首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fragrant screwpine fiber reinforced unsaturated polyester composites (FSFRUPC) were subjected to water immersion tests in order to examine the effect of water absorption on the mechanical properties. FSFRUP composite specimen containing 30 % fiber volume fraction with fiber length of 3 mm and 9 mm was considered in this study. Water absorption test was performed by immersing specimen in sea, distilled and well water at room temperature under different time durations (24, 48, 72, 96, 120, 144, 168, 192, 216, 240 hours). The tensile, flexural and impact properties of the water absorption specimen were appraised and compared with those of the dry composite specimen as per the ASTM standard. The tensile, flexural and impact properties of FSFRUPC specimen were found to decrease with the increase in the percentage of moisture uptake. The percentage of moisture uptake of composite was reduced after alkali treatment with 3 % NaoH for 3 hours. In moisture absorption test, the lowest diffusion coefficient, D (6.62513×10-13 m2/s) and swelling rate parameter, K sr (6.341×10-3 h-1) were obtained through the specimen immersed in sea water. The chemical composition, elemental composition of fiber and surface morphology of the FSFRUPC were analysed by using Fourier transform infrared spectroscopy (FTIR), Energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM) respectively.  相似文献   

2.
Sugar palm fiber is one of the most abundant natural fibers used in biocomposites. However, prediction of the mechanical properties of such natural fiber reinforced composites is still challenging. Most of the theoretical modelings are based the micromechanical method. There have been little studies involving statistical approach for prediction of mechanical properties of natural fiber reinforced composites. In this study, the tensile properties of short sugar palm fiber-reinforced high impact polystyrene (SPF-HIPS) composites obtained by means of statistical approach were investigated and compared with the experimental observations and with micromechanical models available in the literature. Statistical approach was used to predict the performance of the composite part with different fiber loadings. A two-parameter Weibull distribution function was used to model the fiber length distribution in the composite. For the experimental validation, the composites were prepared by hot compression technique for different fiber loadings (10 %, 20 %, 30 %, 40 % and 50 % by weight). Tensile testing of the composites was carried out according to ASTM D638 to obtain the composites tensile strength and modulus of elasticity. Experimental results showed that the tensile strength of the composite reduced due to the addition of sugar palm fibers, whereas the elastic modulus increased by a factor of up to 1.34. The current statistical model predicted the tensile properties of SPF-HIPS composite close to the experimental values. It was found that statistical approach with standard micromechanical models can be used to predict the mechanical properties of sugar palm fiber reinforced HIPS composites. Hence, this study could assist in decisions regarding the design of natural fiber reinforced composite products.  相似文献   

3.
This paper presents the results of a current study on polypropylene matrix composites processed by injection, with two different glass fiber lengths and five different volume fractions. Physical and mechanical properties were obtained, namely flexural strength, stiffness modulus and fracture toughness. The mechanical properties of the composites increased significantly with the increase of the fibers volume fraction in agreement with the Counto model. The effect of water immersion time was also analysed. Immersion in water promotes a marked decrease in mechanical properties in the early seven-ten days, and afterwards tends to stabilize. Water causes a decrease of the relative strength which increases with fiber volume fraction and reaches about 29 % and 32 % for 20 % of 4.5 mm fiber length and for 25 % of 12 mm fiber length respectively, after 28 days immersion in water. Fracture toughness increases with fiber volume fraction and is always higher for 12 mm fiber length composites than for 4.5 mm fiber length composites.  相似文献   

4.
Chemical treatment is an often-followed route to improve the physical and mechanical properties of natural fiber reinforced polymer matrix composites. In this study, the effect of chemical treatment on physical and mechanical properties of jute fiber reinforced polypropylene (PP) biocomposites with different fiber loading (5, 10, 15, and 20 wt%) were investigated. Before being manufactured jute fiber/PP composite, raw jute fiber was chemically treated with succinic anhydride for the chemical reaction with cellulose hydroxyl group of fiber and to increase adhesion and compatibility to the polymer matrix. Jute fiber/PP composites were fabricated using high voltage hot compression technique. Fourier Transform Infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) tests were employed to evaluate the morphological properties of composite. Succinic anhydride underwent a chemical reaction with raw jute fiber which was confirmed through FTIR results. SEM micrographs of the fractured surface area were taken to study the fiber/matrix interface adhesion and compatibility. Reduced fiber agglomeration and improved interfacial bonding was observed under SEM in the case of treated jute fiber/PP composites. The mechanical properties of jute/PP composite in terms of Tensile strength and Young’s modulus was found to be increased with fiber loading up to 15 wt% and decreased at 20 wt%. Conversely, flexural strength and flexural modulus increased with fiber loading up to 10 wt% and start decreasing at 15 wt%. The treated jute/PP composite samples had higher hardness (Rockwell) and lower water absorption value compared to that of the untreated ones.  相似文献   

5.
Enhancement of the mechanical and vibrational properties of glass/polyester composites was aimed via matrix modification technique. To achieve this, unsaturated polyester was modified by incorporation of oligomeric siloxane in the concentration range of 1–3 wt%. Modified matrix composites reinforced with woven roving glass fabric were compared with untreated glass/polyester in terms of mechanical and interlaminar properties by conducting tensile, flexure, and short-beam shear tests. It was found that after incorporation of 3 % oligomeric siloxane into the polyester matrix, the tensile, flexural, and interlaminar shear strength (ILSS) values of the resulting composite increased by 16, 15, and 75 %, respectively. The increases in ILSS as well as in tensile and flexural properties were considered to be an indication of better fiber/matrix interaction as confirmed by SEM fractography images. Furthermore, the effect of oligomeric siloxane incorporation on the vibrational properties of the composites was investigated by experimental modal testing and the natural frequencies of the composites were found to increase with increasing siloxane concentration.  相似文献   

6.
Present research investigates the mechanical properties of jute-coir fiber reinforced hybrid polypropylene (PP) composite with fiber loading variation and observes the effect of chemical treatment of fiber on property enhancement of the composites. Composites were manufactured using hot press machine at four levels of fiber loading (5, 10, 15 and 20 wt%). Fiber ratio’s were varied (jute:coir=1:1, 3:1 and 1:3) for 20 % fiber loaded composites. Both jute and coir fiber was treated using 5 % and 10 % NaOH solutions. Composites were also prepared using treated fiber with jute-coir fiber ratio of 3:1. Tensile, flexural, impact and hardness tests and Fourier transform infrared spectroscopic analysis were conducted for characterization of the composites. Tensile test of composite showed a decreasing trend of tensile strength and increasing trend of the Young’s modulus with increase in fiber loading. During flexural, impact and hardness tests, the flexural strength, flexural modulus, impact strength and hardness values were found to be increased with increase in fiber loading. All these properties enhanced with the enhancement of jute content except impact strength. 5 % NaOH treatment provided an improving trend of properties whereas, 10 % NaOH treatment showed the reverse one. The FTIR analysis of the composites indicated decrease of hemicelluloses and lignin content with alkali treatment.  相似文献   

7.
The bleached jute fabric (BJF) reinforced polypropylene (PP) composites with various contents of acrylic acid (AA)-treated BJF and un-AA-treated BJF were fabricated by compression moulding method at 190 °C. The AA-grafted BJF reinforced PP composites were then irradiated by γ-ray at various doses. The mechanical properties of neat PP (N-P), ungrafted-BJF and PP composites (UG-BJFPC), AA-grafted-BJF and PP composites (AA-BJFPC) and γ-ray cum AA-grafted-BJF and PP composites (γAA-BJFPC) show maximum tensile strength (TS) of 30, 46, 47 and 51 MPa, maximum flexural strength (FS) of 34, 49, 50 and 54 MPa and maximum Young’s modulus (E) of 280, 428, 436, and 680 MPa, respectively. The increase of TS, FS and E from UG-BJFPC are 2 %, 2 %, and 2 % for AA-BJFPC and 11 %, 10 % and 59 % for γAA-BJFPC. The TS, FS and E are found to increase with radiation dose up to 500Krad and then decrease. The water absorption (WA) for UG-BJFPC, AA-BJFPC and γAA-BJFPC is respectively about 14, 10 and 9 %, indicating a gradual development of hydrophobic character of the composites first by AA-treatment and then by γ-ray-treatment. AA treatment on jute fabric and gamma irradiation on composite result in significant change of morphology of the jute fabric composites surface and better mechanical bonding between fabric and polymer matrix, as a result improved mechanical properties are found.  相似文献   

8.
This study developed a novel PHB-lignin-jute biodegradable composite with preferable mechanical properties and low water absorption. The appearances of fracture surface of composites were analyzed by scanning electron microscope. The result suggested a Gaussian-like distribution of the size particles supporting the presence of lignin with a radius smaller than 0.5 μm. According to X-ray diffraction, the presence of lignin and jute fibers was decreased the crystallization of PHB. Moreover, the glass transition temperature of PHB increased, and the endotherm during glass transition was decreased. The maximum tensile strength and modulus of composites were obtained with 30 wt% jute fiber contents and 4 wt% lignin contents. The presence of jute fibers was largely increased the water absorption of composites. However, the presence of lignin was effectively decreased the water absorption of composites at saturation levels.  相似文献   

9.
Fully biodegradable and environment-friendly green composite specimens were made using ramie fibers and soy protein concentrate (SPC) resin. SPC was used as continuous phase resin in green composites. The SPC resin was plasticized with glycerin. Precuring and curing processes for the resin were optimized to obtain required mechanical properties. Unidirectional green composites were prepared by combining 65 % (on weight basis) ramie fibers and SPC resin. The tensile strength and Young’s modulus of these composites were significantly higher compared to those of pure SPC resin. Tensile and flexural properties of the composite in the longitudinal direction were moderate and found to be significantly higher than those of three common wood varieties. In the transverse direction, however, their properties were comparable with those of wood specimens. Scanning electron microscope (SEM) micrographs of the tensile fracture surfaces of the green composite indicated good interfacial bonding between ramie fibers and SPC resin. Theoretical values for tensile strength and Young’s modulus, calculated using simple rule of mixture were higher than the experimentally obtained values. The main reasons for this discrepancy are loss of fiber alignment, voids and fiber compression due to resin shrinking during curing.  相似文献   

10.
Kenaf/empty fruit bunch/polylactic acid (kenaf/EFB/PLA) hybrid biocomposites were prepared using hot press technique. The ratio of fiber to polylactic acid was set at 60:40 with 1:1 ratio between kenaf and empty fruit bunch fibers. Physical, mechanical and thermal properties of hybrid biocomposites were subsequently characterized using Fourier transform infrared spectroscopy, scanning electron microscope, X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, tensile and water absorption tests. Test results indicated that mechanically stronger fiber was able to support the weaker fiber. Hybrid fiber biocomposite had higher crystallinity as compared to single fiber biocomposite. Water absorption of hybrid composite was higher as compared to single fiber composite. Thermal result revealed that hybridization of fiber was not significantly influence the thermal properties of composites. However, the presence of two different fibers proposed good wettability properties, which could reduce the formation of voids at the fibers-polymer interface and produce composites with high stiffness and strength.  相似文献   

11.
The chemical and morphological properties of ramie fibers treated by chemical surface modification were examined with Fourier transform infrared (FT-IR) spectroscopy. The mechanical and thermal decomposition properties were evaluated with respect to tensile strength, tensile modulus and thermogravimetric analysis (TGA). Surface morphological changes were investigated with scanning electron microscopy (SEM). Finally, the capabilities of composites reinforced with various chemically treated fibers were analyzed by investigating tensile and impact strengths. Additionally, the thermal mechanical properties of the composites were investigated with thermal mechanical analysis (TMA). Based on the results of these analyses, we concluded that pectin, lignin and hemicellulose were removed and thermal stability was increased with chemical treatments. The composites reinforced with ramie fiber showed better properties compared with pure PLA matrix with respect to tensile and impact strengths. The peroxide-treated fiber composite had the smallest thermal expansion.  相似文献   

12.
Composites were prepared with 13, 23 30 and 40 % fiber and evaluated the mechanical performance in tensile, flexural and impact. The mechanical properties of these composites were also evaluated function of time at 110 °C thermal exposure. Caroa fibers were characterized by techniques such as thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the best mechanical properties were achieved for composites containing 23 to 30 % fiber. The incorporation of 23 % fiber caroa increased both the modulus of elasticity in the tensile test as the flexural strength and impact, the composite with 30 % fiber caroa showed higher tensile strength. The results show that the tensile and flexural strength of the composite decreased with time of thermal exposure. The thermal aging at 110 °C caused a decrease in tensile properties of the composites.  相似文献   

13.
In this study, physical, mechanical, and flammability properties of coconut fiber reinforced polypropylene (PP) composite panels were evaluated. Four levels of the coir fiber content (40, 50, 60, and 70 % based on the composition by weight) were mixed with the PP powder and a coupling agent, 3 wt % maleic anhydride grafted PP (MAPP) powder. The water resistance and the internal bond strength of the composites were negatively influenced by increasing coir fiber content. However, the flexural strength, the tensile strength, and the hardness of the composites improved with increasing the coir fiber content up to 60 wt %. The flame retardancy of the composites improved with increasing coir fiber content. The results suggest that an optimal composite panel formulation for automotive interior applications is a mixture of 60 wt % coir fiber, 37 wt % PP powder, and 3 wt % MAPP.  相似文献   

14.
The influence of the surface treatments on the performance of the hemp/PP (polypropylene) composite was investigated. The composites were prepared from the fiber modified by the alkalis and the oil under various conditions. The mechanical properties of the composites were measured using the tensile test, and the service time of the composite was assessed under accelerated condition by the stepped isothermal method. The alkaline treatment removed the lignin successfully and resulted in better fibrillation. The oil treatment improved the mechanical properties of the composites and extended the service life time of the composites.  相似文献   

15.
This work aims to predict the mechanical properties of woven jute/banana hybrid composite. Woven fabrics are arranged in three layers of different sequence. Resin used in this work is Epoxy LY556 with hardener HY951. Composite specimen are prepared by hand-layup techniques. The effect of layering sequence on the mechanical properties namely tensile, flexural and impact was analysed. It is found that the tensile and flexural strength of hybrid composite (Banana/Jute/Banana) is higher than that of individual composites. Similarly, the impact strength of Jute/Banana/Jute hybrid composite is better than other types of composite. It is found that the moisture absorption of woven banana fiber composite is lesser than the hybrid composite. Fractography study of the fractured specimen is carried out using scanning electron microscope to analyse the fracture behaviour of the hybrid composite.  相似文献   

16.
Composites based on pure Basalt and Basalt/Jute fabrics were fabricated. The mechanical properties of the composites such as flexural modulus, tensile modulus and impact strength were measured depending upon weave, fiber contents and resin. Dynamic mechanical analysis of all composites were done. From the results it is found that pure basalt fiber combination maintains higher values in all mechanical tests. Thermo-gravimetric (TG/DTG) composites showed that thermal degradation temperatures of composites shifted to higher temperature regions compared to pure jute fabrics. Addition of basalt fiber improved the thermal stability of the composite considerably. Scanning electron microscopic images of tensile fractured composite samples illustrated that better fiber-matrix interfacial interaction occurred in hybrid composites. The thermal conductivity of composites are also investigated and thermal model is used to check their correlation.  相似文献   

17.
Jute fabric reinforced polypropylene composites were fabricated by compression molding technique. Fiber content in the composites was optimized at 45 % by weight of fiber by evaluating the mechanical parameters such as tensile strength, tensile modulus, bending strength, bending modulus. Surface treatment of jute fabrics was carried out by mercerizing jute fabrics with aqueous solutions of NaOH (5, 10 and 20 %) at different soaking times (30, 60 and 90 mins) and temperatures (0, 30 and 70 °C). The effect of mercerization on weight and dimension of jute fabrics was studied. Mechanical properties of mercerized jute-PP composites were measured and found highest at 20 % NaOH at 0 °C for 60 min soaking time. Thermal analytical data from thermogravimetric and differential thermal analysis showed that mercerized jute-PP composite achieved higher thermal stability compared to PP, jute fabrics and control composite. Degradation characteristics of the composites were studied in soil, water and simulated weathering conditions. Water uptake of the composites was also investigated.  相似文献   

18.
Denim, a twilled cotton fabric, was used to enhance the mechanical and thermal properties of poly(lactic acid) (PLA). The denim fabric reinforced composites with different numbers of denim layers were fabricated by using a hand layup method. The impact, tensile, and dynamic mechanical properties of the composites were observed with increasing denim layers to examine the reinforcing effect of denim fabrics. Numerical analysis was carried out to model the elastic modulus of the composite by using a commercial software. Three-dimensional geometry of the denim fabric reinforced PLA composite was generated through a CAD program, and the elastic modulus was calculated by applying uniform deformation on one surface. The impact strength, tensile strength, and thermal properties of the composites were improved by piling denim fabrics. The denim fabric reinforced composites exhibited outstanding impact strength due to the retarded crack propagation as well as large energy dissipation. The 3 layer denim reinforced composite showed best results among all specimens, and its impact strength, tensile strength, and tensile modulus were measured to be 82 J/m, 75.76 MPa, and 4.65 GPa, respectively. The PLA/denim composites have good mechanical properties and can substitute traditional composites such as glass fiber or carbon fiber reinforced composites.  相似文献   

19.
Unsaturated polyester (UP) resin has been blended with phenolic resin (PF) resole type at various ratios to obtain a homogeneous blend with improved flame resistance compared to its parent polymers. The polymer blend was reinforced with 20 wt% kenaf using hand lay out technique. Fourier transform infrared spectroscopy (FT-IR) was used to characterize changes in the chemical structure of the synthesized composites. The thermal properties of the composites were investigated using thermogravimetric analysis (TGA). The thermal stability of UP/PF kenaf composites co-varies with the PF content, as shown by the degradation temperature at 50 % weight loss. The char yield of the composites increases linearly with PF content as shown by the TGA results. The flammability properties of the composites were determined using the limiting oxygen index (LOI) and UL-94 fire tests. The LOI increased with the PF content while the composites exhibit improved flame retardancy as demonstrated by UL-94 test. The mechanical and morphological properties of the composites were determined by tensile test and scanning electron microscopy (SEM), respectively. The tensile strength and the Young’s modulus of the blend/composites slightly decreased with increasing PF content albeit higher than PF/kenaf fiber composites.  相似文献   

20.
In this research, reinforcing effect of hybrid filler including rice husk (RH), beech bark (BB) and nano-SiO2, in polypropylene has been investigated. In the sample preparation, four levels of filler loading were used for waste lignocellulosic materials (55-58 wt.%) and nano-SiO2 (0-4 wt.%). In order to increase the interphase adhesion, polypropylene grafted with maleic anhydride was added as a coupling agent to all the composites studied. The physical properties, viz. the thickness swelling and water absorption, and mechanical properties, namely, the tensile, flexural and notched Izod impact strengths, of the composites were determined. Generally, high amount of filler content in composites can lead to the reduction of interfacial adhesion between matrix polymer and filler, and it limits their applications. The results showed that while flexural properties and elongation at break were moderately improved by the increase in the amount of filler in the matrix, tensile and Izod impact strengths decreased dramatically. However, the composites had acceptable mechanical strength levels. The mechanical properties of composites filled with RH are generally greater than BB composites. The thickness swelling and water absorption of the composites increased with the increase in the filler loading, but to a negligible extent as compared with the wood-based composites and the solid woods. Nano-SiO2 addition showed little positive effect on the mechanical properties. It can be concluded from this study that the used waste lignocellulosic materials are attractive reinforcements from the standpoint of their physico-mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号