级奶牛体况评分模型(YOLO-MCE)。首先,通过2D摄像机在奶牛挤奶通道处采集奶牛尾部图像并构建奶牛BCS数据集。其次,在MobileNetV3网络中融入坐标注意力机制(Coordinate attention, CA)构建M3CA网络。将YOLO v5s的主干网络替换为M3CA网络,在降低模型复杂度的同时,使得网络特征提取时更关注于牛尾区域的位置和空间信息,从而提高了运动模糊场景下的检测精度。YOLO v5s预测层采用EIoU Loss损失函数,优化了目标边界框回归收敛速度,生成定位精准的预测边界框,进而提高了模型检测精度。试验结果表明,改进的YOLO v5s模型的检测精度为93.4%,召回率为85.5%,mAP@0.5为91.4%,计算量为2.0×109,模型内存占用量仅为2.28 MB。相较原始YOLO v5s模型,其计算量降低87.3%,模型内存占用量减... 相似文献
14.
白粉病主要侵染小麦叶部,可利用卫星遥感技术进行大范围监测和评估.本研究利用多源多时相卫星遥感影像监测小麦白粉病并提升分类精度.使用四景Landat-8的热红外传感器数据(Thermal Infrared Sensor,TIRS)和20景MODIS影像的MOD11A1温度产品反演地表温度(Land Surface Tem... 相似文献
15.
为实现自然环境下蔬菜幼苗精准快速识别,本文以豆角、花菜、白菜、茄子、辣椒、黄瓜等形态差异大、具有代表性的蔬菜幼苗为研究对象,提出一种基于轻量化二阶段检测模型的多类蔬菜幼苗检测方法。模型采用混合深度分离卷积作为前置基础网络对输入图像进行运算,以提高图像特征提取速度与效率;在此基础上,引入特征金字塔网络(Feature pyramid networks, FPN)单元融合特征提取网络不同层级特征信息,用于增强深度学习检测模型对多尺度目标的检测精度;然后,通过压缩检测头网络通道维数和全连接层数量,降低模型参数规模与计算复杂度;最后,将距离交并比(Distance-IoU, DIoU)损失作为目标边框回归损失函数,使预测框位置回归更加准确。试验结果表明,本文提出的深度学习推理模型对多类蔬菜幼苗的平均精度均值为97.47%,识别速度为19.07 f/s,模型占用存储空间为60 MB,对小目标作物以及叶片遮挡作物的平均精度均值达到88.55%,相比于Faster R-CNN、R-FCN模型具有良好的泛化性能和鲁棒性,可以为蔬菜田间农业智能装备精准作业所涉及的蔬菜幼苗检测识别问题提供新方案。 相似文献
16.
17.
针对目前群养生猪智能化养殖中复杂环境下猪只目标检测精度低的问题,提出了一种基于改进YOLOX的群养生猪轻量化目标检测模型Ghost-YOLOX-BiFPN。该模型采用Ghost卷积替换普通卷积,在减少主干网络参数的情况下,提高了模型的特征提取能力。使用加入CBAM注意力机制的BiFPN作为模型的Neck部分,使得模型充分融合不同体型猪只的特征图,并使用Focal Loss损失函数解决猪圈环境下猪只与背景难以区分的问题,增强模型对正样本的学习。实验结果表明,改进后模型对群养生猪检测精度为95.80%,相比于原始YOLOX算法,检测精度提升2.84个百分点,参数量降低63%。最后将本文轻量化模型部署到Nvidia Jetson Nano移动端开发板,通过在开发板上实际运行表明,本文所提模型实现了对不同大小、不同品种猪只的准确识别,为后续智能化生猪养殖提供支持。 相似文献