首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purely observational studies have documented differences in the abundance and diversity of several litter-dwelling arthropods between sites adjacent to, and far from, CWD, which suggests that reduction of fallen coarse woody debris (CWD) in temperate forests by traditional forestry practices may affect the litter arthropod community. As few field experiments have directly tested the impact of CWD on arthropods inhabiting the litter at different distances from CWD, we removed CWD from replicated open plots on the floor of a second-growth deciduous forest in order to reveal the causal connection between CWD and litter-dwelling spiders, often the most diverse and abundant predators among the litter macrofauna of temperate forests. We also documented the impact of the CWD manipulation on spider prey and several other major macroarthropod groups. Before removing CWD (∅ = 14.3 ± 0.7 cm), we measured response variables as a function of distance (0.5–1.5 m) from CWD in both removal and control plots. In agreement with results of previous research that solely utilized this observational approach in temperate forests, volume and dry mass of litter, spider diversity, overall spider density, and densities of 8 of 16 major spider genera were higher adjacent to CWD before experimental manipulations. Removing CWD reduced the amount of litter and the density of spiders in litter close to where the CWD had been. Removing CWD also altered spider community structure, which had differed between litter sites adjacent to, and far from, CWD prior to the experimental removal of CWD. The patterns, though, were not completely congruent, as some of the taxa affected by the manipulation had not differed between sites prior to the removal of CWD, and vice-versa. Our findings suggest that complex interactions among structural, biotic and microclimatic factors underlie the observed responses to CWD removal by spiders and other arthropods in the litter layer. We also conclude that drawing inferences solely from observational studies is not a reliable approach for predicting the impact of changes in the amount of CWD on arthropods of forest-floor leaf litter. Further field experiments manipulating different volumes of CWD are needed in order to determine the minimum amount of CWD that should be kept on the forest floor of managed forests in order to maintain densities and diversities of major leaf-litter arthropods.  相似文献   

2.
Leaf litter respiration (R LL) was directly measured in situ to evaluate relationships with the water content in leaf litter (WC), which is distributed heterogeneously under natural conditions. To do so, we developed a small, closed static chamber system using an infrared gas analyzer, which can measure instantaneous R LL. This study focuses on the measurement of CO2 effluxes from leaf litter using the chamber system in the field and examines the relationship between R LL and WC among seven broadleaf species in a temperate forest. The measurements focused on the position of leaves within the litter layer, finding that both R LL and WC were significantly higher in the lower layer. The value of R LL increased with increasing WC, and the response of R LL to WC was similar among all seven species. Moreover, the temporal variation in WC differed among three species and was associated with leaf litter thickness. The observed heterogeneity in WC induced by the physical environment (e.g., position and thickness of leaf litter) affects the variation in WC and, therefore, both R LL and the decomposition rates of organic matter in the litter layer.  相似文献   

3.
To assess the effect of changes in organic litter stock on seasonal changes in heterotrophic respiration (R H), soil respiration (R S), and total ecosystem respiration (R E), we measured seasonal changes in leaf litter respiration (R LL) by the chamber method and estimated the seasonal change in total R H using the RothC model in a warm-temperate mixed deciduous?Cevergreen forest in Japan. Both R E and R S had seasonal hysteresis and were higher in spring than at the same temperature during autumn. Under warm and humid conditions, the rate of decomposition of newly supplied leaf litter in one?year was high (60% loss). Consequently, R LL and R H were higher in spring after leaf drop, when more fresh material was available, than in autumn. In this study, 42 and 88% of the difference in R E and R S between spring and autumn (soil temperature 16?C18°C) could be accounted for by the difference in R H, respectively, and 71% of the difference in R H could be accounted for by the difference in R LL. This study showed that seasonal changes in heterotrophic respiration (R LL and R H) could be a major factor in the seasonal hysteresis of R E and R S.  相似文献   

4.
We studied the leaf litter-dwelling fauna of managed deciduous forests and primeval reference sites in Western and Central Europe and addressed the questions if the higher overall species richness close to downed coarse woody debris (CWD) is related to intra-specific or inter-specific aggregation, if the aggregation pattern changes with the amount of CWD on the forest floor, and how much CWD is needed for different taxa. The analysis is based on shelled Gastropoda, Diplopoda/Isopoda, Chilopoda and Coleoptera. Among-sample heterogeneity was lower close to CWD than distant from CWD. This was most pronounced in Diplopoda/Isopoda and Gastropoda. Diplopoda/Isopoda are comparatively mobile and assemblages were already quite homogenous close to CWD at levels above 5 m3 downed deadwood ha−1. Gastropoda have a low mobility, and more than 20 m3 downed deadwood ha−1 is needed for assemblage homogeneity. We further focused on the Gastropoda as sensitive indicators. Enhanced densities and species richness close to CWD were not a simple function of leaf litter weight, thus effects of densities on heterogeneity are not solely driven by leaf litter accumulation close to CWD. In contrast to euryecious litter-dwellers such as the Punctidae, stenecious slow active dispersers such as the Clausiliidae clearly require more than 20 m3 CWD ha−1 for an even distribution. Specialists depending on CWD even seem to have gone extinct in some managed forests. For conserving the litter-dwelling fauna, we propose a target of at least 20 m3 downed CWD ha−1 in already managed forests and rigorous restrictions for deadwood removal from still (almost) pristine systems.  相似文献   

5.
Poplar-based agroforestry systems are one of the most important farming systems on the temperate plains of China, but soil respiration in those systems has seldom been reported. In this study, poplar leaf litter and residues of the two main crops (wheat and peanut) grown in the agroforestry system were amended to form different litter mixing treatments in field experiments at two sites located in Jiangsu Province, China. We measured soil respiration and environmental factors in the different treatments. Soil respiration rates were increased by the addition of plant residues but were strongly influenced by residue quality. During the growing season, soil respiration was negatively related with C/N ratio, while positively related with the initial P concentration of residues (P < 0.05). Poplar leaf litter and crop residues showed non-additive effects on soil respiration when they were mixed. Both air and soil temperature at 10 cm depth explained more than 85 % of the variation of soil respiration at both sites with an exponential model. A significant linear relationship between soil respiration and soil water content at 10 cm depth (WS) was also observed. The percent of variation in soil respiration explained by a model based on air temperature and soil water content was greater than that explained by a model based on temperature alone. Thus, soil respiration in the studied poplar-based agroforestry systems was driven by both temperature and soil water content. Soil respiration was significantly different between the two sites that had different clay content and C/N ratios. Results from this study are important for us to understand how soil respiration responds to litter mixing or is influenced by biophysical factors in poplar-based agroforestry systems.  相似文献   

6.
Changes in net carbon assimilation and water status were studied during leaf development in the deciduous, tropical species Brachystegia spiciformis Benth. In this upland savanna African tree, bud-burst and leaf development occur approximately two months before the rainy season. The newly formed leaves synthesize anthocyanin until the fully expanded leaves of the whole canopy are red. This foliage is referred to as "spring flush" foliage. Subsequently, the anthocyanins are metabolized and the pre-rain leaves become green. Carbon dioxide assimilation exhibited a bimodal diurnal pattern and was similar for pre-rain green leaves and fully expanded flushing leaves, although pre-rain green leaves showed a net uptake of carbon throughout the daylight period, whereas flushing leaves exhibited only brief periods of net photosynthesis in the morning and early afternoon. Measurements of leaf water potential and relative water content showed a diurnal pattern with considerable variation throughout the day. Leaf water potential and relative water content values decreased soon after sunrise reaching a minimum at a time corresponding to the afternoon peak in CO(2) assimilation. Stomatal conductance was closely related to transpiration rate in both flushing and pre-rain green leaves, although flushing leaves had lower stomatal conductances than pre-rain green leaves. Pre-rain green leaves exhibited a compensation irradiance of approximately 180 micro mol m(-2) s(-1), whereas flushing leaves had positive net photosynthesis only at PPFDs greater than 300 micro mol m(-2) s(-1). Rate of photosynthesis (expressed per leaf area or chlorophyll unit) increased as anthocyanin concentration decreased, although the photosynthetic rate continued to increase long after the leaf anthocyanins had been degraded to low, visually undetectable amounts. Post-rain green leaves had chlorophyll concentrations, transpiration rates and stomatal conductances similar to those of pre-rain green leaves; however, photosynthetic rates in post-rain leaves were more than three times higher. Thus, during the early stages of the spring flush, carbon asimilation rates of the flushing leaves were inversely related to leaf anthocyanin concentrations. In pre-rain green leaves, photosynthesis was limited by other non-stomatal factors.  相似文献   

7.
Coarse woody debris (CWD) has been identified as a key microhabitat component for groups that are moisture and temperature sensitive such as amphibians and reptiles. However, few experimental manipulations have quantitatively assessed amphibian and reptile response to varying CWD volumes within forested environments. We assessed amphibian and reptile response to large-scale, CWD manipulation within managed loblolly pine stands in the southeastern Coastal Plain of the United States from 1998 to 2005. Our study consisted of two treatment phases: Phase I treatments included downed CWD removal (removal of all downed CWD), all CWD removal (removal of all downed and standing CWD), pre-treatment snag, and control; Phase II treatments included downed CWD addition (downed CWD volume increased 5-fold), snag addition (standing CWD volume increased 10-fold), all CWD removal (all CWD removed), and control. Amphibian and anuran capture rates were greater in control than all CWD removal plots during study Phase I. In Phase II, reptile diversity and richness were greater in downed CWD addition and all CWD removal than snag addition treatments. Capture rate of Rana sphenocephala was greater in all CWD removal treatment than downed CWD addition treatment. The dominant amphibian and snake species captured are adapted to burrowing in sandy soil or taking refuge under leaf litter. Amphibian and reptile species endemic to upland southeastern Coastal Plain pine forests may not have evolved to rely on CWD because the humid climate and short fire return interval have resulted in historically low volumes of CWD.  相似文献   

8.
杉木林枯枝落叶层现存量的影响因素分析   总被引:1,自引:0,他引:1  
通过收集杉木林枯枝落叶层现存量数据,分析杉木林枯枝落叶层现存量与年平均温度、年降水量、林分年龄、枝叶生物量、凋落物量、林下植被生物量的相关关系。结果表明,杉木林枯枝落叶层现存量与林龄、林下植被生物量、凋落物量、枝叶生物量呈显著正相关,其中与林下植被生物量相关性最大,与年均温呈负相关,而与年降水量无显著相关。多元线性回归分析表明,林龄可单独解释枯枝落叶现存量变化的21.2%,而林龄、降水量、年均温、枝叶生物量可以解释枯枝落叶现存量变化的38.6%。  相似文献   

9.
We measured the rates of respiration from snags and logs (“coarse woody debris”, CWD) of Japanese red pine (Pinus densiflora Sieb. et Zucc.) to examine the rate of decomposition and CO2 efflux from these materials in a temperate secondary broad-leaved forest in Japan. At this site, a high quantity of CWD of P. densiflora had accumulated as a result of pine wilt disease during the 1970s. Respiration rates were measured using a dynamic closed chamber method combined with an infrared gas analyzer. We measured the respiration rate of 7 samples of snags and 10 samples of logs from August 2003 to January 2004. The responses of the respiration rates of snags (Rsnag) and logs (Rlog) to changing temperature were both exponential and the responses to water content were quadratic, and the same function could be used to estimate annual values of both Rsnag and Rlog. Intensive measurements of water contents of snags and logs showed a marked difference in water content. The mean water content of snags was 20% of log water content. This difference was likely responsible for the observed difference in annual Rsnag and Rlog. The decay rate constants estimated from the respiration rates measurement of snags and logs were 0.019 and 0.081 year−1, respectively. Despite being lower than Rlog, Rsnag was a significant compartment of the CWD carbon budget at this site.  相似文献   

10.
Liu  Guancheng  Yan  Guoyong  Chang  Mengyu  Huang  Binbin  Sun  Xingyu  Han  Shijie  Xing  Yajuan  Wang  Qinggui 《European Journal of Forest Research》2021,140(5):1113-1126

In recent decades, global warming and nitrogen (N) deposition have been increasing obviously, which have led to some strong responses in terrestrial ecosystems, especially the carbon (C) cycle. The boreal forest occupies an important position in the global C cycle with its huge C storage. However, the impact of global change such as N deposition on boreal forest ecosystem C cycle has been not very clear. In order to solve this problem, the field experiment of N addition in a boreal forest has been built in the Greater Khingan Mountains of Northeast China since 2011. Four N addition gradients (0, 25, 50, 75 kg N ha?1 year?1) were set up to study the response of above- and belowground C pool to N addition. The results showed that the total forest C sequestration of low-, medium- and high-N treatments was 104.4?±?5.9, 20.2?±?2.7 and 5.3?±?0.4 g C/g N, respectively. Aboveground trees were the largest C pool, followed by soil, roots and floor C pool. Low-N increased the input of C by promoting photosynthesis. Trees of Larix gmelini increased the investment in the belowground root system and increased the belowground C pool. High-N reduced the inter-annual litter biomass and decreased litter C:N that accelerated the decomposition of litter, resulting in a reduction in the floor C pool. Low-N increased total soil respiration, while medium- and high-N inhibited heterotrophic respiration and then increased soil C sequestration. The estimation of forest C pool provides valuable data for improving the C dynamic characteristics of boreal forest ecosystem and is of great significance for us to understand the impact of climate change on the global C cycle.

  相似文献   

11.
Warren CR  Tausz M  Adams MA 《Tree physiology》2005,25(11):1369-1378
We investigated adaptation of leaf morphology and physiology of red ironbark (Eucalyptus sideroxylon Cunn. Ex. Wools subsp. tricarpa L.A.S. Johnson) in a common garden experiment. Fifteen populations, representing a rainfall range of 500 to 1055 mm per annum at the sites of seed collection, were grown at the same site. Because environmental variables other than rainfall did not vary significantly among populations, we were able to test if leaf morphology and physiology were related to seed-source rainfall. There were large differences among and within populations in all measured variables. Most univariate relationships with seed-source rainfall were not significant. Notable exceptions were the weak positive correlation of specific leaf area with seed-source rainfall-consistent with expectations-and the weak negative correlation of photosynthesis and stomatal conductance with seed-source rainfall-the opposite of what we predicted. In many cases, populations collected from sites of similar rainfall differed greatly in leaf morphology and physiology. Principal component analysis (PCA) reduced the 13 input variables to five principal components (PC) explaining 73.0% of the total variance in the original data. Some of the PC axes could be interpreted in terms of adaptation to drought (i.e., to seed-source rainfall), but relationships of accumulated variables (the PC axes) with seed-source rainfall were significant for only one PC axis. Hence, among red ironbark populations grown in a common garden, there was significant genetic variation in leaf morphology and physiology, but for most traits, this variation was unrelated to rainfall at the site of seed collection. This study adds to a growing body of common garden literature showing weak within-species relationships of leaf morphology and physiology with seed-source rainfall, in contrast to the consistently stronger relationships among species growing at different points along broad environmental gradients.  相似文献   

12.
Tree occurrence in silvopastoral systems of Central America has been under pressure for various reasons including attempts to improve grassland productivity and the need for wood. However, scattered isolated trees are also recognized to provide ecosystem services like shade, fodder and fruits that are important to cattle in the dry season. In addition, trees may enhance the climate change mitigation potential of silvopastoral systems through increased carbon (C) uptake and subsequent soil carbon sequestration. Through differences in plant traits like nutrient uptake, canopy structure and litter quality, tree species may have an effect on C and nutrient cycling. Due to a prevailing north-easterly wind in the study area, three distinct areas associated with the impact of tree litter deposition were identified: (1) open pasture—no tree litter deposition; (2) tree canopy—above and belowground tree litter; and (3) leaf litter cone—aboveground tree litter deposition. Furthermore, the effect of tree species, Guazuma ulmifolia and Crescentia alata, were considered. The presence of trees, as compared to pasture, caused larger topsoil C, N and P contents. In the subsoil, C content was also larger due to tree presence. Soil fractionation showed that tree-induced larger litter input subsequently increased free and occluded OM fractions and ultimately increased stabilized SOM fractions. Therefore, trees were found to enhance soil C sequestration in these silvopastoral systems. This is also supported by the soil respiration data. Although the respiration rates in the pasture subplots were lower than in the leaf litter subplots, the difference was not significant, which suggests that part of the extra C input to the leaf litter subplots stayed in the soil. Nutrient cycling was also enhanced by tree presence, but with a clear differentiation between species. C. alata (Jícaro) enhanced available and stabilized forms of organic N, while G. ulmifolia (Guácimo) enhanced available soil P and stabilized organic P.  相似文献   

13.
Bostad PV  Reich P  Lee T 《Tree physiology》2003,23(14):969-976
We conducted controlled (chamber) and natural (field) environment experiments on the acclimation of respiration in Quercus alba L. and Quercus rubra L. Three-year-old Louisiana, Indiana and Wisconsin populations of Q. alba were placed in growth chambers and exposed to alternating 5-week periods of cool (20 degrees C mean) and warm (26 degrees C mean) temperatures. We measured respiration rates on fully expanded leaves immediately before and approximately every 2 days after a switch in mean temperature. In a second chamber experiment, 3-year-old potted Q. alba seedlings were exposed to alternating warm (26 degrees C mean) and cool (16 degrees C mean) temperatures at 4-day intervals. Leaf dark respiration rates were measured on days 2, 3 and 4 after each change in temperature. In a third, field-based study, we measured leaf respiration rates in the same three sources of Q. alba and in Arkansas, Indiana and Minnesota sources of Q. rubra before and after a natural 16 degrees C change in mean daily ambient temperature. We observed rapid, significant and similar acclimation of leaf respiration rates in all populations of Q. alba and Q. rubra. Cold-origin populations were no more plastic in their acclimation responses than populations from warmer sites. All geographic sources showed lower respiration rates when measured at 24 degrees C after exposure to higher mean temperatures. Respiration rates decreased 13% with a 6 degrees C increase in mean temperature in the first chamber study, and almost 40% with a 10 degrees C increase in temperature in the second chamber study. Acclimation was rapid in all three studies, occurring after 2 days of exposure to changed temperature regimes. Acclimation was reversible when changes in ambient temperature occurred at 4-day intervals. Respiration response functions, ln(R) = ln(beta0) + beta1T, were statistically different among treatments (cool versus warm, first chamber study) and among sources in a pooled comparison. Pair-wise comparisons indicated statistically significant (P<0.05) differences in cool- versus warm-measured temperature/respiration response functions for Indiana and Wisconsin sources of Q. alba. Log-transformed base respiration rates were significantly lower during periods of higher mean temperatures. Indiana Q. alba showed a significantly higher beta1 when plants were grown at 16 degrees C than when grown at 26 degrees C. Acclimation in Q. alba was unaccompanied by changes in leaf nitrogen concentration, but was associated with a change in leaf total nonstructural carbohydrate concentration. Total nonstructural carbohydrate concentration was slightly, but statistically, lower (13.6 versus 12%, P<0.05) after a 10 degrees C increase in temperature.  相似文献   

14.
Requirements for emission reporting under the Kyoto protocol demand an estimate of the dead wood carbon pool in forests. The volume of dead wood consists of coarse woody debris, smaller woody debris and dead roots. The measurement of dead wood volume was included in the most recent National Forest Inventory in Switzerland. To convert dead wood volume into carbon two conversion factors are required: (a) carbon (C) concentration and (b) wood density. So far internationally accepted default values for C concentration (50%) and for wood density (density of alive trees) were used as default values to estimate dead wood carbon, since local measurements were lacking. However, in a field study at 34 sites in Switzerland, the C concentration and density of CWD from Picea abies and Fagus sylvatica of four decay classes were measured recently. The results showed that C concentration in CWD differed significantly between species but did not change due to decay class. The density of CWD decreased significantly with an increase in decay class and it also differed between species. The decrease in CWD density was more pronounced for F. sylvatica than for P. abies. We assessed correlations between climate attributes and CWD density using regression analysis. The modeled densities and measured C concentrations were then expanded with the help of CWD volume data from the NFI3. Spruce CWD and thus spruce CWD carbon is much more abundant in Swiss forests than beech CWD carbon. The majority of spruce CWD is located in the Alps and Pre-Alps. The CWD volume from P. abies was 10 times higher than that from F. sylvatica. Thus, changes in conversion factors for P. abies CWD affected the overall estimate of dead wood carbon in Swiss forests much more than changes in conversion factors for F. sylvatica CWD. Current improvements in CWD conversion factors decreased the estimated amount of spruce CWD carbon by 23.1% and that of beech by 47.6%. The estimated amount of CWD carbon in Swiss forests is decreased by 31%. Since improved estimation methods are currently not applied to smaller woody debris and dead root material, the estimated amount of dead wood carbon is only reduced by 15%. Improving conversion factors for all dead wood fractions would presumably decrease the amount of dead wood carbon by additional 16%.  相似文献   

15.
We studied the rates and patterns of carbon and nutrient fluxes in litterfall in ten tropical tree plantation species grown at the USDA Forest Service Arboretum in the Luquillo Experimental Forest, Puerto Rico. The stands were 26-years old and grew under similar climatic and edaphic conditions. Individual plantation species ranked differently in terms of their capacity to return mass and specific nutrients to the forest floor, and with respect to their efficiency of nutrient use. The species that returned the most mass did not return the most P, N, or cations. Moreover, species differed according to the amount of N and P resorption before leaf fall. These differences reflect the variation in the ecophysiological response of each species to edaphic and climatic conditions. The difference between average and minimum resorption values of the species studied indicate that other environmental factors, such as heavy winds or the physical effects of heavy rains, can force the shedding of non-senesced leaves. This higher quality material, although not very much in quantity, can provide a small pulse of available nutrients to the forest floor community. The same holds true for other high nutrient/low mass fractions of litterfall such as reproductive parts and miscellaneous materials.In areas with no prevalent or strongly seasonal water limitations, temporal variations of leaf litter on the forest floor are the combined result of the rate of fall and decomposition of the falling material, and the diverse responses of species to different environmental cues. Leaf fall was inversely correlated to reduced water availability in three of the species studied. Leaf fall of the other species was correlated either to daylight duration or minimum temperatures. The results highlight the importance of understanding species performance relative to nutrient and mass metabolism before selection for plantation use, or for rehabilitation of degraded lands.  相似文献   

16.
Abstract

Coarse woody debris (CWD) is critical for forest ecosystem carbon (C) storage in many ecosystems. Since the turnover of CWD is mostly driven by mineralization, changes in temperature and precipitation may influence its pools and functions. Therefore, we analysed, under controlled conditions, the effect of wood temperature and moisture on carbon respiration from CWD for the important European tree species Fagus sylvatica L., Picea abies (L.) Karst. and Pinus sylvestris L. in different stages of decay, represented by different wood densities. Additionally, we measured CWD respiration of individual F. sylvatica and P. abies logs over one year to analyse the effects of micro-climatic variables in the field. CWD respiration rates under controlled lab conditions were about two times higher for beech than for spruce and pine and similar for the latter two species. In addition, wood moisture exerted a stronger influence on respiration than wood temperature. In contrast, respiration in the field was most strongly controlled by temperature. Average Q 10 values under controlled conditions were 2.62 for F. sylvatica and 2.32 for P. abies across all temperature and moisture levels, while no significant relationship between temperature and CO2 flux was observed for P. sylvestris. About 80% of the variation in respiration under controlled conditions could be explained by species, wood density, moisture and temperature and their interactive effects. Temperature alone explained 96% (beech) and 94% (spruce) of the variation in respiration in the field. Furthermore, we predicted average monthly temperatures of CWD in the field very accurately from air temperature (r 2=0.96), which is relevant for modelling CWD carbon dynamics under climate change scenarios. Our results indicate that species identity, decay stage and micro-climatic conditions should be considered when predicting CWD decay rates.  相似文献   

17.
Photosynthetic and stomatal responses to a soil drying cycle were examined in half-sib seedlings of four walnut (Juglans nigra L.) families. Well-watered seedlings of an Iowa seed source had significantly higher rates of net photosynthesis than seedlings from New York or Michigan sources. This superior photosynthetic potential was associated with both greater stomatal conductance and mesophyll capacity for CO(2) fixation. In a drying soil, net photosynthesis and leaf conductance to water vapor of all families declined substantially, even under mild water stress. These responses were more strongly related to soil water status, as estimated by predawn leaf water potential, than to leaf water potential at the time of gas exchange measurement. There were no differences among families in the pattern of gas exchange response to developing water stress; however, families differed in capacity for recovery of gas exchange from water stress following rehydration. Sensitivity of photosynthesis of black walnut seedlings to water stress may be associated with poor growth and survival of this species in xeric habitats.  相似文献   

18.
Litterfall is a key process in forests which is sensitive to climatic conditions like precipitation and temperature, and management practices. Therefore, knowledge about litterfall patterns and its associated variables is important for the conservation of Mediterranean ecosystems under conditions of climate change. We aimed to quantify the temporal pattern of litterfall and to investigate the influence of abiotic variables and pruning on litter production. Litterfall was collected at monthly intervals for 2 years in trees subjected to different pruning intensities in two locations. The effect of pruning, abiotic variables and tree size on litter production was analyzed using a mathematical model. Leaf fall was strongly seasonal with a peak occurring in the wettest month of the year in this area. The variability in leaf fall was mainly related to rainfall and soil water in 2 years and locations. Pruning reduced the amount of litter production during the first year following this practice, and might have negative effect on soil fertility and crop productivity in dehesas ecosystems.  相似文献   

19.
A study was conducted to identify the differences in the decompositions of leaf litter, lignin and carbohydrate between coniferous forest and broadleaf forest at 20℃ and 30℃ in Huangshan Mountain, Anhui Province, China. Results showed that at 20℃ mass loss of leaf litter driven by microbial decomposers was higher in broadleaf forest than that in coniferous forest, whereas the difference in mass loss of leaf litter was not significant at 30℃. The temperature increase did not affect the mass loss of leaf litter for coniferous forest treatment, but significantly reduced the decomposition rate for broadleaf forest treatment. The functional decomposers of microorganism in broadleaf forest produced a higher lignin decomposition rate at 20℃, compared to that in coniferous forest, but the difference in lignin decomposition was not found between two forest types at 30℃. Improved temperature increased the lignin decomposition for both broadleaf and coniferous forest. Additionally, the functional group of microorganism from broadleaf forest showed marginally higher carbohydrate loss than that from coniferous forest at both temperatures. Temperature increase reduced the carbohydrate decomposition for broadleaf forest, while only a little reduce was found for coniferous forest. Remarkable differences occurred in responses between most enzymes (Phenoloxidase, peroxidase, !5-glucosidase and endocellulase) and decomposition rate of leaf litter to forest type and temperature, although there exist strong relationships between measured enzyme activities and decomposition rate in most cases. The reason is that more than one enzyme contribute to the mass loss of leaf litter and organic chemical components. In conclusion, at a community scale the coniferous and broadleaf forests differed in their temperature-decomposition relationships.  相似文献   

20.
植被护坡主要是依靠坡面植被地下根系的力学效应和茎叶的水文效应来实现的。本文通过对乔木层、灌木层、草本层和枯枝落叶层的降雨截留、削弱溅蚀等水文作用机制的研究,构建了公路边坡植被降雨截留和所消减的降雨动能的理论模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号