首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
基于最小二乘支持向量机的中国粮食产量预测模型研究   总被引:1,自引:0,他引:1  
粮食产量预测是制定农业政策的重要依据。针对农业生产系统的特征,在统计学习理论和结构风险最小化原理的基础上,建立了基于最小二乘支持向量机的时间预测模型。预测结果表明该模型具有较高的预测精度,为粮食产量预测提供了一条新的途径。  相似文献   

2.
基于支持向量机的干旱预测研究   总被引:1,自引:0,他引:1  
支持向量机(SVM)是基于统计学习理论的一种智能学习方法,可以用来解决样本空间的高度非线性的模式识别等问题。干旱是气候因子非线性复杂关系相互作用造成水分严重亏缺的一种气候异常反映,本文选择SVM方法,利用8月南方涛动指数、副高强度指数、极涡强度指数等15项因子,基于径向基核函数建立浙江省秋季的干旱预测模型,应用交叉验证方式确定最优模型参数,并进行了预测,对模型的检验结果表明,建立的干旱预测模型能直接对秋季干旱进行预测,并且有较高的准确率,可为气候预测从气候要素预测到气象灾害预测提供一种有效途径。  相似文献   

3.
基于支持向量机的滑坡灾害信息遥感图像提取研究   总被引:2,自引:0,他引:2  
傅文杰  洪金益 《水土保持研究》2006,13(4):120-121,124
阐述了基于支持向量机的滑坡灾害信息遥感图像提取的基本原理和方法,并结合实例说明了这种方法的有效性。通过研究,试图找到一种新的滑坡地质灾害信息提取方法,为滑坡地质灾害信息的快速提取、分析滑坡地质灾害发生的激发因素奠定基础。  相似文献   

4.
基于支持向量机的土壤湿度模拟及预测研究   总被引:5,自引:0,他引:5  
基于中山大学珠海校区气象观测站日平均风速、日平均气温、日平均空气湿度、日平均水汽压、日平均总辐射量、日平均地表温度、日平均降雨量、日平均蒸发量以及日平均10 cm、20 cm、30 cm土层土壤的含水量,利用支持向量机方法建立气象因子与土壤湿度统计关系,并以此为基础建立土壤湿度模拟与预测模型.结果表明,土壤湿度对气象因子有一定滞后相关性,不同土层土壤湿度对气象因子的滞后相关性不同.研究发现考虑滞后相关性的预测模型在精度上要高于不考虑滞后相关性的预测模型.此外,利用气象因子对地下10 cm的土壤湿度模拟与预测精度较高,而对地下20 cm、30 cm的土壤湿度模拟精度较低.利用地下10 cm与20 cm、20 cm与30 cm的土壤湿度相关性大的特点,可以考虑利用支持向量机方法以10 cm土壤湿度模拟与预测20 cm的土壤湿度,以20 cm的土壤湿度模拟与预测30 cm的土壤湿度,分析结果表明模拟精度较高.  相似文献   

5.
基于高光谱信息融合和相关向量机的种蛋无损检测   总被引:2,自引:3,他引:2  
为了尽可能早的检测出无精蛋和受精蛋,该文提出采用透射高光谱成像技术,融合图像和光谱信息,对其受精信息进行检测。利用高光谱图像系统采集孵化前种蛋在400~1 000 nm的高光谱图像,提取图像特征(长短轴之比、伸长度、圆度、蛋黄面积与整蛋面积之比);筛选出400~760 nm的波段,通过Normalize预处理结合相关系数法提取155个光谱特征变量;运用主成分分析法对图像和光谱的融合信息进行降维,采用相关向量机(relevance vector machine,RVM)分别建立基于图像、光谱和图像-光谱融合信息的受精蛋和无精蛋分类判别模型,并与支持向量机(support vector machine,SVM)模型进行比较,RVM模型检测正确率分别为90%,91%,96%;测试集检测时间分别为0.6619,1.0821,0.5016 s。SVM模型检测正确率分别为84%,90%,93%;测试集检测时间分别为5.9386,5.9886,5.6672 s。结果表明,基于图像-光谱融合所建立的模型优于单一信息的模型,在分类精度上,采用RVM分类精度高于SVM的分类精度;在分类时间上,RVM的分类时间比SVM短,因此,利用高光谱融合信息和相关向量机可以提高种蛋检测精度,研究结果为孵前无精蛋和受精蛋的在线实时检测提供参考。  相似文献   

6.
遥感技术在大尺度土壤盐渍化检测方面有着宏观性、实时性、动态性等优势和广阔的应用前景,但是传统的遥感图像分类方法精度不高、分类效率较低和不确定性.提出了基于支持向量机(SupportVectorMachine,SVM)的分类方法,介绍了SVM算法的基本原理,通过支持向量机分类法与传统分类方法(最大似然法和最小距离法)在盐渍化信息提取结果上进行对比,表明基于SVM的遥感图像分类方法能够较好的检测土壤的盐渍化信息,分类总精度达到95.66%,比最大似然法和最小距离法分类精度(分别为91.54%和85.42%)更高,因此更适合于遥感图像分类和盐渍化信息检测.  相似文献   

7.
为了提高股票价格预测精度,提出一种改进支持向量机的股票价格预测模型。该模型利用粒子群算法的全局寻优能力对支持向量机参数进行优化,以提高股票价格的预测精度,采用具体股票价格数据对模型性能进行测试。结果表明,改进支持向量机能够对股票价变化趋势进行预测,是一种有效、高精度的股票价格预测模型。  相似文献   

8.
基于相关向量机的冬小麦蚜虫遥感预测   总被引:3,自引:3,他引:3  
蚜虫的流行严重影响了冬小麦的产量。区域尺度上及时准确的预报冬小麦蚜害发生范围能为蚜害的有效预防提供基础信息,从而降低冬小麦产量的损失。该研究利用多时相的环境星CCD光学数据和IRS热红外数据,分别提取了冬小麦的长势因子,比值植被指数(ratio vegetation index,RVI)和归一化植被指数(normalized difference vegetation index,NDVI),以及生境因子,地表温度(land surface temperature,LST)和垂直干旱指数(perpendicular drought index,PDI),利用相关向量机(relevance vector machine,RVM)、支持向量机(support vector machine,SVM)和逻辑回归(logistic regression,LR)方法建立了北京郊区冬小麦灌浆期蚜虫发生预测模型,并对比分析了3种模型预测精度。试验结果表明,RVM总体预测精度达到87.5%,优于SVM的79.2%和LR的75.0%。另外,RVM模型计算量较小,相比于SVM和LR模型,其预测时间可分别缩短7倍和60倍。较高预测精度和较小计算量的特性扩大了RVM在实际中的应用价值。  相似文献   

9.
基于废气成分分析和支持向量机的发动机故障诊断   总被引:1,自引:0,他引:1  
为了实现发动机故障的快速实时诊断,提出了一种基于废气成分分析和支持向量机的发动机故障诊断方法。该方法首先运用NHA500废气分析仪采集发动机典型故障状态下的HC、CO、CO2、O2、NOX等废气参数值,接着对采集到的数据进行规范化处理,提取特征向量作为学习样本,然后用于设计训练基于支持向量机的多元分类器,进行故障类型识别。试验结果表明,采用纠错编码的支持向量机分类方法比神经网络具有更好的抗干扰性和更强的分类能力,在小样本的情况下故障诊断正确率达98.5%,能有效描述废气成分变化和故障状态之间的复杂关系。  相似文献   

10.
基于支持向量机的土壤水力学参数预测   总被引:5,自引:6,他引:5  
为了分析支持向量机在土壤水力学参数预测方面的效果,应用支持向量机构建用于预测土壤水力学参数的土壤传递函数,以土壤粒径分布、容重、有机质含量等土壤理化性质为输入项,分别预测土壤饱和导水率、饱和含水率、残余含水率,以及van Genuchten公式参数的对数形式。结果表明预测值和实测值不存在显著性差异,用支持向量机预测土壤水力学参数是可行的。不同输入项处理的预测分析表明,输入项为粒径分布、粒径分布和容重、粒径分布和有机质含量3种情况的预测效果差异不明显,而输入项为粒径分布、容重和有机质含量时预测效果优于前3种情况。支持向量机在预测土壤水力学参数方面的效果要优于多元线性逐步回归模型,而与BP神经网络模型相比不具有明显好的预测效果。  相似文献   

11.
支持向量机在植物病斑形状识别中的应用研究   总被引:9,自引:1,他引:9  
植物病斑形状识别属于小样本问题。提出了一种新的模式识别方法—支持向量机方法在处理小样本问题时具有很好的学习能力和推广性。该文讨论了支持向量机分类方法应用于植物病斑形状识别。对番茄植物病斑形状识别试验的分析表明,支持向量机分类方法适合于植物病斑复杂形状的分类问题,该方法在训练样本较少时具有良好的分类能力和泛化能力。不同分类核函数的相互比较分析表明,线性核函数最适合于植物病斑的形状识别。  相似文献   

12.
[目的]探讨复合式组合预测模型对滑坡两变形时间序列的预测效果,为滑坡的变形预测提供一种新的思路。[方法]基于支持向量机和BP神经网络,构建滑坡位移序列和速率序列的复合式预测模型,首先,对滑坡环境因素进行分析,提取其基本信息;其次,利用2种预测方法构建回归结构预测模型和多因素预测模型,并对两时间序列进行一重预测;最后,利用BP神经网络对一重预测结果进行了二重组合优化。[结果]滑坡库水位与滑坡两变形序列均具有较大的相关性,滑坡的稳定性很大程度上会出现周期性疲劳减弱的可能,且通过对滑坡变形的复合式预测。[结论]该方法的相对预测误差均较小,很大程度上提高了滑坡变形的预测精度和稳定性,证明了该预测模型的有效性。  相似文献   

13.
基于最小二乘向量机土壤水分动态模拟与分析   总被引:2,自引:0,他引:2  
土壤水分动态的模拟对水分循环与农业生产中水分的合理利用与管理具有重要的意义.应用最小二乘支持向量机对加入气象因子随机变量的红壤中土壤水分动态变化进行了训练、检验及模拟.结果表明,最小二乘支持向量机相比与神经网络方法不论是模拟性能指标还是建模的数学意义都有更好的可靠性和优越性;本研究应用最小二乘支持向量机对土壤水分动态日变化进行了模拟,并采用bior 3.3小波函数5层分解提取日变化趋势图进而把该研究区土壤水分日变化划分为4个阶段,其结果可为研究区水分合理利用和土壤墒情的预测预报提供科学依据.  相似文献   

14.
多分类支持向量机在泥石流危险性区划中的应用   总被引:3,自引:0,他引:3  
以凉山州安宁河流域129个乡镇的泥石流危险性区划资料为依据,随机选取总样本数的2/3和1/2作为训练样本,建立不同数量训练样本下安宁河流域泥石流危险性区划的多分类SVM模型,进行以乡镇为单元的区域泥石流危险性评价研究。评价结果表明,SVM模型的预测精度随着训练样本数量的增加而提高;2个SVM模型对测试样本的预测准确率均高于相应的BP神经网络模型,对训练样本的回判准确率高于或接近于BP神经网络模型。因此,支持向量机方法是一种比神经网络方法具有更优精度和更强泛化性能的新机器学习方法,在泥石流危险性评价实践中具有十分广阔的应用前景和推广应用价值。  相似文献   

15.
田烨  沈润平  丁国香 《土壤》2015,47(3):602-607
研究利用土壤样本实验反射光谱,分析了土壤镁(Mg)含量与土壤反射光谱的关系,比较了主成分回归分析(PCR)、偏最小二乘回归分析(PLSR)和支持向量机回归分析(SVMR)等方法,以及土壤反射光谱及其变换光谱与土壤Mg含量之间的估算模型,为土壤Mg含量高光谱估算提供依据。结果表明:PCR、PLSR、SVMR 3种建模方法在Mg含量的估算中,SVMR的估算精度相对较高,估算精度平均达到80.96%,分别比PCR和PLSR提高了6.16%、4.20%;对于不同的数学变换处理方法,一阶微分变换相对较好,估算精度平均为80.76%,分别比反射率、倒数对数变换提高了4.95%、4.61%。因此,运用土壤反射光谱一阶微分变换的SVMR进行建模,可以相对较好地估算全Mg含量,精度达84.04%。  相似文献   

16.
基于支持向量机的典型冻土区土壤制图研究   总被引:6,自引:0,他引:6  
基于青藏高原大片连续多年冻土分布的东部边缘,青海省兴海县温泉地区的野外调查数据,通过对研究区遥感数据的分析,开展了土壤制图方法的探讨。以成土因素学说和土壤-景观模型理论为基础,筛选土壤分类潜在变量,在不同的变量组合下运用支持向量机(SVM)的方法建立土壤-景观模型,对整个研究区进行预测性分类。为了更好地检验该方法的有效性,采用五折交叉方式进行结果的验证。并通过对比不同变量组合的交叉验证结果和分布模拟结果图,确定了适合典型冻土区土壤分类的环境变量组合,以较少的样本知识较好地预测该区土壤类型的空间分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号