首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We examined patterns of abundance, age and spawning date distributions of Atlantic menhaden Brevoortia tyrannus larvae immigrating during two seasons through three North Carolina inlets—Oregon, Ocracoke and Beaufort—to elucidate their spawning and transport dynamics. These patterns were examined in conjunction with corresponding predictions from a three-dimensional, wind-and tide-driven hydrodynamic model. Larvae immigrating through different inlets showed consistent similarities as well as marked differences in temporal patterns of abundance, spawning dates and transport times. Intraseasonal patterns in abundance and spawning date distributions among inlets suggest that, in both study years, the spatio-temporal dynamics of menhaden immigration were driven by large-scale patterns along the Atlantic coast, rather than by localized variation in spawning activity. Interannual differences in the temporal patterns of spawning dates and larval immigration indicate interannual differences in transport dynamics and/or the spatial-temporal distribution of spawning. When the spawning locations predicted by the hydrodynamic model are interpreted in conjunction with advanced very high resolution radiometer sea-surface temperature information, the results are consistent with the limited historical information available on spatio-temporal distribution of Atlantic menhaden eggs and larvae. The transport model also predicted distributions of arrival times for immigrating larvae that were comparable in range and variability with observed patterns. Our use of data from immigrating larvae, coupled with a hydrodynamic transport model and sea-surface temperatures, allowed us to uncover relationships between spatio-temporal patterns of Atlantic menhaden spawning and transport dynamics that could not have been identified by either approach alone.  相似文献   

2.
The harvest of bay scallops (Argopecten irradians) from Buzzards Bay, Massachusetts, U.S.A. undergoes large interannual fluctuations, varying by more than an order of magnitude in successive years. To investigate the extent to which these fluctuations may be due to yearly variations in the transport of scallop larvae from spawning areas to suitable juvenile habitat (settlement zones), a high‐resolution hydrodynamic model was used to drive an individual‐based model of scallop larval transport. Model results revealed that scallop spawning in Buzzards Bay occurs during a time when nearshore bay currents were principally directed up‐bay in response to a persistent southwesterly sea breeze. This nearshore flow results in the substantial transport of larvae from lower‐bay spawning areas to settlement zones further up‐bay. Averaged over the entire bay, the spawning‐to‐settlement zone connectivity exhibits little interannual variation. However, connectivities between individual spawning and settlement zones vary by up to an order of magnitude. The model results identified spawning areas that have the greatest probability of transporting larvae to juvenile habitat. Because managers may aim to increase scallop populations either locally or broadly, the high‐connectivity spawning areas were divided into: (i) high larval retention and relatively little larval transport to adjoining settlement areas, (ii) both significant larval retention and transport to more distant settlement areas, and (iii) little larval retention but significant transport to distant settlement areas.  相似文献   

3.
Patterns in larval transport of coastal species have important implications for species connectivity, conservation, and fisheries, especially in the vicinity of a strengthening boundary current. An Ocean General Circulation Model for the Earth Simulator particle tracking model was used to assess the potential dispersal of Eastern King Prawn (EKP) larvae Melicertus (Penaeus) plebejus, an important commercial and recreational species in Eastern Australia. Particles were exposed to a constant natural mortality rate, and temperature‐dependent growth (degree‐days) was used to determine the time of settlement. Forward and backward simulations were used to identify the extent of larval dispersal from key source locations, and to determine the putative spawning regions for four settlement sites. The mean dispersal distance for larvae was extensive (~750–1,000 km before settlement), yet the northern spawning locations were unlikely to contribute larvae to the most southern extent of the EKP range. There was generally great offshore dispersal of larvae, with only 2%–5% of larvae on the continental shelf at the time of settlement. Our particle tracking results were combined with existing site‐specific reproductive potentials to identify the relative contributions of larvae from key source locations. Although mid‐latitude sites had only moderate reproductive potential, they delivered the most particles to the southern coast and are probably the most important sources of larval EKP for the two southern estuaries. Our modelling suggests that mesoscale oceanography is a strong determinant of recruitment success of the EKP, and highlights the importance of both larval dispersal and reproductive potential for understanding connectivity across a species’ range.  相似文献   

4.
Multiyear periods of relatively cold temperatures (2007–2013) and warm temperatures (2001–2005 and 2014–2018) altered the eastern Bering Sea ecosystem, affecting ocean currents and wind patterns, plankton community, and spatial distribution of fishes. Yellowfin sole Limanda aspera larvae were collected from the inner domain (≤50 m depth) of the eastern Bering Sea among four warm years (2002, 2004, 2005, 2016), an average year (2006), and three cold years (2007, 2010, 2012). Spatial distribution and density of larvae among those years was analyzed using generalized additive models that included timing of sea-ice retreat, areal coverage of water ≤0°C, and water temperature as covariates. Analyses indicated a combination of temperature effects on the location and timing of spawning, and on egg and larval survival, may explain the variation in larval density and distribution among years. During warm years, higher density and wider spatial distribution of larvae may be due to earlier spawning, an expansion of the spawning area, and higher egg and larvae survival due to favorable temperatures. Larval distribution contracted shoreward, and density was lower during cold conditions and was likely due to fish spawning closer to shore to remain in preferred temperatures, later spawning, and increased mortality. Predicted drift trajectories from spawning areas showed that larvae would reach nursery grounds in most years. Years when the drift period was longer than the pelagic phase of the larvae occurred during both warm and cold conditions indicating that settlement outside of nursery areas could happen during either temperature condition.  相似文献   

5.
Life cycle closure for species inhabiting areas with daily varying currents but directed net water transport requires specific behavior to minimize losses due to advection of passive drifting life stages. Variations in swimming activity of different‐sized Crangon crangon (15–65 mm total length) were therefore monitored under constant laboratory conditions immediately after being caught in the German Wadden Sea. Activity of shrimps of different sizes, caught at different seasons, always peaked at times corresponding with ebb tide in the habitat from where they were taken. This behavior was maintained for several days if no external stimuli were present but shifted to night activity if a light–dark cycle was provided. The observed behavior/activity pattern was included in a coupled hydrodynamic and individual‐based model (IBM) and the shift in the location of a shrimp cohort was monitored over time. Performance of ebb tide activity not only allowed the shrimps to reach the preferred deeper winter and spawning areas but also allowed them to migrate against the dominating current from eastern nurseries to more western located spawning areas. Passively drifting larvae released at these locations and later larval and juvenile stages that perform flood tide transport can reach the nurseries again. This links the nurseries and adult spawning grounds and closes the migration triangle.  相似文献   

6.
Walleye pollock Theragra chalcogramma (pollock hereafter) is a key ecological and economic species in the eastern Bering Sea, yet detailed synthesis of the spatial and temporal patterns of pollock ichthyoplankton in this important region is lacking. This knowledge gap is particularly severe considering that egg and larval distribution are essential to reconstructing spawning locations and early life stages drift pathways. We used 19 yr of ichthyoplankton collections to determine the spatial and temporal patterns of egg and larval distribution. Generalized additive models (GAMs) identified two primary temporal pulses of pollock eggs, the first occurring from 20 February to 31 March and the second from 20 April to 20 May; larvae showed similar, but slightly lagged, pulses. Based on generalized cross‐validation and information theory, a GAM model that allowed for different seasonal patterns in egg density within three unique areas outperformed a GAM that assumed a single fixed seasonal pattern across the entire eastern Bering Sea. This ‘area‐dependent’ GAM predicted the highest densities of eggs (i.e., potential spawning locations) in three major areas of the eastern Bering Sea: near Bogoslof Island (February–April), north of Unimak Island and the Alaska Peninsula (March–April), and around the Pribilof Islands (April–August). Unique temporal patterns of egg density were observed for each area, suggesting that pollock spawning may be more spatially and temporally complex than previously assumed. Moreover, this work provides a valuable baseline of pollock spawning to which future changes, such as those resulting from climate variability, may be compared.  相似文献   

7.
In order to investigate the larval population structure, specimens of Engraulis encrasicolus larvae from five different locations in the Strait of Sicily were analyzed by means of otolith readings, morphometric and genetic techniques. The distribution of age in day, identified by means of the otolith readings and associated with the oceanographic parameters, was useful to identify possible spawning areas and transport dynamics. The presence of more than one spawning area suggested the possibility that two or more sub‐populations may co‐exist in the study area. The morphometric characteristics were more adequate than genetic parameters to discriminate the different larval groups. The most relevant variables for the separation were the mouth length (ML) and the body diameter (BD). The population structure by means of genetic data reported the presence of two phylogroups co‐occurring among samples in each sampling locations specimens. The pattern of genetic divergence among anchovy larvae in the Strait of Sicily was congruent with previous studies conducted on adult populations present in other Mediterranean areas with different molecular markers. The habitat‐specific nature of the morphological variation and the lack of corresponding genetic variation among larvae from the different locations suggested that the observed differences in morphology could be linked to environmental parameters. The body form differences among different larvae samples could reflect the nutritional status of larvae. In fact, these differences were found among anchovy larvae collected in areas with different oxygen and fluorescence, which is an index of primary productivity and is linked to the availability of food for anchovy larvae.  相似文献   

8.
Transport of larvae by ocean currents is an important dispersal mechanism for many species. The timing and location of spawning can have a large influence on settlement location. Shifts in the known spawning habitat of fish, whether due to climate or the discovery of new spawning stock, can influence the distribution of juveniles and our understanding of connectivity. The globally distributed species; Pomatomus saltatrix, is one such example where a previously unrecognised summer spawning event and a more southern latitudinal extent was recently reported for the southwest Pacific population. Although restrictions are in place to protect the traditional spawning event, the importance of the newly recognised summer spawning event is uncertain. Here, we investigate larval dispersal of P. saltatrix using particle tracking simulations to identify the contributions of the different spawning events to settlement. By modelling dispersal of larvae released in northern and mid‐latitude regions over the Austral spring and summer, we show that the newly recognised mid‐latitude summer spawning event contributes over 50% of the larvae reaching southern latitudes. This is due to a reduced (1–2 days) pelagic larval duration (associated with temperature), resulting in reduced larval mortality, and the seasonal (summer) strengthening of the East Australian Current (EAC) transporting particles ~50 km further south. These findings demonstrate that in dynamic boundary current systems such as the EAC, the final settlement location of larvae that are transported by ocean currents can vary considerably depending on the timing and location of spawning and that multiple spawning events are important for maximum dispersal.  相似文献   

9.
Data from stock assessment surveys, published research and climate sensors were linked to model the interaction between fishing, physical‐oceanographic processes and spatial patterns of larval settlement for western king prawn [Penaeus (Melicertus) latisulcatus]. This information was used to evaluate the trade‐off between larval recruitment and catch during fishing periods that demand high prices but coincide with spawning. Total rates of larval settlement were maximized when tidal currents and atmospheric physical‐forcing components were coupled with simulations of larval swimming behaviour under average gulf temperatures. Average gulf temperatures sustained longer larval durations and increased larval settlement rates by over 12% compared with warmer gulf conditions simulated under a scenario of global warming. Reproductive data coupled with outputs from the biophysical model identified consistent inter‐annual patterns in the areas contributing to larval settlement success. Areas located in the north‐east, and central‐west of the fishery, consistently contributed to over 40% of all larvae reaching a settlement in each year. Harvest sensitivity analyses indicated that changes in the spatial patterns of pre‐Christmas fishing could lead to improvements in overall rates of the larval settlement while maintaining or improving the levels of catch. Future studies to refine the model inputs relating to physical processes, larval behaviour and mortality rates for P. latisulcatus coupled with surveys of juvenile prawn abundance to ground truth the modelled predictions, would allow stock recruitment relationships to be more closely examined and inform adaptive management of the fishery in the future.  相似文献   

10.
We applied a physiological individual‐based model for the foraging and growth of cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) larvae, using observed temperature and prey fields data from the Irish Sea, collected during the 2006 spawning season. We used the model to estimate larval growth and survival and explore the different productivities of the cod and haddock stocks encountered in the Irish Sea. The larvae of both species showed similar responses to changes in environmental conditions (temperature, wind, prey availability, daylight hours) and better survival was predicted in the western Irish Sea, covering the spawning ground for haddock and about half of that for cod. Larval growth was predicted to be mostly prey‐limited, but exploration of stock recruitment data suggests that other factors are important to ensure successful recruitment. We suggest that the presence of a cyclonic gyre in the western Irish Sea, influencing the retention and/or dispersal of larvae from their spawning grounds, and the increasing abundance of clupeids adding predatory pressure on the eggs and larvae; both may play a key role. These two processes deserve more attention if we want to understand the mechanisms behind the recruitment of cod and haddock in the Irish Sea. For the ecosystem‐based management approach, there is a need to achieve a greater understanding of the interactions between species on the scale a fish stock is managed, and to work toward integrated fisheries management in particular when considering the effects of advection from spawning grounds and prey–predator reversal on the recovery of depleted stocks.  相似文献   

11.
We investigate interannual variations in dispersion for the drift and retention of cod eggs and larvae on the Newfoundland Shelf using a two-dimensional Lagrangian tracking model. The velocity field for the drift model is obtained from a diagnostic calculation of objectively analysed density data. Time-dependent currents are generated using an inertial-current slab model driven by observed winds. Eggs and larvae are treated as passive drifters seeded in a dispersion model of the Newfoundland Shelf region. We identify favourable and unfavourable zones of retention on the Newfoundland Shelf. We show that northerly, shelf-break spawning locations are more favourable than southerly shelf-break spawning locations for northern cod, ( Gudus morhua , in NAFO divisions 2J3KL).  相似文献   

12.
A growth and survival model of the early life stages was run along virtual drift trajectories tracked in a hydrodynamic model to simulate the annual recruitment process of anchovy (Engraulis encrasicolus) in the Bay of Biscay (NE Atlantic). These biophysical simulations concerning three different years were analysed in order to investigate the influence of environment and spawning dynamics on the survival of larvae and juveniles. The location of space–time survival windows suggested major environmental mechanisms involved in simulated recruitment variability at the different scales – retention of larvae and juveniles in favourable habitats over the shelf margins and turbulence effects. These small‐scale and meso‐scale mechanisms were related to the variations in wind direction and intensity during spring and summer. Survival was also variable according to the origin of the drift trajectories, that is spawning distribution in space and time. The observed spawning distribution (according to field surveys) was compared with the spawning distribution that would maximize survival (according to the biophysical model) on a seasonal scale, which revealed factors not considered in the biophysical model (e.g. spawning behaviour of the different age classes). The variation of simulated survival according to spawning distribution was examined on a multi‐annual scale and showed a coherent pattern with past and present stock structures. The interaction processes between the population (influence on spawning) and its environment (influence on survival) and its implications on recruitment and stock dynamics are discussed.  相似文献   

13.
Many demersal marine fish species depend on a dispersive larval stage that connects geographically discrete sub‐populations. Understanding connectivity between these sub‐populations is necessary to determine stock structure, which identifies the appropriate spatial scale for fishery management. Such connectivity is poorly understood for King George whiting (Sillaginodes punctatus; Perciformes) in South Australia's gulf system, even though spawning grounds and nursery areas are adequately defined. In response to declines in commercial catches and estimated biomass, this study aimed to determine the most important spawning grounds and nursery areas to recruitment, and the connectivity between them. A biophysical model was seeded with particles according to the distribution and density of eggs throughout the spawning area in 2017 and 2018. Despite inter‐annual differences in the origins of particles, dispersal pathways and predicted settlement areas remained consistent between years. Predicted settlement was generally highest to nursery areas only short distances from regional spawning grounds, consistent with previous hydrodynamic models. However, the model also predicted that spawning in one region could contribute to recruitment in an adjacent region later in the spawning season, which aligned with the breakdown of thermohaline fronts at the entrance of each gulf. The connectivity between spawning grounds and nursery areas predicted by the model is supported by spatio‐temporal patterns in the otolith chemistry of pre‐flexion larvae and settled juveniles. Consequently, the most parsimonious explanation is that the populations of King George whiting in South Australia's gulf system constitute a single, panmictic stock, which has implications for fishery management.  相似文献   

14.
Since there have been practically no surveys of the eggs of Pacific saury (Cololabis saira) in the western North Pacific (WNP), its spawning ground (SG) distribution has been poorly resolved, based mainly on the larval distribution. This means of estimating SG distribution is imprecise because saury eggs drift for more than a week before they hatch, in a region with intense western boundary currents and their extensions. To improve our understanding of the immature saury, a large number of larvae (body length <25 mm) collected in the WNP during 1993–96 were numerically backtracked to take into account the advection by geostrophic and wind‐forced Ekman currents, and the SG locations and ambient sea surface temperatures (SSTs) for the eggs and larvae on the backtracking trajectories were estimated. The resulting seasonal distributions of SGs indicated that both the locations and the intensities of spawning change from season to season. Moreover, the ambient SSTs for eggs just after fertilization ranged from a high of around 21.5°C in early autumn (September to October) to a low of around 15.0°C in late spring (May to June) with an intermediate of around 20.0°C in winter (January to February). The ambient SSTs showed seasonally different gradients while the individuals developed from eggs to early larvae: the SSTs decreased throughout the autumn (September to December), stayed rather constant in winter (January to February), and increased throughout the spring (March to June). The ambient SSTs for the early larvae were at around 19.0°C in autumn and winter (September to February) and around 16.5°C throughout the spring (March to June).  相似文献   

15.
The present study explores the settlement and recruitment capacity of Mytilus galloprovincialis L. on artificial collectors in the Ría de Ares‐Betanzos (Galicia, NW Spain) in 2004 and 2005 following standard industrial techniques. Three locations in the ría (Arnela, Redes and Miranda) were selected to investigate larvae settlement after the main spawning event (July 2004/2005). Assessment of the recruitment capacity was performed in autumn (September 2004/2005) when mussel seed is usually gathered from the collector ropes and introduced into industrial cultivation at low densities. For both years, the highest settlement densities were recorded at the most seaward location, Miranda. Differences in settlement densities between locations are discussed in terms of the water circulation regime in the ría and the local hydrographic conditions. In 2004, statistical differences in post‐settlement mortality resulted in similar recruitment densities at Arnela and Miranda, which were higher than at Redes. In 2005, recruitment densities in Redes and Arnela could not be assessed because predators (Spondyliosoma cantharus L.) eliminated the settled population at these locations. Site‐specific differences in recruitment density may be attributed to the environmental limitations of each location as well as intra‐specific competition.  相似文献   

16.
Cod stocks in the North Sea, including the Kattegat and the Skagerrak, have declined dramatically since the 1970s. Occasionally there is a high recruitment of juveniles in Kattegat/Skagerrak, without leading to the rebuilding of adult cod stocks despite reduced fishing mortality. In a biophysical model of egg and larval drift, we examined the potential importance of extant and historical spawning grounds for recruitment of cod in the Kattegat/Skagerrak seas using data of spawning stock biomass from the 1970s and from today's reduced stocks. The results suggest that Kattegat in the 1970s relied on largely locally retained (83%) larvae with little annual variation in recruitment. Kattegat also provided a substantial proportion of larvae recruiting in Swedish Skagerrak (72%). This is in contrast to present conditions where the Kattegat spawning stock has been reduced by 94%, and Kattegat only provides 34% of locally retained larvae and 30% to Swedish Skagerrak. Instead, the protected area in the Öresund and the Belt Sea are expected today to provide most larvae recruiting in Kattegat. Also, the inflow of larvae from the North Sea to Skagerrak and Kattegat can be significant although highly variable between years, with a positive correlation to the North‐Atlantic Oscillation index (NAO). The rebuilding of healthy spawning areas in the Kattegat may be key for restoring local cod stocks in both Kattegat and along the Skagerrak coast. This poses a management challenge if cod with local ‘Kattegat’ adaptations, e.g., in terms of egg density and migration patterns, are lost or reduced to non‐resilient densities.  相似文献   

17.
We have numerically modeled the advection and diffusion of sardine eggs and larvae to investigate the larval transport processes of Japanese sardine from the spawning grounds by the Kuroshio.
The results indicated that the offshore drift current induced by the winter monsoon and the location of the spawning ground have significant effects on the survival of the Japanese sardine. The contribution of the drift current, the distance of the spawning ground from the Kuroshio axis, and the eddy diffusivity to the larval retention in the coastal area is approximately expressed by the following equation: where R is the retention rate in the coastal area, a the variance of initial distribution of eggs, T the time after the eggs were spawned, – V0 the velocity of the wind-induced offshore current, y0 the distance of the center of the spawning area from the Kuroshio axis, and K the coefficient of horizontal eddy diffusivity.
The year-to-year variation in larval survival rates stimulated by the two-dimensional model are consistent with those estimated previously by using field data of egg and larval abundance during 1978–1988.  相似文献   

18.
European sardine (Sardina pilchardus) and round sardinella (Sardinella aurita) comprise two‐thirds of total landings of small pelagic fishes in the Canary Current Eastern Boundary Ecosystem (CCEBE). Their spawning habitat is the continental shelf where upwelling is responsible for high productivity. While upwelling intensity is predicted to change through ocean warming, the effects of upwelling intensity on larval fish habitat expansion is not well understood. Larval habitat characteristics of both species were investigated during different upwelling intensity regimes. Three surveys were carried out to sample fish larvae during cold (permanent upwelling) and warm (low upwelling) seasons along the southern coastal upwelling area of the CCEBE (13°–22.5°N). Sardina pilchardus larvae were observed in areas of strong upwelling during both seasons. Larval habitat expansion was restricted from 22.5°N to 17.5°N during cold seasons and to 22.5°N during the warm season. Sardinella aurita larvae were observed from 13°N to 15°N during cold seasons and 16–21°N in the warm season under low upwelling conditions. Generalized additive models predicted upwelling intensity driven larval fish abundance patterns. Observations and modeling revealed species‐specific spawning times and locations, that resulted in a niche partitioning allowing species' co‐existence. Alterations in upwelling intensity may have drastic effects on the spawning behavior, larval survival, and probably recruitment success of a species. The results enable insights into the spawning behavior of major small pelagic fish species in the CCEBE. Understanding biological responses to physical variability are essential in managing marine resources under changing climate conditions.  相似文献   

19.
The seasonal and geographical patterns of spawning for Georges Bank cod ( Gadus morhua ) and haddock ( Melanogrammus aeglefinus ) are estimated using composite distributions of stage I eggs derived from the Marine Resources Monitoring, Assessment and Prediction (MARMAP) data set (1977–1987). The inferred mean spawning locations are compared with patterns in particle residence times derived from a three-dimensional prognostic circulation model that estimates the tidal and seasonal mean circulation. The comparisons indicate that cod and haddock spawning occurs at times and locations characterized by model residence times in excess of 35 d. The results are discussed in the context of fish population regulation theory, particularly the member/vagrant hypothesis and the concept of abundance-dependent vagrancy.  相似文献   

20.
The sustainable use of marine resources requires understanding the surrounding ecosystem and elucidating mechanisms of variation. However, we still lack a comprehensive understanding of environmental variation in the spawning and nursery grounds of important fisheries species Japanese sardine (Sardinops melanostictus) and mackerels (Scomber japonicus and Scomber australasicus) in the northwest Pacific. Here, we investigate detailed physical, chemical, and biological environment variations in the spawning and nursery grounds along the Kuroshio and Kuroshio Extension area from intensive investigation in spawning season (April) of 2013. We found similar water mass property and copepod community in the egg‐rich Kuroshio area and the larvae‐rich downstream Kuroshio Extension area, indicating environmental variability is small during transportation and development processes. The egg‐rich northern Izu Islands region showed high copepod abundance, although low nutrient and chlorophyll concentrations were observed. Eggs were scarce or absent in the second survey 10 days after abundant eggs were observed in the region, along with differences in water property and copepod community. This indicates that not only the location but also the specific water characteristic and copepod community are a determining factor for spawning. Indicator communities of copepod found in our study (indicator community of transportation process from spawning ground, of non‐spawning ground, and of reproductive area in the Kuroshio Extension area) would be a key factor for recruitment prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号