首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Soils are a major source of atmospheric NO and N2O. Since the soil properties that regulate the production and consumption of NO and N2O are still largely unknown, we studied N trace gas turnover by nitrification and denitrification in 20 soils as a function of various soil variables. Since fertilizer treatment, temperature and moisture are already known to affect N trace gas turnover, we avoided the masking effect of these soil variables by conducting the experiments in non-fertilized soils at constant temperature and moisture. In all soils nitrification was the dominant process of NO production, and in 50% of the soils nitrification was also the dominant process of N2O production. Factor analysis extracted three factors which together explained 71% of the variance and identified three different soil groups. Group I contained acidic soils, which showed only low rates of microbial respiration and low contents of total and inorganic nitrogen. Group II mainly contained acidic forest soils, which showed relatively high respiration rates and high contents of total N and NH4 +. Group III mainly contained neutral agricultural soils with high potential rates of nitrification. The soils of group I produced the lowest amounts of NO and N2O. The results of linear multiple regression conducted separately for each soil group explained between 44–100% of the variance. The soil variables that regulated consumption of NO, total production of NO and N2O, and production of NO and N2O by either nitrification or denitrification differed among the different soil groups. The soil pH, the contents of NH4 +, NO2 and NO3 , the texture, and the rates of microbial respiration and nitrification were among the important variables. Received: 28 October 1999  相似文献   

2.
 A low efficiency of use of N fertilisers has been observed in mid-Wales on permanent pasture grazed intensively by cattle. Earlier laboratories studies have suggested that heterogeneity in redox conditions at shallow soil depths may allow nitrification and denitrification to occur concurrently resulting in gaseous losses of N from both NH4 + and NO3 . The objective of the investigation was to test the hypothesis that both nitrification and denitrification can occur simultaneously under simulated field capacity conditions (∼5 kPa matric potential). Intact soil cores were taken from grassland subjected to both grazing and amenity use. The fate of applied NH4 + was examined during incubation. 15N was used as a tracer. Nitrapyrin was used as a nitrification inhibitor and acetylene was used to block N2O reductase. More than 50% of N applied as NH4 + disappeared over a period of 42 days from the soil mineral-N pool. Some of this N was evolved as N2O. Accumulation of NO3 –N in the surface 0–2.5 cm indicated active nitrification. Addition of nitrapyrin increased N recovery by 26% and inhibited both the accumulation of NO3–N and emission of N2O. When intact field cores were incubated after addition of 15N-urea, all of the N2O evolved was derived from added urea-N. It was concluded that nitrification and denitrification do occur simultaneously in the top 7.5 cm or so, of the silty clay loam grassland topsoils of mid-Wales at moisture contents typical of field capacity. The quantitative importance of these concurrent processes to N loss from grassland systems has not yet been assessed. Received: 15 December 1998  相似文献   

3.
The aims of this study were to assess the effectiveness of the nitrification inhibitors dicyandiamide (DCD) and nitrapyrin on reducing emissions of nitrous oxide (N2O) following application of NH4 + or NH4 +-forming fertilisers to grassland and spring barley. DCD was applied to grassland with N fertiliser applications in April and August in 1992 and 1993, inhibiting N2O emissions by varying amounts depending on the fertiliser form and the time of application. Over periods of up to 2 months following each application of DCD, emissions of N2O were reduced by 58–78% when applied with urea (U) and 41–65% when applied with ammonium sulphate (AS). Annual emissions (April to March) of N2O were reduced by up to 58% and 56% in 1992–1993 and 1993–1994, respectively. Applying DCD to ammonium nitrate (AN) fertilised grassland did not reduce emissions after the April 1993 fertilisation, but emissions following the August application were reduced. Nitrapyrin was only applied once, with the April fertiliser applications in 1992, reducing N2O emissions over the following 12 months by up to 40% when applied with U. When N fertiliser was applied in June without DCD, the DCD applied in April was still partly effective; N2O emissions were reduced 50%, 60% and 80% as effectively as the emissions following the April applications, for AS in 1993, U in 1992 and 1993, respectively. In 1992 the persistence of an inhibitory effect was greater for nitrapyrin than for DCD, increasing after the June fertiliser application as overall emissions from U increased. There was no apparent reduction in effectiveness following repeated applications of DCD over the 2 years. N2O emissions from spring barley, measured only in 1993, were lower than from grassland. DCD reduced emissions from applied U by 40% but there was no reduction with AN. The results demonstrate considerable scope for reducing emissions by applying nitrification inhibitors with NH4 + or NH4 +-forming fertilisers; this is especially so for crops such as intensively managed grass where there are several applications of fertiliser nitrogen per season, as the effect of inhibitors applied in April persists until after a second fertiliser application in June. Received: 30 August 1996  相似文献   

4.
Summary Nitrapyrin and C2H2 were evaluated as nitrification inhibitors in soil to determine the relative contributions of denitrification and nitrification to total N2O production. In laboratory experiments nitrapyrin, or its solvent xylene, stimulated denitrification directly or indirectly and was therefore considered unsuitable. Low partial pressures of C2H2 (2.5–5.0 Pa) inhibited nitrification and had only a small effect on denitrification, which made it possible to estimate the contribution of denitrification. The contribution of nitrification was estimated by subtracting the denitrification value from total N2O production (samples without C2H2). The critical C2H2 concentrations needed to achieve inhibition of nitrification, without affecting the N2O reductase in denitrifiers, must be individually determined for each set of experimental conditions.  相似文献   

5.
Incubation of soil under low partial pressures of acetylene (10 Pa) is a widely used method to specifically inhibit nitrification due to the suicide inhibition of ammonium monooxygenase (AMO), the first enzyme in NH4 + oxidation by nitrifying bacteria. Although the inhibition of AMO is irreversible, recovery of activity is possible if new enzyme is synthesized. In experiments with three different soils, NH4 + concentrations decreased and NO3 concentrations increased soon after acetylene was removed from the atmosphere. Recovery of NO production started immediately after the removal of acetylene. The release rates of NO and N2O were higher in soil samples which were only preincubated with 10 Pa acetylene than in those which were kept in the presence of 10 Pa acetylene. In the permanent presence of 10 Pa acetylene, NH4 + and NO3 concentrations stayed constant, and the release rates of NO and N2O were low. These low release rates were apparently due to processes other than nitrification. Our experiments showed that the blockage of nitrification by low (10 Pa) acetylene partial pressures is only reliable when the soil is kept in permanent contact with acetylene. Received: 17 July 1996  相似文献   

6.
Summary The effectiveness of wax-coated calcium carbide (as a slow-release source of acetylene) and nitrapyrin in inhibiting nitrification and emission of the greenhouse gases N2O and CH4 was evaluated in a microplot study with dry-seeded flooded rice grown on a grey clay near Griffith, NSW, Australia. The treatments consisted of factorial combinations of N levels with nitrification inhibitors (control, wax-coated calcium carbide, and nitrapyrin). The rate of nitrification was slowed considerably by the addition of wax-coated calcium carbide, but it was inhibited only slightly by the addition of nitrapyrin. As a result, the emission of N2O was markedly reduced by the application of wax-coated calcium carbide, whereas there was no significant difference in rates of N2O emission between the control and nitrapyrin treatments. Both nitrification inhibitors significantly reduced CH4 emission, but the lowest emission rates were observed in the wax-coated calcium carbide treatment. At the end of the experiment 84% of the applied N was recovered from the wax-coated calcium carbide treatment compared with 43% for the nitrapyrin and control treatments.  相似文献   

7.
Independent soil microcosm experiments were used to investigate the effects of the fungicides mancozeb and chlorothalonil, and the herbicide prosulfuron, on N2O and NO production by nitrifying and denitrifying bacteria in fertilized soil. Soil cores were amended with NH4NO3 or NH4NO3 and pesticide, and the N2O and NO concentrations were monitored periodically for approximately 48 h following amendment. Nitrification is the major source of N2O and NO in these soils at soil moistures relevant to those observed at the field site where the cores were collected. At pesticide concentrations from 0.02 to 10 times that of a standard single application on a corn crop, N2O and NO production was inhibited by all three pesticides. Generally N2O production was inhibited by the pesticides from 10 to 62% and 20 to 98% at the lowest and highest dosages, respectively. Nitric oxide production was generally inhibited from about 5 to 47% and by 20 to 97% at the lowest and highest dosages, respectively. Nitrous oxide and nitric oxide production by nitrification was more susceptible to inhibition by these pesticides than denitrification. Production of both N2O and NO by nitrification was inhibited by as much as 99%, at the highest concentration of pesticide applied. The net production of N2O increased as soil moisture increased. The rate of NO production was greatest at the intermediate moistures investigated, between 14 and 19% gravimetric soil moisture, suggestive that nitrification is the dominant source of NO.  相似文献   

8.
Nitrogen monoxide production and consumption in an organic soil   总被引:2,自引:0,他引:2  
 Factors controlling NO production, consumption, and emission rates were examined in an organic soil. Emission rates were measured in the enclosed headspaces of intact soil cores under three fertilisation treatments (unfertilised or 100 kg N ha–1 as NH4Cl or as NaNO3), with and without the nitrification inhibitor C2H2 (20–70 μl l–1). Nitrification was always the main source of NO emitted across the soil surface, even when the soil was nearly saturated. Fertilisation of soil with NH4Cl increased NO emission both by stimulating NO production from nitrification, and by decreasing the NO consumption rate constant. Addition of NaNO3 also stimulated the production of NO and N2O during nitrification in aerobic soil slurry experiments. This effect was eliminated by adding C2H2 and was therefore not related to denitrification. In loose soil samples, the increase in NO-N production after NH4Cl addition represented as much as 26% of the added N. However, in intact cores, 95% of the NO produced through nitrification was oxidised within the soil column rather than emitted to the atmosphere. We concluded that nitrification is the primary NO source from this organic soil, that surface NO emissions are much lower than gross NO production rates, and that gaseous N oxide (NO and N2O) losses during nitrification can be affected by both soil NH4 + and NO3 . Received: 15 December 1998  相似文献   

9.
 Nitrification and denitrification are, like all biological processes, influenced by temperature. We investigated temperature effects on N trace gas turnover by nitrification and denitrification in two soils under two experimental conditions. In the first approach ("temperature shift experiment") soil samples were preincubated at 25  °C and then exposed to gradually increasing temperatures (starting at 4  °C and finishing at 40–45  °C). Under these conditions the immediate effect of temperature change was assessed. In the second approach ("discrete temperature experiment") the soil samples were preincubated at different temperatures (4–35  °C) for 5 days and then tested at the same temperatures. The different experimental conditions affected the results of the study. In the temperature shift experiment the NO release increased steadily with increasing temperature in both soils. In the discrete temperature experiment, however, the production rates of NO and N2O showed a minimum at intermediate temperatures (13–25  °C). In one of the soils (soil B9), the percent contribution of nitrification to NO production in the discrete temperature experiment reached a maximum (>95% contribution) at 25  °C. In the temperature shift experiment nitrification was always the dominant process for NO release and showed no systematic temperature dependency. In the second soil (soil B14), the percent contribution of nitrification to NO release decreased from 50 to 10% as the temperature was increased from 4  °C to 45  °C, but no differences were evident in the discrete temperature experiment. The N2O production rates were measured in the discrete temperature experiment only. The contribution of nitrification to N2O production in soil B9 was considerably higher at 25–35  °C (60–80% contribution) than at 4–13  °C (15–20% contribution). In soil B14 the contribution of nitrification to N2O production was lowest at 4  °C. The effects of temperature on N trace gas turnover differed between the two soils and incubation conditions. The experimental set-up allowed us to distinguish between immediate effects of short-term changes in temperature on the process rates, and longer-term effects by which preincubation at a particular temperature presumably resulted in the adaptation of the soil microorganisms to this temperature. Both types of effects were important in regulating the release of NO and N2O from soil. Received: 20 October 1998  相似文献   

10.
 In less populated rural areas constructed wetlands with a groundfilter made out of the local soil mixed with peat and planted with common reed (Phragmites australis) are increasingly used to purify waste water. Particularly in the rhizosphere of the reed, nitrification and denitrification processes take place varying locally and temporally, and the question arises to what extent this type of waste-water treatment plant may contribute to the release of N2O. In situ N2O measurements were carried out in the two reed beds of the Friedelhausen dairy farm, Hesse, Germany, irrigated with the waste water from a cheese dairy and 70 local inhabitants (12 m3 waste water or 6 kg BOD5 or 11 kg chemical O2 demand (CODMn) day–1). During November 1995 to March 1996, the release of N2O was measured weekly at 1 m distances using eight open chambers and molecular-sieve traps to collect and absorb the emitted N2O. Simultanously, the N2O trapped in the soil, the soil temperature, as well as the concentrations of NH4 +-N, NO3 -N, NO2 -N, water-soluble C and the pH were determined at depths of 0–20, 20–40 and 40–60 cm. In the waste water from the in- and outflow the concentrations of CODMn, BOD5, NH4 +-N, NO3 -N, NO2 -N, as well as the pH, were determined weekly. Highly varying amounts of N2O were emitted at all measuring dates during the winter. Even at soil temperatures of –1.5  °C in 10 cm depth of soil or 2  °C at a depth of 50 cm, N2O was released. The highest organic matter and N transformation rates were recorded in the upper 20 cm of soil and in the region closest to the outflow of the constructed wetland. Not until a freezing period of several weeks did the N2O emissions drop drastically. During the period of decreasing temperatures less NO3 -N was formed in the soil, but the NH4 +-N concentrations increased. On average the constructed wetlands of Friedelhausen emitted about 15 mg N2O-N inhabitant equivalent–1 day–1 during the winter period. Nitrification-denitrification processes rather than heterotrophic denitrification are assumed to be responsible for the N2O production. Received: 28 October 1998  相似文献   

11.
A field experiment was conducted to evaluate the combined or individual effects of biochar and nitrapyrin (a nitrification inhibitor) on N2O and NO emissions from a sandy loam soil cropped to maize. The study included nine treatments: addition of urea alone or combined with nitrapyrin to soils that had been amended with biochar at 0, 3, 6, and 12 t ha?1 in the preceding year, and a control without the addition of N fertilizer. Peaks in N2O and NO flux occurred simultaneously following fertilizer application and intense rainfall events, and the peak of NO flux was much higher than that of N2O following application of basal fertilizer. Mean emission ratios of NO/N2O ranged from 1.11 to 1.72, suggesting that N2O was primarily derived from nitrification. Cumulative N2O and NO emissions were 1.00 kg N2O-N ha?1 and 1.39 kg NO-N ha?1 in the N treatment, respectively, decreasing to 0.81–0.85 kg N2O-N ha?1 and 1.31–1.35 kg NO-N ha?1 in the biochar amended soils, respectively, while there was no significant difference among the treatments. NO emissions were significantly lower in the nitrapyrin treatments than in the N fertilization-alone treatments (P?<?0.05), but there was no effect on N2O emissions. Neither biochar nor nitrapyrin amendment affected maize yield or N uptake. Overall, our results showed that biochar amendment in the preceding year had little effect on N2O and NO emissions in the following year, while the nitrapyrin decreased NO, but not N2O emissions, probably due to suppression of denitrification caused by the low soil moisture content.  相似文献   

12.
An acid forest soil from beech forest gaps, which were either limed or unlimed, and the undisturbed forest was investigated for the type of nitrifying populations and the process of N2O evolution. To see whether nitrifiers were of heterotrophic or autotrophic origin, the nitrification inhibitors nitrapyrin and sodium chlorate were applied to disturbed soil samples which underwent laboratory incubations. Nitrapyrin inhibits autotrophic nitrification. In different studies, sodium chlorate has been identified as an inhibitor either of autotrophic or of heterotrophic nitrification. In the samples investigated only nitrapyrin inhibited the autotrophic nitrification occurring in the limed soil. Sodium chlorate effectively inhibited heterotrophic nitrification. In the limed forest floor samples, where most autotrophic nitrification occured, sodium chlorate showed no inhibitory effect. In another laboratory incubation experiment, N2O evolution from undisturbed soil columns, to which the above inhibitors were applied, was investigated. In those samples, in which nitrification had been reduced, neither inhibitor significantly reduced N2O evolution. Thus it was concluded that the contribution of nitrification to N2O losses is negligible, and that N2O evolution arises from the activity of denitrifying organisms. Microbial biomass and respiration measurements showed that the inhibitors did not affect microflora negatively.  相似文献   

13.
 Nitrous oxide (N2O) emissions via the nitrification (I nit) and denitrification (I den) pathways were successfully measured with in-field incubation of soil cores in preserving jars at 0 Pa and 5–10 Pa acetylene. From the incubations, fractions of nitrification – N2O over total N2O (I nit / I tot) – and denitrification – N2O over total N2O (I den / I tot) – were obtained. Actual field emissions of N2O via nitrification (F nit) and denitrification (F den) were calculated by multiplying the fractions from the incubation technique with the daily N2O emission (F day) determined with a direct soil cover method. The approach presented here was successful for a whole range of soil moisture conditions in intensive grassland. F nit and F den followed the trends of soil ammonium and soil nitrate. Received: 31 October 1997  相似文献   

14.
 The experiment, carried out on a forest and arable light-textured soil, was designed to study the temperature response of autotrophic and heterotrophic N2O production and investigate how the N2O flux relates to soil respiration and O2 consumption. Although N2O production seemed to be stimulated by a temperature increase in both soils, the relationship between production rate and temperature was different in the two soils. This seemed to depend on the different contribution of nitrification and denitrification to the overall N2O flux. In the forest soil, almost all N2O was derived from nitrification, and its production rate rose linearly from 2  °C to 40  °C. A stronger effect of temperature on N2O production was observed in the arable soil, apparently as a result of an incremental contribution of denitrification to the overall N2O flux with rising temperature. The soil respiration rate increased exponentially with temperature and was significantly correlated with N2O production. O2 consumption stimulated denitrification in both soils. In the arable soil, N2O and N2 production increased exponentially with decreasing O2 concentration, though N2O was the main gas produced at any temperature. In the forest soil, only the N2 flux was related exponentially to O2 consumption and it outweighed the rate of N2O production only at >34  °C. Thus, it appears that in the forest soil, where nitrification was the main source of N2O, temperature affected the N2O flux less dramatically than in the arable soil, where a temperature increase strongly stimulated N2O production by enhancing favourable conditions for denitrification. Received: 26 August 1998  相似文献   

15.
Nitrification inhibitors can effectively decrease nitrification rates and nitrous oxide(N2O)emission while increasing crop yield under certain conditions.However,there is no information available on the effects of nitrification inhibitors and tillage practices on N2O emissions from maize cropping in Iran.To study how tillage practices and nitrapyrin(a nitrification inhibitor)affect N2O emission,a split factorial experiment using a completely randomized block design with three replications was carried out in Northeast Iran,which has a cold semiarid climate.Two main plots were created with conventional tillage and minimum tillage levels,and two nitrogen(N)fertilizer(urea)management systems(with and without nitrapyrin application)were created as subplots.Tillage level did not have any significant effect on soil ammonium(NH4+)and nitrate(NO3-)concentrations,cumulative amount and yield-scaled N2O emission,and aboveground biomass of maize,whereas nitrapyrin application showed significant effect.Nitrapyrin application significantly reduced the cumulative amount of N2O emission by 41%and 32%in conventional tillage and minimum tillage practices,respectively.A reduction in soil NO3-concentration by nitrapyrin was also observed.The average yield-scaled N2O emission was 13.6 g N2O-N kg-1N uptake in both tillage systems without nitrapyrin application and was significantly reduced to 7.9 and 8.2 g N2O-N kg-1N uptake upon the application of nitrapyrin in minimum tillage and conventional tillage practices,respectively.Additionally,nitrapyrin application increased maize biomass yield by 4%and 13%in the minimum tillage and conventional tillage systems,respectively.Our results indicate that nitrapyrin has a potential role in reducing N2O emission from agricultural systems where urea fertilizers are broadcasted,which is common in Iran due to the practice of traditional farming.  相似文献   

16.
In the tropics,frequent nitrogen(N)fertilization of grazing areas can potentially increase nitrous oxide(N2O)emissions.The application of nitrification inhibitors has been reported as an effective management practice for potentially reducing N loss from the soil-plant system and improving N use efficiency(NUE).The aim of this study was to determine the effect of the co-application of nitrapyrin(a nitrification inhibitor,NI)and urea in a tropical Andosol on the behavior of N and the emissions of N2O from autotrophic and heterotrophic nitrification.A greenhouse experiment was performed using a soil(pH 5.9,organic matter content 78 g kg-1,and N 5.6 g kg-1)sown with Cynodon nlemfuensis at 60%water-filled pore space to quantify total N2O emissions,N2O derived from fertilizer,soil ammonium(NH4+)and nitrate(NO3-),and NUE.The study included treatments that received deionized water only(control,NI).No significant differences were observed in soil NH4+content between the UR and UR+NI treatments,probably because of soil mineralization and NO3-produced by heterotrophic nitrification,which is not effectively inhibited by nitrapyrin.After 56 d,N2O emissions in UR(0.51±0.12 mg N2O-N concluded that the soil organic N mineralization and heterotrophic nitrification are the main processes of NH4+and NO3-production.Additionally,it was found that N2O emissions were partially a consequence of the direct oxidation of the soil's organic N via heterotrophic nitrification coupled to denitrification.Finally,the results suggest that nitrapyrin would likely exert significant mitigation on N2O emissions only if a substantial N surplus exists in soils with high organic matter content.  相似文献   

17.
Eleven types of agricultural soils were collected from Chinese uplands and paddy fields to compare their N2O and NO production by nitrification under identical laboratory conditions. Before starting the assays, all air-dried soils were preincubated for 4 weeks at 25 °C and 40% WFPS (water-filled pore space). The nitrification activities of soils were determined by adding (NH4)2SO4 (200 mg N kg−1 soil) and incubating for 3 weeks at 25 °C and 60% WFPS. The net nitrification rates obtained fitted one of two types of models, depending on the soil pH: a zero-order reaction model for acidic soils and one neutral soil (Group 0); or a first-order reaction model for one neutral soil and alkaline soils (Group 1). The results suggest that pH is the most important factor in determining the kinetics of soil nitrification from ammonium. In the Group 1 soils, initial emissions (i.e. during the first week) of N2O and NO were 82.6 and 83.6%, respectively, of the total emissions during 3 weeks of incubation; in the Group 0 soils, initial emissions of N2O and NO were 54.7 and 59.9%, respectively, of the total emissions. The net nitrification rate in the first week and second-third weeks were highly correlated with the initial and subsequent emissions (i.e. during the second and third weeks), respectively, of N2O and NO. The average percentages of emitted (N2O+NO)-N relative to net nitrification N in initial and subsequent periods were 2.76 and 0.59 for Group 0, and 1.47 and 0.44 for the Group 1, respectively. The initial and subsequent emission ratios of NO/N2O from Group 0 (acidic) soils were 3.77 and 2.52 times, respectively, higher than those from Group 1 soils (P<0.05).  相似文献   

18.
 At two field sites representing northeastern German minerotrophic fens (Rhin-Havelluch, a shallow peat site; Gumnitz, a partially drained peat site) the influence of different factors (N fertilization, groundwater table, temperature) on N2O and CH4 emissions was investigated. The degraded fens were sources or sinks of the radiatively active trace gases investigated. The gas fluxes measured were much higher than those found in other terrestrical ecosystems such as forests. Lowering the groundwater table increased the release of N2O and the oxidation of CH4. High CH4 emission rates occurred when the groundwater tables and soil temperatures were high (>12  °C). N fertilization stimulated the release of N2O only when application rates were very high (480 kg N ha–1). A moderate N supply (60 or 120 kg N ha–1) hardly increased the release of N2O in spite of high soluble soil NO3 contents. Received: 31 October 1997  相似文献   

19.
Carbon (C) and Nitrogen dynamics and sources of nitrous oxide (N2O) production were investigated in a loamy soil amended with pig slurry. Pig slurry (40000kgha–1) or distilled H2O was applied to intact soil cores of the upper 5cm of a loamy soil which were incubated under aerobic conditions for 28 days at 25°C. Treatments were with or without acetylene (C2H2), which is assumed to inhibit the reduction of N2O to dinitrogen (N2), and with or without dicyandiamide (DCD), which is thought to inhibit nitrification. Volatilization of ammonia (NH3), pH, carbon dioxide (CO2) and N2O production, and ammonium (NH4 +) and nitrate NO3 ) concentrations were monitored. The pH of the pig slurry amended soil increased from an initial value of 7.1 to pH 8.3 within 3 days; it then decreased slowly but was still at a value of 7.4 after 28 days. Twenty percent of the NH4 + applied volatilized within 28 days. Sixty percent of the C applied in the pig slurry evolved as CO2, if no priming effect was assumed, but only 38% evolved when the soil was amended with DCD. Pig slurry significantly increased denitrification and the ratio between its gaseous products, N2O and N2, was 0.21. No significant increases in NO3 concentration occurred, and N2O produced through nitrification was 0.07mg N2O-N kg–1 day–1 or 33% of the total N2O produced. C2H2 was used as a C substrate by microorganisms and increased the production of N2O. Received: 12 May 1997  相似文献   

20.
Abstract

Two experiments were conducted to evaluate the inhibitory effects of 2-chloro-6 (trichloromethyl) pyridine (nitrapyrin) and dicyandiamide on nitrous oxide (N2O), a greenhouse gas, emission from soils amended with ammonium sulfate. In the two experiments, samples of an Andosol and a Gray Lowland soil were kept in glass vessels sealed with a butyl rubber cap and incubated at 25°C. In the first experiment, nitrapyrin (1 µg g?1 dry soil) and dicyandiamide (10 µg g?1 dry soil) were applied to samples of a water-saturated Andosol and a Gray Lowland soil to which ammonium sulfate had been applied at a rate of 0.1 mg N g?1 dry soil. Nitrapyrin decreased N2O emissions from the Andosol and the Gray Lowland soil by 71% and 24%, respectively. Dicyandiamide decreased N2O emissions from the Andosol and Gray Lowland soil by 31% and 18%, respectively. In the second experiment, nitrapyrin (1 µg g?1 dry soil) was applied to samples of an Andosol at 51% water-filled pore space to which ammonium sulfate had been applied at rates of 0.01, 0.1 and 0.5 mg N g?1 dry soil. Nitrapyrin decreased N2O emissions by 62%, 83% and 74%, respectively. Changes in the NH+ 4 and NO? 2 + NO? 3 concentrations in soil showed that nitrapyrin and dicyandiamide slowed down the nitrification process, but did not completely stop the process at any time. The results reveal the potential of nitrification inhibitors to decrease N2O emission from fertilized soil in a wide range of moisture conditions and nitrogen levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号