首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
We conducted a year-round measurement of gross N transformation rates using the 15N dilution method, and analyzed seasonal changes and the mechanisms regulating gross N transformation in the Kiryu Experimental Forest in central Japan. While soil microbial biomass C (SMB-C) decreased from the dormant to growing seasons at the organic (O) horizon, no significant trend was observed in SMB-N. This resulted in SMB-C/N being high in the dormant season and low in the growing season, and suggests that the microbial composition changed seasonally. No clear seasonal trend was found in gross NH4 + production rates at either the O or surface mineral soil horizons. In contrast, the NH4 + consumption rate varied seasonally, with high values in January and April during the dormant season and low values in July and October during the growing season. There was no clear trend in seasonal fluctuation of net NH4 + production rates. Gross NH4 + production and gross NH4 + consumption rates were 10 times greater than the gross nitrification rate. Almost all of the produced NH4 + was immobilized, indicating that N tightly cycles at this study site. Considered together with results of the gross N transformation rates, the dominance of high SMB-C/N microbes might stimulate immobilization in the dormant season. At this study site, the change in microbial composition likely influences gross N transformation through immobilization efficiency.  相似文献   

2.
To estimate net ecosystem production (NEP), ecosystem respiration (R E), and gross primary production (GPP), and to elucidate the interannual variability of NEP in a cool temperate broadleaf deciduous forest in Sapporo, northern Japan, we measured net ecosystem exchange (NEE) using an eddy covariance technique with a closed-path infrared gas analyzer from 2000 to 2003. NEP, R E, and GPP were derived from NEE, and data gaps were filled using empirical regression models with meteorological variables such as photosynthetic active radiation and soil temperature. In general, NEP was positive (CO2 uptake) from May to September, either positive or negative in October, and negative (CO2 release) from November to the following April. NEP rapidly increased during leaf expansion in May and reached its maximum in June or July. The four-year averages (±?standard deviation) of annual NEP, GPP, and R E were 443?±?45, 1,374?±?39, and 931?±?11?g?C?m?2?year?1, respectively. The lower annual NEP and GPP in 2000 may have been caused by lower solar radiation in the foliated season. During the foliated season, monthly GPP varied from year to year more than monthly R E. Variations in the amount of incoming solar radiation may have caused the interannual variations in the monthly GPP. Additionally, in May, the timing of leaf expansion had a large impact on GPP. Variations in GPP affected the interannual variation in NEP at our site. Thus, interannual variation in NEP was affected by the incoming solar radiation and the timing of leaf expansion.  相似文献   

3.
Cartaxana  P.  Caçador  I.  Vale  C.  Falcão  M.  Catarino  F. 《Mangroves and Salt Marshes》1999,3(2):127-134
Inorganic nitrogen pools and net mineralization were estimated in three sites of a Tagus estuary salt marsh in Portugal throughout 1 year. Ammonium (NH4 +) was the major form of inorganic nitrogen found in the salt marsh soil. Extractable NH4 + concentrations showed a marked seasonal pattern with a concentration peak during the hotter months of July/August. The great majority (>99%) of the total nitrogen in the soil was found in sedimented organic matter, not readily available for plant uptake. Net nitrogen mineralization, determined using a field incubation method, showed a peak during the months of June/July which resulted in an increase on nitrogen availability. With the exception of the lower salt marsh, estimated rates of in situ net nitrogen mineralization in the soil during summer were well related to the increase in plant aboveground biomass and plant nitrogen pools, indicating that the process is an important source of available nitrogen for plant uptake and growth. Annual net nitrogen mineralization ranged between 2.4 and 4.5gNm–2yr– 1 being significantly higher for the lower salt marsh site. Rates of net nitrogen mineralization were relatively low during most of the year with a particularly active period from June to August, possibly due to an effect of temperature on soil microbial activity.  相似文献   

4.
Forest management influences several ecosystem processes, including carbon exchange between forest ecosystem and atmosphere. The aim of this paper was to study the carbon cycle over different age classes of two managed forests in the Italian Alps through direct measurements and modelling. For this purpose, ecosystem carbon dynamics of a beech forest (Fagus sylvatica L.) and of a spruce forest (Picea abies (L.) Karst.) were investigated using a chronosequence approach. In both forests, five forest development stages were identified (thicket, pole wood, young forest, mature forest and the regeneration phase) with an age spanning from 42 to 163?years for the beech forest and from 35 to 161?years for the spruce forest. Measured total ecosystem carbon stock increased up to 80–100?years, with a mean of 232?MgC?ha?1 in the beech forest and of 299?MgC?ha?1 in the spruce forest. Calculated net ecosystem production (NEP) was found to decrease linearly with age and had an average value of 2.2 and 4.4?MgC?ha?1?year?1 for beech and spruce forest, respectively. Model simulations reported an increase in NEP till 50–60?years followed by a decrease thereafter. The model also predicted a negative NEP for a short period (8–11?years) after the seed cut. Aboveground biomass was the main driver of carbon accumulation while soil carbon was not significantly influenced by both age and management system. Moreover, measured data and model showed that the applied shelterwood system allowed for a rapid recovery of the ecosystem after the disturbance (i.e. seed cut), bringing back forest to act as C sink in few years.  相似文献   

5.
Hui D  Luo Y  Katul G 《Tree physiology》2003,23(7):433-442
Interannual variability (IAV) in net ecosystem exchange of carbon (NEE) is a critical factor in projections of future ecosystem changes. However, our understanding of IAV is limited because of the difficulty in isolating its numerous causes. We proposed that IAV in NEE is primarily caused by climatic variability, through its direct effects on photosynthesis and respiration and through its indirect effects on carbon fluxes (i.e., the parameters that govern photosynthesis and respiration), hereafter called functional change. We employed a homogeneity-of-slopes model to identify the functional change contributing to IAV in NEE and nighttime ecosystem respiration (RE). The model uses multiple regression analysis to relate NEE and RE with climatic variables for individual years and for all years. If the use of different slopes for each year significantly improves the model fitting compared to the use of one slope for all years, we consider that functional change exists, at least on annual time scales. With the functional change detected, we then partition the observed variation in NEE or RE to four components, namely, the functional change, the direct effect of interannual climatic variability, the direct effect of seasonal climatic variation, and random error. Application of this approach to a data set collected at the Duke Forest AmeriFlux site from August 1997 to December 2001 indicated that functional change, interannual climatic variability, seasonal climatic variation and random error explained 9.9, 8.9, 59.9 and 21.3%, respectively, of the observed variation in NEE and 13.1, 5.0, 38.1 and 43.8%, respectively, of the observed variation in RE.  相似文献   

6.
Takenaka A 《Tree physiology》1997,17(3):205-210
Stem length and leaf area of current-year shoots were measured in saplings of eight broad-leaved evergreen tree species growing under a forest canopy. Stem length varied over a range of one to two orders of magnitude within each species. In all species, both the number of leaves and the mean stem length between successive leaves were greater in longer shoots. Mean leaf size and stem length were not correlated in six of eight species, and only weakly positively correlated in the other two species. Thus, total leaf area per stem increased with stem length, but not in direct proportion: leaf area per stem length was smaller in shoots with long stems and larger in shoots with short stems. I conclude that the within-species variation in the leaf-stem balance of current-year shoots is related to variation in shoot functional roles, as has been observed for long and short shoots in many deciduous tree species: shoots with long stems are extension oriented and contribute to the framework of the crown, whereas shoots with short stems serve mainly for leaf display. Among species, large differences were found in the leaf area per stem length ratio. In the species with larger leaf area per stem length ratios, leaves had narrower blades or longer petioles, or both, resulting in a reduction of mutual shading among the leaves on the shoot.  相似文献   

7.
Patterns of litterfall and nutrient input in a subtropical evergreen broad-leaved forest in northern Okinawa, Japan, were studied during May, 1996–April, 1999. The mean annual rate of litterfall in the five sampling plots ranged from 6.84 to 8.93 Mg ha−1 yr−1, of which 63.3–68.5% were leaves; 22.4–29.1% woody parts (including branches < 5.0 cm in diameter and bark); 2.8–5.0% sexual organs and 4.6–6.3% miscellaneous material. Significant differences were found among plots and among years. Significantly monthly differences pronounced seasonal patterns in litterfall were observed. Total litterfall and leaf litter showed negative correlations with relative basal area of the dominant species,Castanopsis sieboldii; and showed positive correlations with mean height of the stands. The dominant species,C. sieboldii produced an average of 2.36 Mg ha−1 yr−1 of leaf litter, which covered 30.5% of the annual litter production, and the nutrient input from those litterfall contributed 32.3, 28.3, 30.2, 22.2, 32.5, and 30.5% of total N, P, K, Ca, Mg, and Na, respectively. Nutrient use efficiency in litter production was high, especially for P and K compared with other broad-leaved forests in Japan indicating that P and K may be limiting in Okinawan evergreen broad-leaved forest.  相似文献   

8.
Carbon sequestration is increasingly recognized as an ecosystem service, and forest management has a large potential to alter regional carbon fluxes − notably by way of harvest removals and related impacts on net ecosystem production (NEP). In the Pacific Northwest region of the US, the implementation of the Northwest Forest Plan (NWFP) in 1993 established a regional socioecological system focused on forest management. The NWFP resulted in a large (82%) decrease in the rate of harvest removals on public forest land, thus significantly impacting the regional carbon balance. Here we use a combination of remote sensing and ecosystem modeling to examine the trends in NEP and net ecosystem carbon balance (NECB) in this region over the 1985-2007 period, with particular attention to land ownership since management now differs widely between public and private forestland. In the late 1980s, forestland in both ownership classes was subject to high rates of harvesting, and consequently the land was a carbon source (i.e. had a negative NECB). After the policy driven reduction in the harvest level, public forestland became a large carbon sink − driven in part by increasing NEP − whereas private forestland was close to carbon neutral. In the 2003-2007 period, the trend towards carbon accumulation on public lands continued despite a moderate increase in the extent of wildfire. The NWFP was originally implemented in the context of biodiversity conservation, but its consequences in terms of carbon sequestration are also of societal interest. Ultimately, management within the NWFP socioecological system will have to consider trade-offs among these and other ecosystem services.  相似文献   

9.
基于中国陆地生态系统通量观测研究网络(ChinaFlux)3年(2005.2007年)的观测数据,研究了千烟洲中亚热带人工林(QYF)和长自山温带混交林(CBF)的气体调节通量动态和气体调节价值累积过程。本文将气体调节服务区分为植被气体调节服务和净生态系统气体调节服务。采用碳税法、造林成本法和工业制氧法对气体调节服务价值化,研究表明气体调节通量具有显著的季节变化。千烟洲人工林和长白山混交林植被的日均CO2吸收量分别为82.00kg&#183;hm^-2&#183;d和59.37kg&#183;hm^-2&#183;d,对应的O2通量分别为59.65kg&#183;hm^-2&#183;d和43.19kg&#183;hm^-2&#183;d。千烟洲人工林和长白山混交林的植被气体调节价值累积过程曲线均为S型,年均植被气体调节服务价值分别为14342.69元&#183;hm^-2和10384.18元&#183;hm^-2。就净生态系统气体调节服务而言,千烟洲人工林全年各月均表现为CO2的净吸收和O2的净释放,而长白山混交林则主要在5-9月表现为CO2的净吸收。千烟洲人工林的净生态系统气体调节价值累积过程曲线为S型,而长白山混交林则为单峰型。千烟洲人工林和长白山混交林的年均净生态系统气体调节服务价值分别为8470.52元&#183;hm^-2和5091.98元&#183;hm^-2。植被气体调节服务和净生态系统气体调节服务主要发生为5-10月。  相似文献   

10.
Seasonal and spatial variability of litterfall and NO3 and NH4+ leaching from the litter layer and 5-cm soil depth were investigated along a slope in a tropical dry evergreen forest in northeastern Thailand. Using ion exchange resin and buried bag methods, the vertical flux and transformation of inorganic nitrogen (N) were observed during four periods (dry, early wet, middle wet, and late wet seasons) at 15 subplots in a 180-m × 40-m rectangular plot on the slope. Annual N input via litterfall and inorganic N leached from the litter layer and from 5-cm depth soil were 12.5, 6.9, and 3.7 g N m−2 year−1, respectively, whereas net mineralization and the inorganic N pool in 0–5-cm soil were 7.1 g N m−2 year−1 and 1.4 g N m−2, respectively. During the early wet season (90 days), we observed 82% and 74% of annual NO3 leaching from the litter layer and 5-cm soil depth, respectively. Higher N input via leaf litterfall in the dry season and via precipitation in the early wet season may have led to higher NO3 leaching rate from litter and surface soil layers during the early wet season. Large spatial variability in both NO3 vertical flux and litterfall was also observed within stands. Small-scale spatial patterns of total N input via litterfall were significantly correlated with NO3 leaching rate from the surface soil layer. In tropical dry evergreen forests, litterfall variability may be crucial to the remarkable seasonal changes and spatial variation in annual NO3 vertical flux in surface soil layers.  相似文献   

11.
Woody materials (woody area index, WAI) is a key error source in estimating leaf area index (LAI) by optical methods, but how to correct the error caused by WAI during different seasons has not reached consensus. In this study, effective plant area index (PAIe) was first estimated using two indirect optical methods (digital hemispherical photography, DHP, and LAI-2000) in a deciduous needleleaf forest, and then four different schemes for correcting the contribution of WAI to PAIe were tested here. We also directly estimated the seasonality of LAI by a litter collection method and an allometric method. Directly subtracting WAI from PAI resulted in a greater degree of uncertainty in correcting seasonal changes of PAIe from both DHP and LAI-2000. Therefore, we introduced a new correction factor, the stem-to-total area ratio, which was reasonable and useful for quantifying seasonal changes in the contribution of WAI to PAIe. We finally recommend a practical scheme for correcting PAIe from both DHP and LAI-2000, with accuracies as high as 88% and 87% during most growing seasons, respectively. Additionally, LAI values estimated from allometry were concordant with those estimated from litter collection, indicating that the allometry method is useful for tracking seasonal changes in LAI.  相似文献   

12.
The effects of a typhoon on forest dynamics and the response of major tree species were studied in a warm-temperate evergreen broad-leaved forest in southwestern Japan. The strongest typhoon on record (T9313) passed through this region in 1993. Return periods of typhoons over 30 ms−1 in instantaneous wind velocity and T9313 were estimated to be 2.2 and 104.5 years, respectively. Approximately 10% of all stems suffered some damage from T9313 and annual stem mortality rose from 1.3 to 2.7%. The estimated period that the number of stems would fall below 10% of the initial was four years shorter with T9313-class typhoons than without them. Thus, the disturbance by T9313 was not catastrophic at the site although T9313 was an episodic typhoon. The short-term responses of major tree species to T9313 were classified into four types: 1) blunt-response type with little decrease and recruitment of stems in the DBH ≥ 5 cm class (Distylium racemosum), 2) retreat type with larger decrease than recruitment (e.g. Quercus acuta), 3) sharp-response type with a large decrease and much recruitment (e.g. Cinnamomum japonicum), and 4) advance type with less decrease than recruitment (Eurya japonica). Among the four regeneration types classified by previous studies (climax, light-demanding, subcanopy, and few-sapling), the climax and few-sapling types each showed a specific short-term response, the blunt-response and retreat types, respectively, that explains one aspect of the regeneration strategies of each type. On the other hand, the light-demanding or sub-canopy type showed multiple short-term responses, indicating that each regeneration type contains species with various regeneration strategies. In this paper, I analyzed data from the database that was compiled by the Aya Research Team.  相似文献   

13.
Marginal water-use efficiency plays a critical role in plant carbon–water coupling relationships. We investigated the ecosystem marginal water-use efficiency(λ) of a tropical seasonal evergreen forest to(1) determine the general pattern of λ across time,(2) compare different models for calculating λ, and(3) address how λ varies with soil water content during different seasons. There was a U-shaped diurnal pattern in λ, which was higher in the early morning and late afternoon. At other times of the day,λ was lower and remained constant. Ecosystem λ was higher in the wet season than in the dry season. All three models successfully captured the diurnal and seasonal patterns of λ but differed in the calculated absolute values. The idea that λ is constant on a subdaily scale was partly supported by our study, while a constant λ was only true when data from the early morning and late afternoon were not included. The λ increases with soil water content on a seasonal scale, possibly because early morning λ remained low in dry conditions when the soil water content was low.  相似文献   

14.
Turbulent fluxes of carbon, water and energy were measured at the Wind River Canopy Crane, Washington, USA from 1999 to 2004 with eddy-covariance instrumentation above (67 m) and below (2.5 m) the forest canopy. Here we present the decomposition of net ecosystem exchange of carbon (NEE) into gross primary productivity (GPP), ecosystem respiration (R(eco)) and tree canopy net CO(2) exchange (DeltaC) for an old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco)-western hemlock (Tsuga heterophylla (Raf.) Sarg.) forest. Significant amounts of carbon were recycled within the canopy because carbon flux measured at the below-canopy level was always upward. Maximum fluxes reached 4-6 micromol m(-2) s(-1) of CO(2) into the canopy air space during the summer months, often equaling the net downward fluxes measured at the above-canopy level. Ecosystem respiration rates deviated from the expected exponential relationship with temperature during the summer months. An empirical ecosystem stress term was derived from soil water content and understory flux data and was added to the R(eco) model to account for attenuated respiration during the summer drought. This attenuation term was not needed in 1999, a wet La Ni?a year. Years in which climate approximated the historical mean, were within the normal range in both NEE and R(eco), but enhanced or suppressed R(eco) had a significant influence on the carbon balance of the entire stand. In years with low respiration the forest acts as a strong carbon sink (-217 g C m(-2) year(-1)), whereas years in which respiration is high can turn the ecosystem into a weak to moderate carbon source (+100 g C m(-2) year(-1)).  相似文献   

15.
The structure and tree species diversity of a subtropical evergreen broad-leaved forest in northern Okinawa Island, Japan, were studied. Enumeration of the six sampling plots revealed an average density of 5,580 individuals with DBH≧3.0 cm/ha, having an average basal area of 55 m2. The large-size trees of DBH≧20 cm contributed 10% of the total individuals, and 49% of the total basal area. The forest showed a high diversity of tree species, which is comparable to some tropical rain forests. A total of 54 over-story species of 24 families and a total of 63 understory species of 26 families were identified in the six sampling plots. Fagaceae and Theaceae were the most important families;Castanopsis sieboldii, Schima wallichii andDistylium racemosum were the most important species. The diversity index and equitability index of species were 4.15 and 0.72 for the overstory plots, and 4.72 and 0.79 for the understory subplots, respectively. The diversity index for the overstory was significantly correlated to the total basal area of trees over 20 cm DBH (p<0.05) and the importance value ofC. sieboldii (p<0.001), while for understory, the diversity index was not correlated to the structural parameters (allp>0.16). The size distribution pattern and age structure indicated differences in regeneration strategies for canopy dominants. In population dynamics of the succession process,C. sieboldii andD. racemosum were self-maintaining types, andS. wallichii was a gap- or opening-dependent type. This study was made possible by support from the Japanese Ministry of Education, Sciences, Sports and Culture, which provided a Monbusho scholarship to X.N. Xu.  相似文献   

16.
This study explores the sprouting characteristics of an evergreen broad-leaved forest after clear-cutting based on a survey of 1,893 stumps of 62 tree species in Okinawa, Japan. The sprouting capabilities of the stumps varied among tree species. The stumps of 60 species could produce sprouts, while those of the other two species could not. In 10 of the sprouting species, the mean sprout-stem number was higher than 4.0 stems per stump; nine sprouting species showed low sprouting capabilities. Additionally, Castanopsis sieboldii and Schima wallichii, the dominant species, exhibited high sprouting capabilities. Further, the sprouting capabilities varied with stump diameter at breast height (DBH). Stumps with a larger DBH tended to have a higher mean number of sprout stems per stump, higher DBH, and higher tree height than the smaller stumps. The forest stands regenerated by sprouting might recover into a tree community similar to that before clear-cutting.  相似文献   

17.
The mixed deciduous forests of the upper Midwest, USA are approaching an ecological threshold in which early successional canopy trees are reaching maturity and beginning to senesce, giving way to a more diverse canopy of middle and late successional species. The net primary production (NPP) of these forests is generally considered past peak and in decline, but recent studies show a striking resilience in the NPP trajectories of some middle and late successional forests; yet, the mechanisms controlling such temporal changes in NPP are largely unknown. At the University of Michigan Biological Station in northern Michigan, we used a ≥9-year continuous record of wood net primary production (NPP), leaf area index (LAI), canopy composition, and stem mortality in 30 forested plots to identify the constraints on wood NPP as a mixed forest transitions from early to middle succession. Although wood NPP decreased over time in most stands, the rate of decline was attenuated when the canopy comprised a more diverse assemblage of early and middle/late successional species. The mechanism for sustained NPP in stands with more species diverse canopies was the proliferation of LAI by intact later successional tree species, even as stem mortality rates of early successional trees increased. We conclude that projections of carbon sequestration for the aging mixed forests of the upper Midwest should account for species composition shifts that affect the resilience wood NPP.  相似文献   

18.
Agroforestry systems are widely practiced in tropical forests to recover degraded and deforested areas and also to balance the global carbon budget. However, our understanding of difference in soil respiration rates between agroforestry and natural forest systems is very limited. This study compared the seasonal variations in soil respiration rates in relation to fine root biomass, microbial biomass, and soil organic carbon between a secondary forest and two agroforestry systems dominated by Gmelina arborea and Dipterocarps in the Philippines during the dry and the wet seasons. The secondary forest had significantly higher (p < 0.05) soil respiration rate, fine root biomass and soil organic matter than the agroforestry systems in the dry season. However, in the wet season, soil respiration and soil organic matter in the G. arborea dominated agroforestry system were as high as in the secondary forest. Whereas soil respiration was generally higher in the wet than in the dry season, there were no differences in fine root biomass, microbial biomass and soil organic matter between the two seasons. Soil respiration rate correlated positively and significantly with fine root biomass, microbial biomass, and soil organic C in all three sites. The results of this study indicate, to some degree, that different land use management practices have different effects on fine root biomass, microbial biomass and soil organic C which may affect soil respiration as well. Therefore, when introducing agroforestry system, a proper choice of species and management techniques which are similar to natural forest is recommended.  相似文献   

19.
Gas exchange was measured in a forest plantation dominated by Fraxinus angustifolia Vahl. and Quercus robur L. in northern Italy, over three growing seasons that differed in water availability (2001, 2002 and 2003). The objectives were to: (1) determine variability in the photosynthetic parameters V(cmax) (maximum carboxylation capacity) and J(max) (maximum rate of electron transport) in relation to species, leaf ontogeny and drought; and (2) assess the potential of the photosynthesis-nitrogen relationship for estimating leaf photosynthetic capacity. Marked seasonal and interannual variability in photosynthetic capacity was observed, primarily caused by changes in leaf ontogeny and water stress. Relatively small differences were apparent between species. In the absence of water stress (year 2002), the seasonal patterns of V(cmax) and J(max) were characterized by a rapid increase during spring, a relatively steady state during summer and a rapid decline during autumn. In years with a moderate (year 2001) or a severe (year 2003) water stress, photosynthetic capacity decreased during the summer in proportion to drought intensity, without a parallel decline in leaf nitrogen content. The V(cmax)-nitrogen relationship was significantly affected by both leaf ontogeny and drought. As a consequence, the use of a single annual regression to predict V(cmax) from leaf nitrogen yielded good estimates only during the summer and in the absence of water stress. Irrespective of the mechanisms by which photosynthetic capacity is affected by water stress, its large seasonal and interannual variability is of great relevance for modeling the forest carbon cycle.  相似文献   

20.
The ecological consequences of climate change for large tropical forests such as the Amazon are likely to be profound. Amazonian forests strongly influence regional and global climates and therefore any changes in forest structure, such as deforestation or die-back, may create positive feedback on externally forced climate change. Monitoring, modelling and managing the impacts of anthropogenic climate change on forest dynamics is therefore an important objective of forest researchers, and one that requires long-term data on changes at the level of community, populations and phenotypes. In this paper we provide the most comprehensive study yet on the seasonal dynamics of various leaf traits: leaf area index (LAI), leaf mortality (LM), leaf biomass (LB), leaf growth rate (LG), and leaf residence time (TR) from 50 experimental plots in a forest site at Belterra, Pará State, Brazil. From this study we estimate annual mean leaf area index (LAI) to be 5.07 m2 m−2 and annual mean leaf dry biomass to be 0.621 kg m−2. The typical leaf grew at 0.049 kg m−2 month−1 and remained on the tree for 12.7 months. We compare these results to other similar studies and critically discuss the factors driving leaf demographics in Amazonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号