首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The antiradical capacity (radical scavenger capacity, RSC) of anthocyanin-based fruit extracts prepared in the laboratory (black chokeberry, black-thorn, and strawberry) was studied by using the 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH(*)). To determine their RSC, the second-order rate constant (k(2)) for the oxidation of these extracts by DPPH(*) was calculated. The value of k(2) was compared to that used in the food industry as natural (alpha-tocopherol) or synthetic (butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA)) antioxidants, as well as for a commercial elderberry concentrate and a synthetic colorant (Ponceau 4R). The k(2) values ((mg/mL)(-)(1) s(-)(1)), in methanol at 25 degrees C, were 1.87, 0.7, 0.42, 0.2, 0.05, 0.03, and 0.008 for alpha-tocopherol, black chokeberry, BHA, black-thorn, BHT, strawberry, and elderberry, respectively. Ponceau 4R lacked RSC. Therefore, these natural colorants proved to be a combined source of color and RSC for food material.  相似文献   

2.
Diphenylpicrylhydrazyl (DPPH) is widely used for quickly assessing the ability of polyphenols to transfer labile H atoms to radicals, a likely mechanism of antioxidant protection. This popular test generally pays no attention to the kinetics of H atom transfer, which however could be even more important than the total H-atom-donating capacities (stoichiometry, EC50) typically evaluated. In the present work, a series of dietary polyphenols belonging to the most representative families (flavonols from onion, flavanol monomers and oligomers from barley, and caffeic acid and caffeoyl esters from artichoke and endive) are characterized not only by their total stoichiometries (n(tot)) but also by their rate constants of first H atom abstraction by DPPH (k(1)), deduced from the kinetic analysis of the decay of the DPPH visible band following addition of the antioxidant. The mildly reactive DPPH radical allows a good discrimation between polyphenols, as demonstrated by the relatively large ranges of k(1) (ca. 400-5000 M(-)(1) s(-)(1)) and n(tot) (ca. 1-5) values typically measured with antioxidants having a single polyphenolic nucleus. With antioxidants displaying more than one polyphenolic nucleus (procyanidin oligomers, dicaffeoyl esters), the kinetic analysis makes it possible to demonstrate significant differences in reactivity between the subunits (two distinct k(1) values whose ratio lies in the range 3-10) and nonadditive stoichiometries.  相似文献   

3.
The total free radical scavenger capacity (RSC) of 57 edible oils from different sources was studied: olive (24 brands of oils), sunflower (6), safflower (2), rapeseed (3), soybean (3), linseed (2), corn (3), hazelnut (2), walnut (2), sesame (2), almond (2), mixture of oils for salad (2), "dietetic" oil (2), and peanut (2). Olive oils were also studied according to their geographical origins (France, Greece, Italy, Morocco, Spain, and Turkey). RSC was determined spectrophotometrically by measuring the disappearance of the radical 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(*)) at 515 nm. The disappearance of the radical followed a double-exponential equation in the presence of oils and oil fractions, which suggested the presence of two (fast and slow) groups of antioxidants. RSC was studied for the methanol-soluble phase ("methanolic fraction", MF) of the oil, the fraction nonsoluble in methanol ("lipidic fraction", LF), and the nonfractionated oil ("total oil"; TF = MF + LF). Only olive, linseed, rapeseed, safflower, sesame, and walnut oils showed significant RSC in the MF due to the presence of phenolic compounds. No significant differences were found in the RSC of olive oils from different geographical origins. Upon heating at 180 degrees C the apparent constant for the disappearance of RSC (k(T)) and the half-life (t1/2) of RSC for MF, LF, and TF were calculated. The second-order rate constants (k2) for the antiradical activity of some phenolic compounds present in oils are also reported.  相似文献   

4.
The methanol extract of sesame (Sesamum indicum) seeds was fractionated and purified with the assistance of conventional column chromatography to afford 29 compounds including seven furofuran lignans. Among these isolates, (+)-samin (1) was obtained from the natural source for the first time. In addition, (-)-asarinin (30) and sesamol (31) were generated by oxidative derivation from (+)-sesamolin (2) and (+)-sesamin (3), two abundant lignans found in sesame seeds. To evaluate their in vitro antioxidant potential, the seven isolated lignans (1-7) and the two derivatives (30 and 31) were examined for the scavenging activities on DPPH free radicals and superoxide anions. Moreover, the capability of chelating ferrous ions and reducing power of these sesame lignans were also measured. The results suggest that, besides the well-known sesamolin and sesamin, the minor sesame lignans (+)-(7S,8'R,8R)-acuminatolide (5), (-)-piperitol (6), and (+)-pinoresinol (7) are also adequate active ingredients and may be potential sources for nutritional and pharmacological utilization.  相似文献   

5.
The rate of oxygen depletion, as measured by electron spin resonance spectroscopy (oximetry using a spin probe), in a homogeneous solution of peroxidating methyl linoleate (initiated by an azo initiator) in the presence or absence of antioxidants was converted to second-order rate constants for the inhibiting reaction of quercetin and epicatechin. In the non-hydrogen-bonding solvent chlorobenzene at 50 degrees C, k(inh) had values of 4.3 x 10(5) M(-)(1) s(-)(1) for quercetin and 4.2 x 10(5) M(-)(1) s(-)(1) for epicatechin, respectively. In the hydrogen-accepting "water-like" solvent tert-butyl alcohol, the values were 2.1 x 10(4) and 1.7 x 10(4) M(-)(1) s(-)(1), respectively. The solvent effect (factor of 20) is more significant than for alpha-tocopherol (factor of 4), and the two flavonoids have efficiencies comparable to that of alpha-tocopherol in scavenging peroxyl radicals in the nonpolar solvent but not in the hydrogen-bonding solvent.  相似文献   

6.
Selenium fertilizer was foliar applied to determine the effects of antioxidant activity of selenium-enriched rice assessed by alpha,alpha-diphenyl-beta-picylhydrazyl (DPPH) radical scavenging and the ferric thiocyanate (FTC) method. Results showed that selenium concentration in rice was significantly enhanced dose dependently. Aqueous or ethanolic extracts of rice displayed significantly higher antioxidant activity against lipid peroxidation. The activities of aqueous extracts were significantly higher than those of ethanolic extracts and increased with the increasing selenium concentration in rice. The DPPH assay showed that the kinetic behaviors of aqueous extracts were complex and slow, while ethanolic extracts reacted quickly with DPPH radical. Aqueous extracts of rice exhibited higher antiradical efficiencies than ethanolic extracts, and rice (1.275 mg Se kg(-)(1)) presented the lowest EC(50) values of 533.46 +/- 0.58 microg mL(-)(1). As compared to rice extracts, all of the reference antioxidants showed more than 4-fold antiradical efficiencies than rice extracts. This radical scavenging activity was significantly correlated with selenium concentrations in rice (R = 0.862, p < 0.05), while ethanolic extracts were inversely correlated with selenium concentration in rice.  相似文献   

7.
Sesamin and sesaminol triglucoside in sesame seeds are major lignans that display an abundance of biological activities. Although their antioxidative activity in vitro is weak, they have been reported to suppress oxidative stress in vivo. We investigated the production of new antioxidative lignans from sesame lignans by culturing with the genus Aspergillus to enhance the function of food materials. Media containing sesamin or sesaminol triglucoside increased antioxidative activity for DPPH radical scavenging by culturing with Aspergillus usamii mut. shirousamii RIB2503. The antioxidative lignans in sesamin medium were identified as sesamin 2,6-dicatechol and episesamin 2,6-dicatechol. Those in sesaminol triglucoside medium were identified as sesaminol 6-catechol and episesaminol 6-catechol, which are novel antioxidative lignans. It is suggested that they may exhibit higher antioxidative activity than sesamin and sesaminol triglucoside because they have the catechol functional moiety.  相似文献   

8.
The effects of polar (acetonitrile and tert-butyl alcohol) and apolar (cyclohexane) solvents on the peroxyl-radical-trapping antioxidant activity of some flavonoids, catechol derivatives, hydroquinone, and monophenols have been studied. The inhibition rate constants k(inh) of the antioxidants have been determined by following the increase in absorbance at 234 nm of a dilute solution of linoleic acid at 50 degrees C containing small amounts of antioxidant and radical initiator. Despite the low concentration of linoleic acid, the peroxidation process has been confirmed to be a free radical chain reaction described by the classical kinetic laws for this process. However, in the evaluation of k(inh), a careful analysis of the peroxidation curve, absorbance versus time, must be done because the final oxidation products of phenols may absorb at 234 nm. Phenols with two ortho-hydroxyls are the most active antioxidants, with inhibition rate constants in the range of (3-15) x 10(5) M(-1) x s(-1) (in cyclohexane). Nevertheless, it has been observed that in tert-butyl alcohol (a strong hydrogen bond acceptor) the rate constants dramatically decline to values not detectable by the present kinetic method. In acetonitrile (a weaker hydrogen bond acceptor) instead, the phenols with two ortho-hydroxyls scavenge the peroxyl radicals with rate constants close to those in cyclohexane. From the kinetic solvent effect, the equilibrium constant of the first solvation step of hydroquinone with tert-butyl alcohol has been determined at 50 degrees C, K(1) = 2.5 +/- 0.5 M(-1).  相似文献   

9.
Stoichiometric and kinetic values of phenolics against DPPH (2,2-diphenyl-1-picrylhydrazyl) were determined for Andean purple corn (Zea mays L.) and red sweetpotato (Ipomoea batatas). Both crops had higher antioxidant capacity and antiradical kinetics than blueberries and higher or similar anthocyanin and phenolic contents. The second-order rate constant (k(2)) was 1.56, 1.12, 0.57, and 0.26 (mg antiradical/mL)(-1) s(-1) for red sweetpotato, Trolox, purple corn, and blueberry, respectively. On the molar basis of active hydroxyl groups, k(2)' showed the same order as for k(2). Corn cob and sweetpotato endodermis contributed the most in phenolic compounds and antioxidant capacity. Both crops studied can be considered as excellent novel sources of natural antioxidants for the functional food and dietary supplement markets.  相似文献   

10.
An HPLC method was developed and validated for the quantification of sesaminol triglucoside and a sesaminol diglucoside in sesame seeds. These two lignans were isolated, and their structures were characterized by mass and nuclear magnetic resonance spectroscopy. Defatted sesame flour was extracted first with 85% ethanol for 5 h followed by 70% ethanol for 10 h at room temperature using naringenin as internal standard. Analysis of 65 different samples of sesame seeds indicated that the content of sesaminol triglucoside ranged from 36 to 1560 mg/100 g of seed (mean 637 +/- 312) and that of sesaminol diglucoside ranged from 0 to 493 mg/100 g of seed (mean 75 +/- 95). No significant difference was found between sesaminol glucoside contents in black and white seeds.  相似文献   

11.
Measurements of the singlet oxygen ((1)O(2)) quenching rates (k(Q) (S)) and the relative singlet oxygen absortpion capacity (SOAC) values were performed for 16 phenolic antioxidants (tocopherol derivatives, ubiquinol-10, caffeic acids, and catechins) and vitamin C in ethanol/chloroform/D(2)O (50:50:1, v/v/v) solution at 35 °C. It has been clarified that the SOAC method is useful to evaluate the (1)O(2)-quenching activity of lipophilic and hydrophilic antioxidants having 5 orders of magnitude different rate constants from 1.38 × 10(10) M(-1) s(-1) for lycopene to 2.71 × 10(5) for ferulic acid. The logarithms of the k(Q) (S) and the SOAC values for phenolic antioxidants were found to correlate well with their peak oxidation potentials (E(p)); the antioxidants that have smaller E(p) values show higher reactivities. In previous works, measurements of the k(Q) (S) values for many phenolic antioxidants were performed in ethanol. Consequently, measurements of the k(Q) (S) and relative SOAC values were performed for eight carotenoids in ethanol to investigate the effect of solvent on the (1)O(2)-quenching rate. The k(Q) (S) values for phenolic antioxidants and carotenoids in ethanol were found to correlate linearly with the k(Q) (S) values in ethanol/chloroform/D(2)O solution with a gradient of 1.79, except for two catechins. As the relative rate constants (k(Q)(AO) (S)/k(Q)(α-Toc) (S)) of antioxidants (AO) are equal to the relative SOAC values, the SOAC values do not depend on the kinds of solvent used, if α-tocopherol is used as a standard compound. In fact, the SOAC values obtained for carotenoids in mixed solvent agreed well with the corresponding ones in ethanol.  相似文献   

12.
Sesame lignans (sesamin, sesamolin) and their metabolites (enterodiol, ED; enterolactone, EL; and sesamol) have been evaluated for their estrogenic activities. ED and EL have been indicated to have estrogenic/antiestrogenic properties on human breast cancer cells; however the estrogenic activities of sesamin, sesamolin and sesamol have not been reported. In the present study, estrogenic potencies of sesame lignans and their metabolites were determined by estrogen responsive element (ERE) luciferase reporter assay in T47D cells stably transfected with ERE-luc (T47D-KBluc cells) and quantifying pS2 and progesterone receptor gene expression in T47D cells. All tested compounds except ED possessed ability of ERE activation with a very low potency compared to estradiol (E2). These effects were abolished by coincubating tested compounds with 1 μM ICI 182?780, suggesting that estrogen receptors were directly involved in their ERE activations. Among tested compounds, sesamol showed the highest ability in ERE induction. The coincubation of increasing concentration of E2 (10(-12)-10(-6) M) with 10 μM of tested compounds resulted in a downward shift of E2-ERE dose-response curves. In contrast, at the low concentration of E2 (10(-12) M), sesamin and sesamol significantly exhibited additive effects on the E2 responses. The inhibitory effect in a dose-dependent manner was also observed when 1-100 μM sesamol was coincubated with 1 nM E2. Sesamin, sesamol and EL significantly induced pS2 gene expression whereas only sesamol could significantly induce progesterone receptor gene. The data obtained in this study suggested that sesame lignans and their metabolites possess weak estrogenic/antiestrogenic activity.  相似文献   

13.
The effects and mechanism of sesamol on the methylene blue- or chlorophyll-sensitized photo-oxidations of soybean oil have been studied. Sesamol showed strong antiphoto-oxidative activity in both methylene blue-and chlorophyll-sensitized photo-oxidations of soybean oil in a dose-dependent manner. The 1.0 x 10(-3) M sesamol treatments showed 84.7 and 43.4% inhibitions of methylene blue- and chlorophyll-sensitized photo-oxidations of soybean oil in methylene chloride. The antiphoto-oxidative activity of sesamol was comparable to that of delta-tocopherol in both methylene blue- and chlorophyll-sensitized photo-oxidations, at the same molar basis. Sesamol effectively inhibited rubrene oxidation with a chemical source of singlet oxygen in microemulsion, showing its strong singlet oxygen quenching ability. The results suggested that the antiphoto-oxidative activity of sesamol in the photo-oxidation of oil was, at least in part, due to its singlet oxygen scavenging activity. The singlet oxygen quenching rate constant (k(ox-Q) + k(q)) of sesamol was determined to be 1.9 +/- 0.3 x 10(7) M(-1) s(-1). This represents the first report on the antiphoto-oxidative activity of sesamol in the sensitized photo-oxidation of oil, and its bimolecular singlet oxygen quenching ability.  相似文献   

14.
The browning of glucose-fructose-glycine mixtures involves parallel glucose-glycine and fructose-glycine reactions, which share a common intermediate, the immediate precursor of melanoidins in the kinetic model. At pH 5.5, 55 degrees C glucose is converted into this intermediate in a two step process where k(1) = (7.8 +/- 1.1) x 10(-)(4) mol L(-)(1) h(-)(1) and k(2) = (1.84 +/- 0.31) x 10(-)(3) h(-)(1) according to established kinetics, whereas fructose is converted into this intermediate in a single step where k(4) = 5.32 x 10(-)(5)()()mol L(-)(1) h(-)(1). The intermediate is converted to melanoidins in a single rate limiting process where k(mix) = 0.0177 h(-)(1) and the molar extinction coefficient (based on the concentration of sugar converted) of the melanoidins so formed is 1073 +/- 4 mol(-)(1) L cm(-)(1). Whereas the value of k(mix) is the same when the individual sugars undergo browning, the value of the molar extinction coefficient is similar to that for melanoidins from the glucose-glycine reaction (955 +/- 45 mol(-)(1) L cm(-)(1)) but it is approximately double the value for melanoidins from the fructose-glycine reaction (478 +/- 18 mol(-)(1) L cm(-)(1)). This is the reason that the effects of glucose and fructose on the rate of browning are synergistic.  相似文献   

15.
Sesame lignans such as sesamin, sesaminol, and sesamolin are major constituents of sesame oil, and all have a methylenedioxyphenyl group and multiple functions in vivo. It was previously reported that sesaminol, a tetrahydrofurofuran type lignin, was metabolized to mammalian lignans. The present study examined the tissue distribution of sesaminol in Sprague-Dawley (SD) rats. Changes in the concentration of sesaminol and its metabolites (sesaminol glucuronide/sulfate, hydroxymethylsesaminol-tetrahydrofuran, enterolactone, and enterodiol) were determined in tissues within a 24 h period after tube feeding (po 220 mg/kg) to SD rats. The concentrations of enterodiol and enterolactone were significantly higher than those of sesaminol and its tetrahydrofuranoid metabolites in the organs (liver, heart, brain, and kidney). This study demonstrates that sesaminol has potent inhibition of cytochrome P450 (CYPs), compared to tetrahydrofuranoid metabolites. The IC(50) values of CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 for sesaminol were determined as 3.57, 3.93, 0.69, 1.33, and 0.86 μM, respectively. In addition, hydroxymethylsesaminol-tetrahydrofuran and enterodiol were weak inhibitors of CYP2C9 and CYP1A2, respectively.  相似文献   

16.
Sesame (Sesamum indicum L.) contains abundant lignans including lipid-soluble lignans (sesamin and sesamolin) and water-soluble lignan glycosides (sesaminol triglucoside and sesaminol diglucoside) related to antioxidative activity. In this study, near infrared reflectance spectroscopy (NIRS) was used to develop a rapid and nondestructive method for the determination of lignan contents on intact sesame seeds. Ninety-three intact seeds were scanned in the reflectance mode of a scanning monochromator. This scanning procedure did not require the pulverization of samples, allowing each analysis to be completed within minutes. Reference values for lignan contents were obtained by high-performance liquid chromatography analysis. Calibration equations for lignans (sesamin and sesamolin) and lignan glycosides (sesaminol triglucoside and sesaminol diglucoside) contents were developed using modified partial least squares regression with internal cross-validation (n = 63). The equations obtained had low standard errors of cross-validation and moderate R2 (coefficient of determination in calibration). The prediction of an external validation set (n = 30) showed significant correlation between reference values and NIRS predicted values based on the SEP (standard error of prediction), bias, and r2 (coefficient of determination in prediction). The models developed in this study had relatively higher values (more than 2.0) of SD/SEP(C) for all lignans and lignan glycosides except for sesaminol diglucoside, which had a minor amount, indicating good correlation between the reference and the NIRS estimate. The results showed that NIRS, a nondestructive screening method, could be used to rapidly determine lignan and lignan glycoside contents in the breeding programs for high quality sesame.  相似文献   

17.
This study investigates a semicontinuous hot pressurized fluid extraction process and the scavenging activity on the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical of the extract from Taiwan yams (Dioscorea alata). Liquid-liquid extractions were preliminarily employed to generate six fractions, initially extracted by ethanol. Then, the aqueous solution of dried crude ethanol extract was sequentially fractionated by hexane, chloroform, ethyl acetate, and n-butanol. The EC50 value was defined as the UV absorption of DPPH concentrations sufficiently decreased to 50% of the original value. It was found that all peel portions have a better effect on scavenging of the DPPH free radical than meat portions, especially for the ethyl acetate partition of the peel portion of Tainung #2 yam. Its EC50 value (14.5 microg mL(-1)) was even lower than that of ascorbic acid (21.4 microg mL(-1)). Furthermore, semicontinuous hot pressurized ethanol was superior to hot pressurized water in extracting the compound scavenging the DPPH radical from the Purpurea-Roxb peel. The recovery of four unknown compounds corresponded to the scavenging ratio of DPPH free radical in the hot pressurized ethanol extract. Finally, three-level and four-factor experimental design revealed that ethanol ratio and temperature were the most effective factors in order. Conditions of 80% of aqueous ethanol, 20.0 kg/kg solid ratio, 180 psig (1.342 MPa), and 100 degrees C were preferred to extract those antioxidants from the yam peel.  相似文献   

18.
One known and two novel antioxidant compounds have been isolated from bamboo (Phyllostachys edulis). The butanol-soluble extract of the bamboo leaves was found to have a significant antioxidant activity, as measured by scavenging the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical and the superoxide anion radical (O(2)(-)) in the xanthine/xanthine oxidase assay system. Antioxidant activity-directed fractionation of the extract led to the isolation and characterization of three structural isomeric chlorogenic acid derivatives: 3-O-(3'-methylcaffeoyl)quinic acid (1), 5-O-caffeoyl-4-methylquinic acid (2), and 3-O-caffeoyl-1-methylquinic acid (3). Compounds 2 and 3 were isolated and characterized for the first time from the natural products. In the DPPH scavenging assay as well as in the iron-induced rat microsomal lipid peroxidation system, compounds 2 (IC(50) = 8.8 and 19.2 microM) and 3 (IC(50) = 6.9 and 14.6 microM) showed approximately 2-4 times higher antioxidant activity than did chlorogenic acid (IC(50) = 12.3 and 28.3 microM) and other related hydroxycinnamates such as caffeic acid (IC(50) =13.7 and 25.5 microM) and ferulic acid (IC(50) = 36.5 and 56.9 microM). Among the three compounds, compound 1 yielded the weakest antioxidant activity, and the DPPH scavenging and lipid peroxidation inhibitory activity (IC(50) = 16.0 and 29.8 microM) was lower than those of chlorogenic and caffeic acids. All three compounds exhibited both superoxide scavenging activities and inhibitory effects on xanthine oxidase. Their superoxide anion (O(2)(-)) scavenging activities (IC(50) = 1, 4.3 microM; 2, 2.8 microM; and 3, 1.2 microM) were markedly stronger than those of ascorbic acid (IC(50) = 56.0 microM), alpha-tocopherol (IC(50) > 100 microM), and other test compounds, although their inhibition effects on xanthine oxidase may contribute to the potent scavenging activity. alpha-Tocopherol exerted a significant inhibitory effect (65.5% of the control) on superoxide generation in 12-O-tetradecanoylphorbol-13-acetate-induced human promyelocytic leukemia HL-60 cells, and compound 3 showed moderate activity (36.0%). On the other hand, other compounds including 1, 2, chlorogenic acid, and other antioxidants were weakly active (24.8-10.1%) in the suppression of superoxide generation.  相似文献   

19.
The antioxidative properties of the leaves extracts of Murraya koenigii using different solvents were evaluated based on the oil stability index (OSI) together with their radical scavenging ability against 1-1-diphenyl-2-picrylhydrazyl (DPPH). The methylene chloride (CH(2)Cl(2)) extract and the ethyl acetate (EtOAc) soluble fraction of the 70% acetone extract significantly prolonged the OSI values comparable to those of alpha-tocopherol and BHT. Five carbazole alkaloids were isolated from the CH(2)Cl(2) extract and their structures were identified to be euchrestine B (1), bismurrayafoline E (2), mahanine (3), mahanimbicine (4), and mahanimbine (5) based on (1)H and (13)C NMR and mass (MS) spectral data. The OSI value of carbazoles at 110 degrees C decreased in the order 1 and 3 > alpha-tocopherol > BHT > 2 > 4, 5 and control. It is assumed that compounds 1 and 3 contributed to the high OSI value of the CH(2)Cl(2) extract of M. koenigii. The DPPH radical scavenging activity for these carbazoles was in the order ascorbic acid > 2 > 1, 3 and alpha-tocopherol > BHT > 4 and 5.  相似文献   

20.
Aqueous crude extracts of a series of plant wastes (agricultural, wild plants, residues from sports activities (grass), ornamental residues (gardens)) from 17 different plant species representative of the typical biodiversity of the Iberian peninsula were investigated as new sources of peroxidases (EC 1.11.1.7). Of these, lentil (Lens culinaris L.) stubble crude extract was seen to provide one of the highest specific peroxidase activities, catalyzing the oxidation of guaiacol in the presence of hydrogen peroxide to tetraguaiacol, and was used for further studies. For the optimum extraction conditions found, the peroxidase activity in this crude extract (110 U mL(-1)) did not vary for at least 15 months when stored at 4 °C (k(inact) = 0.146 year(-1), t(1/2 inact) = 4.75 year), whereas, for comparative purposes, the peroxidase activity (60 U mL(-1)) of horseradish (Armoracia rusticana L.) root crude extract, obtained and stored under the same conditions, showed much faster inactivation kinetics (k(inact) = 2.2 × 10(-3) day(-1), t(1/2 inact) = 315 days). Using guaiacol as an H donor and a universal buffer (see above), all crude extract samples exhibited the highest peroxidase activity in the pH range between 4 and 7. Once semipurified by passing the crude extract through hydrophobic chromatography on phenyl-Sepharose CL-4B, the novel peroxidase (LSP) was characterized as having a purity number (RZ) of 2.5 and three SDS-PAGE electrophoretic bands corresponding to molecular masses of 52, 35, and 18 kDa. The steady-state kinetic study carried out on the H(2)O(2)-mediated oxidation of guaiacol by the catalytic action of this partially purified peroxidase pointed to apparent Michaelian kinetic behavior (K(m)(appH(2)O(2)) = 1.87 mM; V(max)(appH(2)O(2)) = 6.4 mM min(-1); K(m)(app guaicol) = 32 mM; V(max)(app guaicol) = 9.1 mM min(-1)), compatible with the two-substrate ping-pong mechanism generally accepted for peroxidases. Finally, after the effectiveness of the crude extracts of LSP in oxidizing and removing from solution a series of last-generation dyes present in effluents from textile industries (1) had been checked, a steady-state kinetic study of the H(2)O(2)-mediated oxidation and decolorization of Green Domalan BL by the catalytic action of the lentil stubble extract was carried out, with the observation of the same apparent Michaelian kinetic behavior (K(m)(appGD) = 471 μM; V(max)(appGD)= 23 μM min(-1)). Further studies are currently under way to address the application of this LSP crude extract for the clinical and biochemical analysis of biomarkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号