首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
文章设计了履带车辆的液压机械双流驱动系统,对系统中起功率汇流的动力差速转向机构进行参数设计的基础上,理论分析了动力差速转向机构的动力输入和输出之间的转速和扭矩关系,获得了采用该转向机构的履带车辆的理论转向半径和理论最小周转向时间,并通过样机实验获得了实际转向半径和实际最小周转向时间,进行了比较,可用于指导液压机械双流驱动系统的研究  相似文献   

2.
丘陵山区特殊的作业环境影响履带车辆的机动性能,建立履带车辆软坡路面稳态转向理论模型,探讨坡角、转向半径、转向角度和土壤环境等因素对山地履带车辆转向性能的影响。结果表明:基于动力学模型的数值分析与基于RecurDyn模型的仿真分析表现出较为一致的转向特性,这说明所建立的履带车辆软坡路面转向模型准确度较高;偏移量和滑移率随坡角及转向半径的变化趋势相反;牵引力、制动力、转向驱动力矩和阻力矩随坡角及转向半径的变化趋势一致,随转向角度在[0,360°)内呈现周期性变化;履带车辆在转向半径越大、坡角越平缓的情况下越易于实现转向运动,土壤环境是影响履带车辆转向特性的显著因素。研究结果可为履带车辆转向系统设计及其软坡路面转向特性分析提供参考。  相似文献   

3.
为实现四轮独立驱动高地隙车辆在田间路况下正常工作,防止车轮过度滑转,设计一种滑转率控制器,该控制器通过反馈数据计算出各轮的实际滑转率,再结合滑模变结构算法对4个驱动轮力矩进行分配,从而控制滑转率到目标值。试验结果表明:1)该滑转率控制器能够有效的控制车轮的滑转;2)使用该控制器时,车辆在1s内达到稳定状态;而未使用时,车辆需要3~4s达到稳定状态;3)使用该控制器能够有效减小路面变化对车辆速度的影响;4)当车辆遇到障碍时,车轮的滑转率能在1~2s内恢复至目标值,表明该控制器具有鲁棒和快速响应的特性。  相似文献   

4.
减小转向阻力矩,减少油耗,是设计履带收获机的一个指标,针对履带收获机小半径转向情况,提出了3种牵引力和1种侧面转向阻力矩的计算方法,并进行实车试验证明了小半径转向时侧面剪切土壤引起的阻力矩占总转向阻力矩中的比重很大,进而得出减少侧面剪切土壤引起的阻力矩就可以减少收获机转向阻力矩这一观点的正确性,为今后履带车辆设计提供了依据。  相似文献   

5.
基于转向动力学、运动学及液压机械差速转向特点,建立了履带车辆液压机械差速转向瞬态过程的仿真模型,对转向角加速度、转向角速度及转向角度等转向参数随液压转向闭式回路系统排量比、变速箱档位的变化规律进行了仿真.仿真结果表明,转向角加速度从最大开始减小到零,转向角速度从一稳态值变化到另一稳态值,转向角度增大.该结果对转向系统响应特性分析和转向操纵系统设计具有重要意义.  相似文献   

6.
新型履带自走式联合收割机转向与传动装置性能分析   总被引:4,自引:0,他引:4  
通过对自行设计的履带自走式联合收割机行走及转向控制装置的研究,对其性能与传统履带车辆的性能进行了对比分析。结果表明,控制原理及理论数据阐明了此转向控制系统的可行性与优越性,此装置不但实现了履带车辆的转向操纵方式与轮式车辆一致的操作方法,而且实现了车辆以任何速度及任何档位下得到的最小规定转向半径为零。  相似文献   

7.
为改善小型履带式采伐机转向性能和提高采伐机采伐作业时的工作效率,运用转向动力学和履带行走机构转弯理论对小型采伐机的履带行走机构进行转向阻力矩和转向受力分析,并推导出理论转弯半径、转向阻力矩、转向参数的数学表达式。以履带行走机构接地长度,轨距以及采伐机自重等参数为例进行计算,计算出理论转弯半径、理论转向阻力矩、转向系数、转向比。结果表明,当转向系数k>0.5时,慢侧履带制动,快侧履带提供切线牵引力与实际工作情况完全吻合;同时验证了理论分析的准确性,为小型履带式采伐机的转向理论研究提供了理论依据。  相似文献   

8.
对于农用机械来说,如果滑转率过高将会导致动力输出不足,农业作业时的效率降低,因此,研究农用机械的滑转率具有重大的意义。滑转率的研究主要是车辆实际行驶速度和车轮转速的获取。采集车速与转速然后就可以通过滑转率计算公式得出拖拉机行驶过程中的滑转率变化情况。本课题将会采用这一思路进行滑转率的测试并对其进行分析。转速信号与车速信号的采集是滑转率测试的关键,本次课题将会采用数据采集卡对传感器和GPS仪发出的数据进行采集,通过Labview进行软件设计,最终通过计算机进行数据的处理与分析。  相似文献   

9.
全履带式再生稻收割机行走底盘碾压率的模拟与分析   总被引:1,自引:0,他引:1  
为减少全履带式再生稻收割机收获再生稻头季时行走底盘对留桩的碾压率(履带碾压面积与收割面积的比值),以利于提高再生季水稻产量、并改善再生季稻米品质,基于履带式车辆设计理论,以割幅Z、轨距B、履带接地长度L、履带宽度b、转向半径R0、底盘中心轴线与割台割刀纵向距离X为影响因素,建立了全履带式再生稻收割机行走底盘结构模型及其田间直行转弯碾压模型,以种植行距i,株距c,穴径br的水稻为对象,对上述各参数对碾压率的影响规律进行了分析,结果表明,其他参数相同条件下,直行时,碾压率δ1随割幅Z与履带宽度b的比值增加而减小;转弯时,全履带式再生稻收割机碾压率δ2随转向角度θ增大而减小,随转向半径R0的增大而减小;碾压率不受底盘中心轴线与割台割刀纵向距离X的影响;轨距B以及割幅Z与轨距B之差为行距和株距的公倍数时有利于减少碾压率;在相同接地比压条件下,割幅Z增加有利于减少碾压率。为减少碾压率,全履带式再生稻收割机结构设计时,在满足接地比压前提下,应减少履带宽度b和接地长度L,增大割幅Z,轨距B取行距和株距的公倍数,割幅Z与轨距B之差为行距和株距的最小公倍数,采用回转式行走路径;结合田块形状与面积,优先选用较大转向半径R0;在农艺上,建议水稻种植行距与株距有整数倍关系。  相似文献   

10.
针对农作物生长后期田间机械化管理作业需求,设计了一种小型全液压驱动的高地隙履带车。履带车采用两侧马达正反转的方式进行原地转向,为验证设计方案的合理性,使用AMEsim软件和集思宝G970高精度GNSS设备对履带车原地转向性能进行仿真分析和试验。仿真结果表明:在水泥路和砖砌路稳定转向时,两侧马达转速分别为-76 r·min~(-1)和81 r·min~(-1),转速差约为总转速的3.3%,基本可以实现等速正反转。试验结果表明:使用实时差分卫星定位信号可以精确测定履带转向轨迹,在水泥路和砖砌路履带车转向半径均值分别为0.054 m和0.126 m,转向轨迹半径变异系数分别为40.969%和64.899%;圆心距离标准差分别为0.093 m和0.017 m。仿真和履带车试验表明,采用两侧行走马达正反转实现履带车原地转向的方案可行,履带车转向半径较小。  相似文献   

11.
轮式联合收获机电控液压转向特性测试与分析   总被引:1,自引:1,他引:0  
针对轮式联合收获机自动导航中需要对电控液压转向特性进行测试与分析等问题,设计了转向轮转角测量装置,构建了电控液压转向测试系统,通过电液转向控制器实现了转向轮转角的实时控制与同步测量,对电控液压转向过程中的稳态转向速率、瞬态响应过程等线性与非线性特征开展了分析与测试。由路面静态试验验证得到收获机转向轮转向中位左右15°范围内,转向轮转角对应转向液压缸活塞杆伸缩量关系线性拟合决定系数R2>0.99,均方根误差RMSE=0.25。田间动态试验显示:电控液压转向存在的非对称死区电压区间占控制电压范围的32%;转向轮稳态动作时的转向轮转向速率与转向控制电压线性度显著;在不同方波信号激励下,转向轮瞬态响应过程平均滞后时间90 ms、调整时间150~200 ms、调整转角0.21°~2.77°、滞留时间25~77 ms、滞留转角0.10°~1.24°。  相似文献   

12.
以外侧转向轮实际转角与期望转角之间相对误差的加权求和为目标函数 ,对汽车拖拉机转向梯形进行了最优化设计。通过实例计算 ,优化后的转向梯形满足设计要求 ,平均相对误差和最大相对误差均比原设计的有所降低。获得快速、精确、可靠、简便易行的效果  相似文献   

13.
从提高汽车的操纵稳定性角度,探讨了4轮转向汽车变换车道时和转弯时的运动规律,并导出适用于转向角成比例4轮转向汽车后轮转向横拉杆驱动机构的运动规律及其运动轨迹的数学表达式.  相似文献   

14.
以某型拖拉机和深松机为研究对象,在UG中建立拖拉机和农具的三维模型并导入ADAMS中,建立人-机-路面的虚拟样机模型,对农具质量和悬挂位置在拖拉机转向过程中驾驶员乘坐舒适性的影响进行了研究.结果表明:在拖拉机空载和悬挂农具质量为300 kg、600 kg和900 kg的情况下,拖拉机驾驶员的联合加权加速度均方根值为0.434、0.474、0.566和0.629 m·s-2;在拖拉机悬挂农具内提升臂和水平方向夹角从20°提升到45°、70 °的情况下,拖拉机驾驶员的联合加权加速度均方根值为0.710、0.629和0.558 m·s-2,悬挂农具的质量越大,农具的悬挂角度越小,驾驶员的联合加权加速度均方根值越大,驾驶员越不舒服.该研究为后期的拖拉机的减振设计提供了重要参考.  相似文献   

15.
针对轮式拖拉机自动导航中转向角测量及自动控制的需求,研制由非接触式角度传感器为测量元件的轮式拖拉机转向角测量装置.该转向角测量装置由转向角检测机构、数据采集模块及显示终端组成.角度传感器相对车体静止,磁块随前轮转向立柱一起做旋转运动,磁场方向的变化使角度传感器输出不同的电压值,从而测量前轮的转动角度.数据采集模块采用A...  相似文献   

16.
针对丘陵山地现有果园割草机行走性能差及人员操作便捷性低等问题,设计一种铰接转向果园割草机。采用理论分析与仿真、田间试验相结合的方法,对铰接转向果园割草机进行研究。结果表明:1)铰接转向果园割草机最大行驶速度5.9km/h,割刀转速1 450~3 850rad/min,最小转弯半径466.4mm,爬坡与下坡纵向极限倾覆角度分别为37.47°和60.99°,横向极限倾覆角为48.76°;2)应用Ansys workbench软件分析得到割草机车架在平地直行、平地最大角度转向、直行爬坡与直行下坡四种工况下最大变形量和最大等效应力分别为0.034 4mm和20.06MPa。田间试验结果表明:铰接转向果园割草机的割幅利用率为98.9%,平均碎草率85.9%,割茬高度基本符合设定高度,满足丘陵山地小地块果园作业需求。  相似文献   

17.
[目的]拖拉机在田间转向过程状态多变且环境恶劣,对转向系统控制精度和算法适应能力要求较高,故研究设计变论域两级模糊PID控制方法在拖拉机电液转向系统上的应用.[方法]在分析了电液转向系统的结构原理的基础上,建立了其主要组成部分数学模型,然后将变论域两级模糊PID方法(VFFPID)引入到控制器设计中,进行蛇形跟随性、转向响应性仿真试验,并同时与模糊PID控制算法(FPID)和基于函数型变论域模糊PID算法(XFPID)作对比分析.[结果]蛇形跟随性试验结果表明:拖拉机电液转向系统在VFFPID的控制下,转向油缸位移最大误差只有±1.43 mm,比FPID降低了49.5%,比XFPID降低了40.7%.响应性试验结果表明:在VFFPID控制下,转向油缸执行响应时间为0.123 1 s,比FPID缩短了17.8%;转向油缸位移平均误差为0.121 9 mm,是XFPID的28.3%.[结论]拖拉机电液转向在VFFPID的控制下油缸位移最大误差、平均误差更小,执行响应时间更短,具有更好的跟随性和控制精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号