首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Siderophore-mediated acquisition systems facilitate iron uptake. We present the crystallographic structure of the integral outer membrane receptor FecA from Escherichia coli with and without ferric citrate at 2.5 and 2.0 angstrom resolution. FecA is composed of three distinct domains: the barrel, plug, and NH2-terminal extension. Binding of ferric citrate triggers a conformational change of the extracellular loops that close the external pocket of FecA. Ligand-induced allosteric transitions are propagated through the outer membrane by the plug domain, signaling the occupancy of the receptor in the periplasm. These data establish the structural basis of gating for receptors dependent on the cytoplasmic membrane protein TonB. By compiling available data for this family of receptors, we propose a mechanism for the energy-dependent transport of siderophores.  相似文献   

2.
Active nuclear import of soluble cargo involves transport factors that shuttle cargo through the nuclear pore complex (NPC) by binding to phenylalanine-glycine (FG) domains. How nuclear membrane proteins cross through the NPC to reach the inner membrane is presently unclear. We found that at least a 120-residue-long intrinsically disordered linker was required for the import of membrane proteins carrying a nuclear localization signal for the transport factor karyopherin-α. We propose an import mechanism for membrane proteins in which an unfolded linker slices through the NPC scaffold to enable binding between the transport factor and the FG domains in the center of the NPC.  相似文献   

3.
Nuclear pore complexes (NPCs) facilitate nucleocytoplasmic transport. These massive assemblies comprise an eightfold symmetric scaffold of architectural proteins and central-channel phenylalanine-glycine-repeat proteins forming the transport barrier. We determined the nucleoporin 85 (Nup85)*Seh1 structure, a module in the heptameric Nup84 complex, at 3.5 angstroms resolution. Structural, biochemical, and genetic analyses position the Nup84 complex in two peripheral NPC rings. We establish a conserved tripartite element, the ancestral coatomer element ACE1, that reoccurs in several nucleoporins and vesicle coat proteins, providing structural evidence of coevolution from a common ancestor. We identified interactions that define the organization of the Nup84 complex on the basis of comparison with vesicle coats and confirmed the sites by mutagenesis. We propose that the NPC scaffold, like vesicle coats, is composed of polygons with vertices and edges forming a membrane-proximal lattice that provides docking sites for additional nucleoporins.  相似文献   

4.
5.
Nuclear pore complexes (NPCs) are gateways for nucleocytoplasmic exchange. To analyze their structure in a close-to-life state, we studied transport-active, intact nuclei from Dictyostelium discoideum by means of cryoelectron tomography. Subvolumes of the tomograms containing individual NPCs were extracted in silico and subjected to three-dimensional classification and averaging, whereby distinct structural states were observed. The central plug/transporter (CP/T) was variable in volume and could occupy different positions along the nucleocytoplasmic axis, which supports the notion that it essentially represents cargo in transit. Changes in the position of the CP/T were accompanied by structural rearrangements in the NPC scaffold.  相似文献   

6.
Molecular basis of gating charge immobilization in Shaker potassium channels   总被引:18,自引:0,他引:18  
Voltage-dependent ion channels respond to changes in the membrane potential by means of charged voltage sensors intrinsic to the channel protein. Changes in transmembrane potential cause movement of these charged residues, which results in conformational changes in the channel. Movements of the charged sensors can be detected as currents known as gating currents. Measurement of the gating currents of the Drosophila Shaker potassium channel indicates that the charge on the voltage sensor of the channels is progressively immobilized by prolonged depolarizations. The charge is not immobilized in a mutant of the channel that lacks inactivation. These results show that the region of the molecule responsible for inactivation interacts, directly or indirectly, with the voltage sensor to prevent the return of the charge to its original position. The gating transitions between closed states of the channel appear not to be independent, suggesting that the channel subunits interact during activation.  相似文献   

7.
To combat the functional decline of the proteome, cells use the process of protein turnover to replace potentially impaired polypeptides with new functional copies. We found that extremely long-lived proteins (ELLPs) did not turn over in postmitotic cells of the rat central nervous system. These ELLPs were associated with chromatin and the nuclear pore complex, the central transport channels that mediate all molecular trafficking in and out of the nucleus. The longevity of these proteins would be expected to expose them to potentially harmful metabolites, putting them at risk of accumulating damage over extended periods of time. Thus, it is possible that failure to maintain proper levels and functional integrity of ELLPs in nonproliferative cells might contribute to age-related deterioration in cell and tissue function.  相似文献   

8.
The nucleoporins Nup58 and Nup45 are part of the central transport channel of the nuclear pore complex, which is thought to have a flexible diameter. In the crystal structure of an alpha-helical region of mammalian Nup58/45, we identified distinct tetramers, each consisting of two antiparallel hairpin dimers. The intradimeric interface is hydrophobic, whereas dimer-dimer association occurs through large hydrophilic residues. These residues are laterally displaced in various tetramer conformations, which suggests an intermolecular sliding by 11 angstroms. We propose that circumferential sliding plays a role in adjusting the diameter of the central transport channel.  相似文献   

9.
Tail-anchored (TA) proteins are involved in cellular processes including trafficking, degradation, and apoptosis. They contain a C-terminal membrane anchor and are posttranslationally delivered to the endoplasmic reticulum (ER) membrane by the Get3 adenosine triphosphatase interacting with the hetero-oligomeric Get1/2 receptor. We have determined crystal structures of Get3 in complex with the cytosolic domains of Get1 and Get2 in different functional states at 3.0, 3.2, and 4.6 angstrom resolution. The structural data, together with biochemical experiments, show that Get1 and Get2 use adjacent, partially overlapping binding sites and that both can bind simultaneously to Get3. Docking to the Get1/2 complex allows for conformational changes in Get3 that are required for TA protein insertion. These data suggest a molecular mechanism for nucleotide-regulated delivery of TA proteins.  相似文献   

10.
The gramicidin pore: crystal structure of a cesium complex   总被引:15,自引:0,他引:15  
Gramicidin, a linear polypeptide composed of hydrophobic amino acids with alternating L- and D- configurations, forms transmembrane ion channels. The crystal structure of a gramicidin-cesium complex has been determined at 2.0 angstrom resolution. In this structure, gramicidin forms a 26 angstrom long tube comprised of two polypeptide chains arranged as antiparallel beta strands that are wrapped into a left-handed helical coil with 6.4 residues per turn. The polypeptide backbone forms the interior of the hydrophilic, solvent-filled pore and the side chains form a hydrophobic and relatively regular surface on the outside of the pore. This example of a crystal structure of a solvent-filled ion pore provides a basis for understanding the physical nature of ion translocation.  相似文献   

11.
12.
13.
Nuclear pore complexes permit rapid passage of cargoes bound to nuclear transport receptors, but otherwise suppress nucleocytoplasmic fluxes of inert macromolecules >/=30 kilodaltons. To explain this selectivity, a sieve structure of the permeability barrier has been proposed that is created through reversible cross-linking between Phe and Gly (FG)-rich nucleoporin repeats. According to this model, nuclear transport receptors overcome the size limit of the sieve and catalyze their own nuclear pore-passage by a competitive disruption of adjacent inter-repeat contacts, which transiently opens adjoining meshes. Here, we found that phenylalanine-mediated inter-repeat interactions indeed cross-link FG-repeat domains into elastic and reversible hydrogels. Furthermore, we obtained evidence that such hydrogel formation is required for viability in yeast.  相似文献   

14.
15.
Diverse bacterial and viral pathogens induce actin polymerization in the cytoplasm of host cells to facilitate infection. Here, we describe a pathogenic mechanism for promoting dynamic actin assembly in the nucleus to enable viral replication. The baculovirus Autographa californica multiple nucleopolyhedrovirus induced nuclear actin polymerization by translocating the host actin-nucleating Arp2/3 complex into the nucleus, where it was activated by p78/83, a viral Wiskott-Aldrich syndrome protein (WASP)-like protein. Nuclear actin assembly by p78/83 and Arp2/3 complex was essential for viral progeny production. Recompartmentalizing dynamic host actin may represent a conserved mode of pathogenesis and reflect viral manipulation of normal functions of nuclear actin.  相似文献   

16.
A quantitative method was used to determine the concentration of receptor-estrogen complex in the nuclear fraction of rat uterine cells throughout the estrous cycle. The concentrations of nuclear receptor-estrogen complex were: metestrus, 0.22; diestrus, 0.75; proestrus, 1.29; and estrus, 0.31 picomoles per milligram of DNA. This cyclic fluctuation in the nuclear complex closely parallels the secretion of ovarian estrogen during the estrous cycle, an indication that the accumulation of receptor-estrogen complex by the nuclear fraction of uterine cells may be of physiological significance, and under the control of endogenous estrogen.  相似文献   

17.
The literature review focuses on endophytic bacteria inhabiting woody plants. Endophytic bacteria for genera Pseudomonas, Bacillus, Paenibacillus, Burkholderia, and Erwina are shown to be found in almost all woody tissues. In additional, endophytic bacteria have been found in reproductive plant organs. It is shown that endophytic bacteria have functional properties that are useful for host plants: the ability to fix atmospheric nitrogen, produce growth simulating and biocontrol substances, and to induce systemic resistane of plants to biotic and abiotic stresses. Endophytic bacteria are a major part of the microbiome of woody plants, possess valuable functional properties of host plants, and are a promising biotechnological resource for the development of complex microbial preparations for agriculture and forestry.  相似文献   

18.
Laser scanning confocal microscopy can be used to image the pore structure of geologic materials in three dimensions at a resolution of 200 nanometers. The technique involves impregnation of the void space with an epoxy doped with a fluorochrome whose fluorescent wavelength matches the excitation wavelength. Optical sections with a thickness of less than 1 micrometer can be sliced from thick polished sections and combined to produce three-dimensional reconstructions. Application of the technique to rocks with porosities from 1 to 20 percent reveals the geometric complexity of the pore space. The technique can also be applied to other brittle solids such as ceramics.  相似文献   

19.
Calcium-sensitive inactivation in the gating of single calcium channels   总被引:9,自引:0,他引:9  
Voltage-activated calcium channels open and close, or gate, according to molecular transition rates that are regulated by transmembrane voltage and neurotransmitters. Here evidence for the control of gating by calcium was found in electrophysiological records of single, L-type calcium channels in heart cells. Conditional open probability analysis revealed that calcium entry during the opening of a single channel produces alterations in gating transition rates that evolve over the course of hundreds of milliseconds. Such alteration of calcium-channel gating by entry of a favored permeant ion provides a mechanism for the short-term modulation of single-ion channels.  相似文献   

20.
Intracellular membrane fusion is mediated by the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. All vesicle transport steps also have an essential requirement for a member of the Sec1 protein family, including the neuronal Munc18-1 (also known as nSec1) in regulated exocytosis. Here, in adrenal chromaffin cells, we expressed a Munc18 mutant with reduced affinity for syntaxin, which specifically modified the kinetics of single-granule exocytotic release events, consistent with an acceleration of fusion pore expansion. Thus, Munc18 functions in a late stage in the fusion process, where its dissociation from syntaxin determines the kinetics of postfusion events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号