首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In 1982, an anamorphic fungus in the genus Monilia was first isolated as the causal agent of brown rot disease of Japanese apricot or mume (Prunus mume) in Oita Prefecture, Kyushu, Japan. Inoculation of flowers, shoots, and fruit of P. mume with the fungus reproduced brown rot disease symptoms similar to those found in nature. The fungus somewhat resembled the colony appearance of Monilinia (anamorph Monilia) laxa, the apricot brown rot fungus, on PSA plates, but it differed from the latter and the other two brown rot fungi, M. fructigena and M. fructicola, in terms of growth rate, temperature optima for mycelial growth and sporulation, morphology and germination pattern of conidia, nuclear number in the conidium, and nucleotide sequences in the ITS region of ribosomal DNA. It is newly described as Monilia mumecola Y. Harada, Y. Sasaki & T. Sano. A key to anamorphic states of four brown rot fungi of fruit trees is provided.  相似文献   

2.
ABSTRACT Epidemics of citrus brown rot from 1994 to 1997 in the south-central and east-coast citrus areas of Florida were characterized and the causal Phytophthora spp. identified. Two species of Phytophthora, P. palmivora and P. nicotianae, were consistently associated with brown rot. Epidemics caused by P. palmivora appeared to be initiated on immature fruit dropped on the orchard floor. The soilborne fungus infected and sporulated on these fruit and was then disseminated to fruit above 1 m in the canopy. In contrast, infection by P. nicotianae, the common cause of root rot, was confined to the lowest 1 m of the canopy. Fruit infected by P. palmivora produced large amounts of ellipsoidal sporangia available for splash dispersal, whereas those infected by P. nicotianae produced far fewer spherical sporangia. Isolates from brown rot epidemics were compared with P. nicotianae from citrus in Florida and Texas, P. citrophthora in California, P. palmivora, and selected Phytophthora spp. from other hosts. Brown rot symptoms produced by the different pathogenic citrus isolates on inoculated fruit were indistinguishable. Morphology, mating behavior, and isozyme patterns of brown rot isolates from 1988 to 1997 matched P. palmivora from citrus roots, other host plants, and other locations, but were different from characterized isolates of P. citrophthora in California and P. nicotianae in Florida and Texas. Cellulose acetate electrophoresis of the isozyme glucose-6-phosphate isomerase rapidly identified the causal citrus pathogen from infected fruit and soil isolation plates. Although P. palmivora is an aggressive pathogen of citrus roots, bark, and fruit, populations in orchard soils were low compared with P. nicotianae.  相似文献   

3.
White powdery rot in figs caused by Phytophthora palmivora is an important disease resulting in severe fruit rot, but is not currently effectively controlled in Japan due to a lack of understanding of its epidemiology. Therefore, the effects of temperature, zoospore concentration, infection period, and fruit maturity on infection of figs were examined by inoculating the fruit with a suspension of P. palmivora zoospores. The zoospores germinated at temperatures from 5 to 35 °C, with the optimum temperature range being 20–35 °C. Germ tube length in zoospore cysts was greatest at 20–30 °C. The disease developed in green figs at temperatures from 20 to 30 °C. Figs inoculated with as few as 10 zoospores per fruit developed severe symptoms at the optimum temperature (25 °C). The minimum infection period required for infection was 2 h at 20–28 °C. All of the figs developed symptoms within an 8 h infection period at 25 or 28 °C, and with a 6 h infection period at 25 °C. All fruit at different stages of development (immature fruit, yellow fruit, and mature fruit) developed symptoms. These results indicate that P. palmivora is capable of infecting figs over a wide range of temperatures, within a short infection period, at a low concentration of zoospores, and at any stage of development. These data could be used to construct forecasting models and develop effective control systems for white powdery rot.  相似文献   

4.
This is the first report of a disease of Chinese chive caused by Fusarium proliferatum. Because the symptoms are similar to those of the bulb rot (kampu-byo in Japanese) caused by F. oxysporum, we propose F. proliferatum as another causal agent of bulb rot of Chinese chive. Symptoms are wilting of leaves and brown rot on the basal bulbs of Chinese chive. A Fusarium sp., frequently isolated from symptomatic plants, produced identical symptoms on Chinese chive after inoculation, and was reisolated from the diseased plants. The fungus was identified as F. proliferatum based on morphological, cultural, and molecular characteristics.  相似文献   

5.
A new disease found on garland chrysanthemum in Osaka, Japan in 2009 and its causal agent were identified and characterized. Light brown spots first appeared on lower leaves of seedlings, and the leaves blighted or rotted. A fungus isolated from diseased plants, described recently as Gibellulopsis chrysanthemi, was demonstrated to reproduce the natural symptoms in inoculation tests. Sufficiently long, moist periods after inoculation promoted the infection even after lengthy dry periods. The pathogen also caused the disease on chrysanthemum and lettuce, but not on seven other vegetables. The fungus caused the disease after 6 months of dry storage. The disease was termed seedling rot (“nae-fuhai-byo” in Japanese).  相似文献   

6.
Apple bitter rot caused by Colletotrichum acutatum sensu lato results in fruit decay before and after harvest. We investigated the epidemiology of the disease in terms of conidial formation and dispersal as well as the change in susceptibility of fruits in Iwate, Japan. Conidia of C. acutatum were detected in rainwater collected from inside the tree canopy from May to August with peaks in production in mid-May to early June and mid- to late July. The first peak corresponded to the most conidia being produced on fruit scars, but the second peak was due to conidiation on mummified fruitlets and peduncles collected in July. Inoculation experiments revealed that fruits were susceptible to the pathogen between 20 and 90 days after petal fall and that immature fruits infected as early as 20 days after petal fall frequently developed lesions on the lower fruit half as growth progressed. These results suggest that C. acutatum sporulates on infested fruit scars to infect immature fruits, resulting in bitter rot and that the fungus also colonizes mummified fruitlets and peduncles, contributing to survival of the pathogen on fruit scars. Thus, infested fruit scars represent the primary source of inoculum.  相似文献   

7.
Pythium species were isolated from seedlings of strawberry with root and crown rot. The isolates were identified as P. helicoides on the basis of morphological characteristics and sequences of the ribosomal DNA internal transcribed spacer regions. In pathogenicity tests, the isolates caused root and crown rot similar to the original disease symptoms. Multiplex PCR was used to survey pathogen occurrence in strawberry production areas of Japan. Pythium helicoides was detected in 11 of 82 fields. The pathogen is distributed over six prefectures.  相似文献   

8.
Severe rot was found at the base of leaves and stems of Chinese cabbage (Brassica rapa L. subsp. pekinensis) in Ibaraki Prefecture every year in early September from 2002 through 2004. The causal fungus was identified as Pythium aphanidermatum (Edson) Fitzpatrick. This is the first report of P. aphanidermatum on Chinese cabbage. A similar disease of Chinese cabbage caused by P. ultimum Trow var. ultimum is known as Pythium rot. We propose adding P. aphanidermatum as a new pathogen of this disease.  相似文献   

9.
In a survey for postharvest diseases of apples and pears in the Netherlands, an unknown postharvest fruit rot was observed. The disease appeared to originate from infected lenticels. A fungus was consistently isolated from the decayed fruits. The fungal pathogen was isolated on potato dextrose agar, and at low temperatures development of a fast-growing whitish mycelium was observed. Growth of this fungus was observed between 1 and 20 °C with an optimum at 15 °C, while incubation of mycelium at 25 °C resulted in no growth. The isolates did not produce asexual or sexual spores. The isolates were characterized and identified by morphology and molecular phylogenetic analysis. Genomic DNA was isolated and amplified using ITS1-ITS4, EF1 and RPB2 primers, and BLAST searches in GenBank placed the fungus taxonomically in the genus Fibulorhizoctonia, with the highest matches to F. psychrophila. Pathogenicity of representative isolates from apple and pear fruit was confirmed under laboratory conditions. To the best of our knowledge this is the first report of F. psychrophila causing lenticel spot on apple and pear, and also the cause of a whitish mould on storage bins.  相似文献   

10.
In September 2014, Phytophthora rot on wasabi plants [Wasabia japonica (Miq.) Matsum.] was found for the first time in the city of Okutama, Tokyo, Japan. A Phytophthora sp. strain was constantly isolated from brown stem bases and rhizomes of infected plants. The same symptoms as those observed in the field were produced in vitro through inoculation of test plants with the isolated Phytophthora sp. The fungus was identified as Phytophthora drechsleri based on morphological and DNA sequence comparison. Phytophthora rot, “eki-byo” in Japanese, is proposed for this disease common name.  相似文献   

11.
In this study, we identified the causative agent of postharvest gray-mold rot in sweet persimmon fruit that were collected from Gangneung, Gangwon Province, Korea in October 2016. Symptoms included extensive growth of mycelia on post harvested fruit. The fungus was isolated from infected fruit and cultured on potato dextrose agar (PDA). For identification of the fungus, we examined morphology characteristics and rDNA sequencing analysis of the fungus and confirmed its pathogenicity according to Koch’s postulates. The results of morphological examinations, pathogenicity tests, 5.8S rDNA sequences of the internal transcribed spacer regions (ITS1 and ITS4) and the five nuclear protein-coding genes G3PDH, HSP60, RPB2, MS547 and TUB revealed that the causal agent of postharvest gray-mold rot on sweet persimmon fruit in Korea was Botrytis cinerea.  相似文献   

12.
To evaluate the effect of conidial density of Monilinia spp. on the fruit surface on the incidence of latent infection and brown rot in peaches, eleven field surveys were performed in commercial orchards located in Cataluña, Spain over four growing seasons from 2002 to 2005, and nine surveys were conducted to determine the sources of overwintered Monilinia spp. inoculum. There was a significant positive relationship (r?=?0.69) between the numbers of conidia of Monilinia spp. on the fruit surface and the incidence of latent infections, but not with brown rot at harvest. Although mummified fruit, twigs and pits have been identified as being able to carry the pathogen from year to year in peaches grown in Spanish orchards, no relationships between any of these sources and the numbers of conidia on the fruit surface, or incidence of latent infection or brown rot were found. The effect of temperature (T), solar radiation (SR), rainfall (R) and wind speed (WS) on the area under the number of conidia of Monilinia spp. curve (AUncC) on peach surfaces was analysed. Regression analysis revealed that T, SR, R, and WS could account for 99% of the total variation in the area of the AUncC on peach surfaces. Thus, in order to reduce the incidence of latent infection and brown rot it is essential not only to remove the sources of primary inoculum but also to reduce the number of Monilinia spp. conidia on the fruit surface. Furthermore, the sources of airborne conidia of Monilinia spp. should be taken into consideration in disease management programmes in Spain.  相似文献   

13.
A severe rot of postharvest fruits of sweet pepper, a variety of Capsicum annuum, was found in Kagawa Prefecture in southwestern Japan in August 1999. A fungus, isolated repeatedly from the diseased fruits and identified as Stemphylium lycopersici, was demonstrated to be pathogenic to fruits of sweet pepper. The disease was new to Japan, and the fungus was added to the pathogens causing fruit rot of C. annuum.  相似文献   

14.
为有效防控瓠瓜果斑病,自浙江省象山县田间采集具有典型果斑病症状的瓠瓜样本,对其进行病原菌分离、形态观察、致病性测定及分子生物学鉴定,并利用特异性引物PL1/PL2 PCR扩增和基质辅助激光解吸电离飞行时间质谱(matrix assisted laser desorption ionization time-of-flight massspectrometry,MALDI-TOF-MS)技术对其病原菌进行亚群鉴定。结果表明:瓠瓜果斑病田间典型症状是发病叶片和果实上病斑由水渍状小斑点逐渐发展为伴有黄色晕圈的褐色不规则病斑,果实腐烂、有臭味。通过菌体形态和培养特性观察、PCR鉴定、16S rDNA序列分析和7个看家基因的系统发育分析将其病原菌鉴定为西瓜噬酸菌Acidovorax citrulli。从瓠瓜上分离的菌株均属于西瓜噬酸菌亚群I,从西瓜上分离的菌株均属于西瓜噬酸菌亚群II。  相似文献   

15.
Seventeen field surveys were done in four commercial orchards during six consecutive fruit-growing seasons from 2006 until 2011 in order to determine the current frequencies of occurrence of M. laxa, M. fructigena, and M. fructicola and their relative contributions to postharvest brown rot in peaches and nectarines in the Ebro Valley. The relative frequencies of occurrence of Monilinia spp. were determined on three sources of primary inoculum and on three sources of secondary inoculum. The major relative frequencies of Monilinia spp. were significantly recorded (P?=?0.05) from mummified fruit on the trees (approx. 42 %) and 7-day-old harvested fruit with brown rot (32 %), followed by that recovered from mummified fruit on the orchard bed (14 %), pruned branches on the orchard bed (8 %) and latent infections of immature fruit (3 %). We found that: (a) the relative frequency of M. fructicola has increased over the years to coexist on the same level as at the time M. laxa, (b) M. fructigena is no longer a cause of brown rot in harvested peaches, (c), a progressive reduction in the time of the first appearance of Monilinia airborne conidia (r?=??0.30, P?=?0.003), and the time of the first latent infection (r?=??0.44, P?=?0.0001) was detected along years after correlation analysis, and (d) these displacements are not associated with an increased incidence of brown rot disease. The M. fructicola increase was due to its significantly increased presence in 7-day-old harvested fruit with brown rot (r?=?0.73, P?=?0.0009), in latent infections of immature fruit (r?=?0.68, P?=?0.002), on pruned branches on the orchard bed (r?=?0.56, P?=?0.018), and on mummified fruit sampled on the trees (r?=?0.53, P?=?0.03). This progressive increase was accompanied by a progressive reduction in the relative frequency of occurrence of M. laxa in 7-day-old harvested fruit with brown rot (r?=??0.55, P?=?0.021) and M. fructigena on mummified fruit sampled on the trees (r?=??0.51, P?=?0.03).  相似文献   

16.
Tree canopies are architecturally complex and pose several challenges for measuring and characterizing spatial patterns of disease. Recently developed methods for fine-scale canopy mapping and three-dimensional spatial pattern analysis were applied in a 3-year study to characterize spatio-temporal development of pre-harvest brown rot of peach, caused by Monilinia fructicola, in 13 trees of different maturity classes. We observed a negative correlation between an index of disease aggregation and disease incidence in the same tree (r?=??0.653, P?<?0.0001), showing that trees with higher brown rot incidence had lower aggregation of affected fruit in their canopies. Significant (P?≤?0.05) within-canopy aggregation among symptomatic fruit was most pronounced for early-maturing cultivars and/or early in the epidemic. This is consistent with the notion of a greater importance of localized, within-tree sources of inoculum at the beginning of the epidemic. Four of five trees having >10 blossom blight symptoms per tree showed a significant positive spatial association of pre-harvest fruit rot to blossom blight within the same canopy. Spatial association analyses further revealed one of two outcomes for the association of new fruit rot symptoms with previous fruit rot symptoms in the same tree, whereby the relationship was either not significant or exhibited a significant negative association. In the latter scenario, the newly diseased fruit were farther apart from previously symptomatic fruit than expected by random chance. This unexpected result could have been due to uneven fruit ripening in different sectors of the canopy, which could have affected the timing of symptom development and thus led to negative spatial associations among symptoms developing over time in a tree.  相似文献   

17.
This investigation examines the effects of pH and titratable acidity on the growth and developments of a strain of Monilinia laxa (Aderhold & Ruhland) at seven different pH levels in Potato Dextrose Agar media and on peach fruit from formation to commercial maturity. The fungi growth was obtained by daily measurement of mycelia on the pH amended Potato Dextrose Agar. The sporulation performance was determined after 30 days of culture incubation. Fruits were inoculated with M. laxa, from fruit set to maturity, on weekly basis for brown rot susceptibility. The pathogen development, in vitro, was affected, by the pH (2.4–11.52) amended nutrient media. M. laxa exhibited variation in its growth and sporulation capacities on the seven pH amended PDA, preferring relatively moderate acidic conditions for optimum performance. In the in vitro analysis, there was mycelia growth at pH 2.40 to 8.84, while pH 11.52 did not support any mycelia growth. There was a continuous and stable increase in weight of fruit as it developed whereas the fruit size increased, then decreased and finally increased as the fruit develops. The acidity dynamics exhibited a non-sinusoidal waveform through the growth and development of the fruit. In all these characteristic variations, M. laxa did not develop infection or shown any brown rot incidence in the fruit until the period of commercial maturity.  相似文献   

18.
Stone fruit is attacked by various pathogens, of which brown rot disease is one of the important diseases. There are three Monilinia species mainly responsible for the brown rot disease: Monilinia fructicola is mainly found in North America and Australasia, and M. laxa and M. fructigena mainly in Europe. Both M. fructicola and M. laxa can infect flowers, resulting in blossom blight, as well as both healthy and wounded fruit, resulting in brown rot. On the other hand, M. fructigena can only infect wounded fruit. Compared to the two other species, M. fructicola has been extensively studied, whereas the equally important M. laxa has had less attention. This paper addresses this imbalance and reviews research on the biology, epidemiology and management of M. laxa on stone fruits. Due to EU regulations, the number of fungicides available for controlling plant diseases has been steadily decreasing, particularly in the post-harvest environment. This has placed much more emphasis on alternative control methods, a focus of the present review. Numerous physical and biological approaches to control have achieved successful outcomes but often in small-scale trials and in isolation from integrated strategies. Promising physical control methods include removal of mummified fruit in orchards and post-harvest hot-water treatment. Many micro-organisms have been shown to have biocontrol potential against brown rot but only a few have been commercially formulated. It is generally agreed that the use of biocontrol agents needs to be integrated with other measures. Current research focuses on disease management from flowering to post-harvest period. Recent results have suggested that reducing overwintering inoculum should be considered as one of key aspects of integrated management of brown rot on stone fruit. Finally, we make recommendations about future research and development on integrated pest management strategies for control of M. laxa, especially on strategic deployment of biocontrol agents and interactions among brown rot pathogens.  相似文献   

19.
Holb IJ  Scherm H 《Phytopathology》2007,97(9):1104-1111
ABSTRACT Epidemic development of brown rot, caused by Monilinia fructigena, was monitored in integrated and organic apple orchards at two locations in eastern Hungary between 2002 and 2005 on three cultivars with early, midseason, and late ripening periods. Disease incidence and severity measures were affected significantly (P < 0.05) by management system (organic versus integrated) and cultivar, but there was no significant management system-cultivar interaction. Epidemics started 2 to 4 weeks earlier in organic orchards and on the early cv. Prima compared with integrated orchards and the late cv. Mutsu. Disease intensity increased markedly in the final 3 to 5 weeks before harvest and was considerably lower in integrated than in organic orchards. Final brown rot incidence on fruit in the tree was correlated with incidence on dropped fruit on the orchard floor (r > 0.75, P < 0.05), whereby the lag period from the appearance of the first symptomatic fruit on the ground to the occurrence of the first symptomatic fruit in the tree ranged from 2 weeks to 2 months, depending on the cultivar. The inflection point of the disease progress curve was attained first by fruit on the ground, followed successively by fruit in the lower, middle, and upper thirds of the tree canopy. This may indicate that dropped fruit that became infected early provided a source of inoculum for subsequent epidemics by serving as a bridge between sporulation from overwintered fruit mummies in the spring and the first fruit with sporulating lesions in the tree in midsummer. Removal of dropped fruit from the orchard floor resulted in a significantly lower disease incidence on fruit in the tree on all cultivars; thus, drop-removal may be useful as a brown rot management practice in apple orchards.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号