首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pre‐medicant chosen may influence the ease with which gastroduodenoscopy (GD) is performed. The purpose of this study was to evaluate the relative ease of GD in cats under ketamine and isoflurane anesthesia after IM injection of hydromorphone (H, 0.1 mg kg?1), hydromorphone plus glycopyrrolate (HG, 0.1 mg kg?1 (H), 0.01 mg kg?1 (G)), medetomidine (M, 0.03 mg kg?1), or butorphanol (B, 0.4 mg kg?1). Eight cats were assigned randomly to receive each treatment in a cross‐over design with at least 7 days between treatments. Twenty minutes after pre‐medication, medetomidine produced greater (p = 0.001) sedation than the other treatments when assessed, using a subjective ordinal scale. The cats were injected with ketamine (10 mg kg?1 IM), orotracheally intubated, connected to a pediatric circle breathing system, and allowed to spontaneously breathe isoflurane in oxygen. Once end‐tidal isoflurane concentration was stable at 1.4% for 15 minutes, endoscopy was started. A single endoscopist (REG), who was unaware of the treatment used, performed all endoscopies. The endoscopist scored the difficulty of endoscopy subjectively (0–3). The significance of differences between treatments was evaluated using Friedman's test. Time for entering the stomach was 9.4 (4.7–15.9) (median (minimum–maximum)), 6.6 (5.2–11.7), 8.4 (6.3–16.5), and 7.7 (5.1–14.7) seconds and for entering the duodenum from the stomach was 20.5 (13.8–40.9), 18.2 (10.3–39.8), 20.2 (16.2–119.5), and 22.2 (11.8–83.8) seconds for H, HG, M, and B treatments, respectively. There were no significant differences in the time for, or difficulty of, endoscopy. We conclude that any of these drugs can be used satisfactorily at the doses and combinations tested to pre‐medicate cats prior to general anesthesia for GD.  相似文献   

2.
To determine if the preanesthetic administration of ephedrine would prevent anesthesia-induced hypotension in dogs and cats, 10 cats were anesthetized with acepromazine, butorphanol, ketamine, and isoflurane, and 8 dogs were anesthetized with acepromazine, morphine, propofol, and halothane. Cats received ephedrine or saline 10 minutes after premedication. Dogs received ephedrine or saline at the time of premedication. Systolic arterial blood pressure, respiratory rate, heart rate, end-tidal CO2, O2 saturation, cardiac rhythm, and rectal temperature were recorded.  相似文献   

3.
OBJECTIVE: To determine effects of low doses of medetomidine administered with and without butorphanol and glycopyrrolate to middle-aged and old dogs. DESIGN: Prospective randomized clinical trial. ANIMALS: 88 healthy dogs > or = 5 years old. PROCEDURE: Dogs were assigned randomly to receive medetomidine (2, 5, or 10 micrograms/kg [0.9, 2.3, or 4.6 micrograms/lb] of body weight, i.m.) alone or with glycopyrrolate (0.01 mg/kg [0.005 mg/lb], s.c.), medetomidine (10 micrograms/kg) and butorphanol (0.2 mg/kg [0.1 mg/lb], i.m.), or medetomidine (10 micrograms/kg), butorphanol (0.2 mg/kg), and glycopyrrolate (0.01 mg/kg). Anesthesia was induced with thiopental sodium and maintained with isoflurane. Degree of sedation and analgesia were determined before and after medetomidine administration. Respiratory rate, heart rate, and mean arterial blood pressure were determined 10 and 30 minutes after medetomidine administration. Adverse effects and amounts of thiopental and isoflurane used were recorded. RESULTS: Sedation increased after medetomidine administration in 79 of 88 dogs, but decreased in 7 dogs that received 2 or 5 micrograms of medetomidine/kg. Mean postsedation analgesia score and amounts of thiopental and isoflurane used were less in dogs that received medetomidine and butorphanol, compared with other groups. Respiratory rate, heart rate, and blood pressure were not different among groups. Significantly more adverse effects developed in dogs that did not receive glycopyrrolate. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of medetomidine (10 micrograms/kg, i.m.) and butorphanol (0.2 mg/kg, i.m.) induced sedation and analgesia and reduced amounts of thiopental and isoflurane required for anesthesia in middle-aged and old dogs. Glycopyrrolate decreased frequency of medetomidine-associated adverse effects.  相似文献   

4.
OBJECTIVE: To determine sedative and cardiorespiratory effects of dexmedetomidine alone and in combination with butorphanol or ketamine in cats. DESIGN: Randomized crossover study. ANIMALS: 6 healthy adult cats. PROCEDURES: Cats were given dexmedetomidine alone (10 microg/kg [4.5 mg/lb], IM), a combination of dexmedetomidine (10 microg/kg, IM) and butorphanol (0.2 mg/kg [0.09 mg/lb], IM), or a combination of dexmedetomidine (10 microg/kg, IM) and ketamine (5 mg/kg [2.3 mg/lb], IM). Treatments were administered in random order, with > or = 1 week between treatments. Physiologic variables were assessed before and after drug administration. Time to lateral recumbency, duration of lateral recumbency, time to sternal recumbency, time to recovery from sedation, and subjective evaluation of sedation, muscle relaxation, and auditory response were assessed. RESULTS: Each treatment resulted in adequate sedation; time to lateral recumbency, duration of lateral recumbency, and time to recovery from sedation were similar among treatments. Time to sternal recumbency was significantly greater after administration of dexmedetomidine-ketamine. Heart rate decreased significantly after each treatment; however, the decrease was more pronounced after administration of dexmedetomidine-butorphanol, compared with that following the other treatments. Systolic and diastolic blood pressure measurements decreased significantly from baseline with all treatments; 50 minutes after drug administration, mean blood pressure differed significantly from baseline only when cats received dexmedetomidine and butorphanol. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that in cats, administration of dexmedetomidine combined with butorphanol or ketamine resulted in more adequate sedation, without clinically important cardiovascular effects, than was achieved with dexmedetomidine alone.  相似文献   

5.
OBJECTIVE: To evaluate the cardiovascular effects of the alpha2-adrenergic receptor agonist medetomidine hydrochloride in clinically normal cats. ANIMALS: 7 clinically normal cats. PROCEDURE: Cats were anesthetized with isoflurane, and thermodilution catheters were placed for measurement of central venous, pulmonary, and pulmonary capillary wedge pressures and for determination of cardiac output. The dorsal pedal artery was catheterized for measurement of arterial blood pressures and blood gas tensions. Baseline variables were recorded, and medetomidine (20 microg/kg of body weight, IM) was administered. Hemodynamic measurements were repeated 15 and 30 minutes after medetomidine administration. RESULTS: Heart rate, cardiac index, stroke index, rate-pressure product, and right and left ventricular stroke work index significantly decreased from baseline after medetomidine administration, whereas systemic vascular resistance and central venous pressure increased. However, systolic, mean, and diastolic arterial pressures as well as arterial pH, and oxygen and carbon dioxide tensions were not significantly different from baseline values. CONCLUSIONS AND CLINICAL RELEVANCE: When administered alone to clinically normal cats, medetomidine (20 microg/kg, IM) induced a significant decrease in cardiac output, stroke volume, and heart rate. Arterial blood pressures did not increase, which may reflect a predominant central alpha2-adrenergic effect over peripheral vascular effects.  相似文献   

6.
OBJECTIVE: To compare efficacy of 3 regimens of orally administered sedatives and determine physiologic effects of 1 of these regimens in healthy cats. DESIGN: Prospective randomized study. ANIMALS: 34 cats. PROCEDURE: Cats were assigned to 1 of 3 groups that were treated by oral administration of detomidine and ketamine, xylazine and ketamine, or medetomidine and ketamine. Cats were monitored for degree of sedation at 5-minute intervals for 60 minutes. Physiologic effects in cats treated with detomidine and ketamine were measured at 5-minute intervals for 30 minutes and compared with effects in cats treated i.m. with detomidine and ketamine or xylazine and ketamine. RESULTS: All cats treated orally with detomidine and ketamine became laterally recumbent; sedation was more variable in the other 2 groups treated orally. Vomiting and excessive salivation were the only adverse effects. Bradycardia (heart rate < 145 beats/min) was detected at each evaluation time in cats treated orally with detomidine and ketamine and in all cats treated i.m. Minimal differences among groups were detected for heart and respiratory rates, rectal temperature, and hemoglobin oxygen saturation. CONCLUSIONS AND CLINICAL RELEVANCE: Oral administration of detomidine and ketamine is an effective method of sedating healthy cats and induces minimal physiologic effects that are similar to those resulting from i.m. administration of sedatives.  相似文献   

7.
OBJECTIVE: To examine stress-related neurohormonal and metabolic effects of butorphanol, fentanyl, and ketamine administration alone and in combination with medetomidine in dogs. ANIMALS: 10 Beagles. PROCEDURE: 5 dogs received either butorphanol (0.1 mg/kg), fentanyl (0.01 mg/kg), or ketamine (10 mg/kg) IM in a crossover design. Another 5 dogs received either medetomidine (0.02 mg/kg) and butorphanol (0.1 mg/kg), medetomidine and fentanyl (0.01 mg/kg), medetomidine and ketamine (10 mg/kg), or medetomidine and saline (0.9% NaCI) solution (0.1 mL/kg) in a similar design. Blood samples were obtained for 6 hours following the treatments. Norepinephrine, epinephrine, cortisol, glucose, insulin, and nonesterified fatty acid concentrations were determined in plasma. RESULTS: Administration of butorphanol, fentanyl, and ketamine caused neurohormonal and metabolic changes similar to stress, including increased plasma epinephrine, cortisol, and glucose concentrations. The hyperglycemic effect of butorphanol was not significant. Ketamine caused increased norepinephrine concentration. Epinephrine concentration was correlated with glucose concentration in the butorphanol and fentanyl groups but not in the ketamine groups, suggesting an important difference between the mechanisms of the hyperglycemic effects of these drugs. Medetomidine prevented most of these effects except for hyperglycemia. Plasma glucose concentrations were lower in the combined sedation groups than in the medetomidine-saline solution group. CONCLUSIONS AND CLINICAL RELEVANCE: Opioids or ketamine used alone may cause changes in stress-related biochemical variables in plasma. Medetomidine prevented or blunted these changes. Combined sedation provided better hormonal and metabolic stability than either component alone. We recommend using medetomidine-butorphanol or medetomidine-ketamine combinations for sedation or anesthesia of systemically healthy dogs.  相似文献   

8.
The cardiopulmonary effects of capnoperitoneum were investigated in 8 spontaneously breathing, young adult female cats undergoing laparoscopic pancreatic biopsy (intra-abdominal pressure 12 mmHg). Cats were premedicated with acepromazine and hydromorphone, induced with ketamine and diazepam, and maintained using an end-tidal isoflurane concentration of 1.13% in 100% oxygen. Direct systemic arterial blood pressure, heart and respiratory rates, end-tidal carbon dioxide (CO(2)), and isoflurane were recorded every 5 min before insufflation (baseline), during insufflation of the abdomen with CO(2), and following desufflation. Arterial blood samples were drawn at baseline, at 10 and 30 min of insufflation, and 5 min after desufflation for blood gases. The significant findings (P < 0.05) were as follows: insufflation produced an increase in heart rate (5 to 15 min and at 30 min), mean arterial blood pressure (25 to 30 min), and diastolic arterial blood pressure (10 to 30 min). After desufflation, respiratory rate increased for 15 min. The changes were within physiologically acceptable limits in these healthy, anesthetized cats despite no artificial maintenance of minute ventilation.  相似文献   

9.
OBJECTIVE: To investigate heart rate characteristics in dogs undergoing ovariohysterectomy following premedication with medetomidine or acepromazine. DESIGN: Clinical trial. ANIMALS: 43 client-owned dogs. PROCEDURE: 24-hour ambulatory electrocardiography was performed beginning approximately 1 hour prior to administration of premedications. Dogs were premedicated with medetomidine and butorphanol (n = 21) or acepromazine and butorphanol (22) and, approximately 85 minutes later, were anesthetized with propofol and isoflurane. Electrocardiographic recordings were examined to determine heart rate, cardiac conduction disturbances (ventricular premature complexes and atrioventricular block), and indices of heart rate variability (HRV). RESULTS: Minimum heart rate during the 24-hour recording period was significantly lower among dogs given medetomidine than among dogs given acepromazine, but during the postoperative period, heart rate increased in all dogs as they became physically active. Intraoperative time domain HRV indices were lower and the low frequency-to-high frequency ratio was higher among dogs given acepromazine than among dogs given medetomidine; however, significant differences between groups were no longer seen by 6 hours after surgery. There was no significant difference between groups with regard to the number of ventricular premature complexes or to values of scaling exponent alpha2 (a nonlinear measure of HRV). CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that there are greater enhancements in vagally related heart rate indices in medetomidine-treated dogs that may persist until 6 hours after surgery. Despite the low heart rates, dogs given medetomidine showed expected responses to surgery and positional stimuli, and the 2 preanesthetic protocols may not result in different prevalences of ventricular premature complexes.  相似文献   

10.
OBJECTIVE: To assess whether administration of hydromorphone and, or ketamine are associated with post-anesthetic hyperthermia in cats undergoing routine surgery. STUDY DESIGN: Prospective clinical study. ANIMALS: Forty healthy, adult cats undergoing ovariohysterectomy (OVH), castration, or declaw surgery. MATERIALS AND METHODS: Each cat was assigned randomly to one of four groups (n = 10). For pre-anesthetic medication, all cats received subcutaneous (SC) glycopyrrolate (0.01 mg kg(-1)) and acepromazine (0.02 mg kg(-1)) and either hydromorphone (0.1 mg kg(-1) SC) or medetomidine (7.5 microg kg(-1) SC). Anesthesia was induced with either diazepam (0.1 mg kg(-1)) and ketamine (5 mg kg(-1)) or propofol (6 mg kg(-1) injected to effect). Group 1 (HDK) received hydromorphone and diazepam-ketamine. Group 2 (HP) received hydromorphone and propofol. Group 3 (MDK) received medetomidine and diazepam-ketamine. Group 4 (MP) received medetomidine and propofol. Rectal temperature was measured before drugs were given, at tracheal extubation and at hourly intervals for 5 hours thereafter. RESULTS: During the 5 hours after anesthesia and surgery, at least one cat in every group had a rectal temperature >39.2 degrees C (102.5 degrees F). The percentage of observations for which a cat's temperature exceeded its pre-anesthetic temperature in groups HDK, HP, MDK, and MP were 86%, 80%, 25%, and 34%, respectively. Maximum temperatures in groups HDK, HP, MDK, and MP were 41.6 degrees C (107.0 degrees F), 40.3 degrees C (104.2 degrees F), 39.2 degrees C (102.6 degrees F), and 40.1 degrees C (104.1 degrees F), respectively. By 5 hours after tracheal extubation there were no differences in temperature between the treatment groups. CONCLUSION: For up to 5 hours following anesthesia and surgery, cats might have body temperatures that exceed their pre-anesthesia body temperatures. The use of hydromorphone is associated with post-anesthetic hyperthermia. However, hyperthermia may occur when other drugs are used. CLINICAL RELEVANCE: Cats given hydromorphone should be closely monitored for hyperthermia following anesthesia and surgery.  相似文献   

11.
Objective   To describe and evaluate the use of Alfaxan-CD ® as an intravenous anaesthetic in young cats.
Design   Thirty-five Domestic Short-hair cats aged from 3 to 12 months were admitted into the University Veterinary Teaching Hospital-Sydney for elective surgery. Anaesthesia was induced with Alfaxan-CD® and maintained with isoflurane: 22 cats received no premedication and 13 cats received acepromazine (0.03 mg/kg) and butorphanol (0.3 mg/kg) subcutaneously 30 min prior to induction.
Qualitative and quantitative data for induction and recovery were recorded. Physiological parameters were recorded at 0, 2 and 5 min post induction, and every 5 min thereafter until the end of the procedure.
Results   Intravenous injection of Alfaxan-CD® resulted in rapid induction of anaesthesia with a mean time to intubation of 122 s. The mean dose of Alfaxan-CD® used was 4.2 mg/kg in unpremedicated cats and 2.7 mg/kg in premedicated cats. All cats maintained a heart rate above 95 beats/min. No cat developed hypoxaemia. Hypercapnoea was detected in 4 cats and hypotension was observed in 18 cats. Time to extubation ranged from 1 to 9 min. The mean time to sternal recumbency for premedicated cats was 11 min; 77% of premedicated cats and 23% of unpremedicated cats had a recovery score of 1 or 2.
Conclusion   Alfaxan-CD® is an effective anaesthetic agent in young healthy cats, providing a smooth induction and rapid recovery. Cats that were premedicated with acepromazine and butorphanol prior to induction with Alfaxan-CD® had better recovery scores than those that were not premedicated.  相似文献   

12.
Although sedation is frequently used to facilitate patient compliance in feline echocardiography, the effects of sedative drugs on echocardiographic variables have been poorly documented. This study investigated the effects of two sedation protocols on echocardiographic indices in healthy cats, with special emphasis on the assessment of left atrial size and function, as well as left ventricular diastolic performance. Seven cats underwent echocardiography (transthoracic two-dimensional, spectral Doppler, color flow Doppler and tissue Doppler imaging) before and after sedation with both acepromazine (0.1 mg/kg IM) and butorphanol (0.25 mg/kg IM), or acepromazine (0.1 mg/kg IM), butorphanol (0.25 mg/kg IM) and ketamine (1.5 mg/kg IV). Heart rate increased significantly following acepromazine/butorphanol/ketamine (mean ± SD of increase, 40 ± 26 beats/min) and non-invasive systolic blood pressure decreased significantly following acepromazine/butorphanol (mean ± SD of decrease, 12 ± 19 mmHg). The majority of echocardiographic variables were not significantly different after sedation compared with baseline values. Both sedation protocols resulted in mildly decreased left ventricular end-diastolic dimension and mildly increased left ventricular end-diastolic wall thickness. This study therefore failed to demonstrate clinically meaningful effects of these sedation protocols on echocardiographic measurements, suggesting that sedation with acepromazine, butorphanol and/or ketamine can be used to facilitate echocardiography in healthy cats.  相似文献   

13.
OBJECTIVE: To determine sedative and cardiorespiratory effects of i.m. administration of medetomidine alone and in combination with butorphanol or ketamine in dogs. DESIGN: Randomized, crossover study. ANIMALS: 6 healthy adult dogs. PROCEDURES: Dogs were given medetomidine alone (30 micrograms/kg [13.6 micrograms/lb] of body weight, i.m.), a combination of medetomidine (30 micrograms/kg, i.m.) and butorphanol (0.2 mg/kg [0.09 mg/lb], i.m.), or a combination of medetomidine (30 micrograms/kg, i.m.) and ketamine (3 mg/kg [1.36 mg/lb], i.m.). Treatments were administered in random order with a minimum of 1 week between treatments. Glycopyrrolate was given at the same time. Atipamezole (150 micrograms/kg [68 micrograms/lb], i.m.) was given 40 minutes after administration of medetomidine. RESULTS: All but 1 dog (given medetomidine alone) assumed lateral recumbency within 6 minutes after drug administration. Endotracheal intubation was significantly more difficult when dogs were given medetomidine alone than when given medetomidine and butorphanol. At all evaluation times, percentages of dogs with positive responses to tail clamping or to needle pricks in the cervical region, shoulder region, abdominal region, or hindquarters were not significantly different among drug treatments. The Paco2 was significantly higher and the arterial pH and Pao2 were significantly lower when dogs were given medetomidine and butorphanol or medetomidine and ketamine than when they were given medetomidine alone. Recovery quality following atipamezole administration was unsatisfactory in 1 dog when given medetomidine and ketamine. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that a combination of medetomidine with butorphanol or ketamine resulted in more reliable and uniform sedation in dogs than did medetomidine alone.  相似文献   

14.
OBJECTIVE: To determine frequency and severity of postanesthetic hypoxemia and hypercarbia in healthy dogs undergoing elective ovariohysterectomy or castration and given butorphanol or hydromorphone for analgesia. DESIGN: Prospective trial. ANIMALS: 0 healthy dogs weighing > 10 kg (22 lb). PROCEDURE: Dogs were anesthestized with acepromazine, glycopyrrolate, thiopental, and isoflurane, and butorphanol (n = 10) or hydromorphone (10) was used for perioperative analgesia. Arterial blood gas analyses were performed 10 and 30 minutes and 1, 2, 3, and 4 hours after extubation. RESULTS: In dogs that received hydromorphone, mean PaCO2 was significantly higher, compared with the preoperative value, 10 and 30 minutes and 1, 2, and 3 hours after extubation. Mean PaCO2 was significantly higher in dogs given hydromorphone rather than butorphanol 10 and 30 minutes and 1 and 2 hours after extubation. Mean PaO2 was significantly lower, compared with preoperative values, 30 minutes and 1 and 2 hours after extubation in dogs given hydromorphone and 30 minutes after extubation in dogs given butorphanol. Mean PaO2 was significantly lower in dogs given hydromorphone rather than butorphanol 1 hour after extubation. Four dogs had PaO2 < 80 mm Hg 1 or more times after extubation. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that administration of hydromorphone to healthy dogs undergoing elective ovariohysterectomy or castration may result in transient increases in PaCO2 postoperatively and that administration of hydromorphone or butorphanol may result in transient decreases in PaO2. However, increases in PaCO2 and decreases in PaO2 were mild, and mean PaCO2 and PaO2 remained within reference limits.  相似文献   

15.
An 8-year-old mixed-breed dog was anesthetized for colonoscopy. Moderate sedation was produced by premedication with glycopyrrolate, acepromazine, and hydromorphone, and anesthesia was induced by IV injection of diazepam and ketamine. Frothy, reddish-colored fluid flowed from the endotracheal tube immediately after endotracheal intubation but ceased after several minutes. Furosemide was injected IV. Anesthesia was maintained by sevoflurane in oxygen. Ventilation and arterial blood pressure were satisfactory, however, after oxygen was administered to maintain normal hemoglobin saturation. Radiography revealed changes consistent with a diagnosis of pulmonary edema. The following day, ventricular premature contractions developed and atrial dissociation, valvular regurgitation, and pulmonary hypertension were diagnosed on echocardiography. The proposed etiology is either profound transient hypotension and/or pulmonary hypertension induced by ketamine. The cardiac abnormalities that were present the following day suggest that myocardial dysfunction after induction of anesthesia was more severe than was apparent as assessed by routine physical examination and monitoring methods.  相似文献   

16.
17.
BACKGROUND: Orotracheal intubation is a commonly performed procedure in the cat, but it is not without complications. Tracheal rupture has been reported in cats, but trauma to the arytenoids from intubation has not been documented. OBSERVATIONS: An otherwise healthy, 5-year-old male domestic shorthair cat presented for total ear canal ablation to resolve intractable otitis media and externa. The cat was premedicated with glycopyrrolate, hydromorphone, and acepromazine. Anesthesia was induced with diazepam and ketamine, and maintained with isoflurane in oxygen. During orotracheal intubation, the larynx was poorly visualized and excessive force was used to perform intubation. Subsequently, blood was observed in the larynx and laryngoscopy revealed a tear lateral to the patient's right arytenoid which had been created during intubation. The larynx was re-intubated normally and the cat suffered no obvious ill effects from the trauma to the larynx. CONCLUSIONS: Direct observation and proper technique must be employed during orotracheal intubation in cats in an attempt to avoid laryngeal trauma.  相似文献   

18.
OBJECTIVE: To compare the analgesic and cardiopulmonary effects of medetomidine and xylazine when used for premedication of horses undergoing general anesthesia. DESIGN: Randomized clinical trial. ANIMALS: 40 horses. PROCEDURE: Twenty horses were premedicated with medetomidine (10 microg/kg [4.5 microg/lb], i.m.) and the other 20 were premedicated with xylazine (2 mg/kg [0.9 mg/kg], i.m.). Horses were then anesthetized with a combination of guaifenesin and ketamine; anesthesia was maintained with halothane. Additional doses of medetomidine or xylazine were given if horses were not sufficiently sedated at the time of anesthetic induction. After induction of anesthesia, sodium pentothal was administered as necessary to prevent limb movements. Hypotension was treated with dobutamine; hypoventilation and hypoxemia were treated with intermittent positive-pressure ventilation. The quality of anesthetic induction, maintenance, and recovery and the quality of the transition to inhalation anesthesia were scored. RESULTS: Scores for the quality of the transition to inhalation anesthesia were significantly higher for horses premedicated with medetomidine than for horses premedicated with xylazine. However, other scores, recovery times, and numbers of attempts needed to achieve sternal recumbency and to stand were not significantly different between groups. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that medetomidine is suitable for premedication of horses undergoing general anesthesia. Analgesic and cardiopulmonary effects of medetomidine were similar to those of xylazine, except that the transition to inhalation anesthesia was smoother when horses were premedicated with medetomidine, rather than xylazine.  相似文献   

19.
OBJECTIVE: To compare 2 techniques for induction of cats by use of isoflurane in an anesthetic chamber. DESIGN: Prospective, randomized study. ANIMALS: 51 healthy cats. PROCEDURES: Cats were randomly allocated to 2 induction techniques. Cats were premedicated with acepromazine (0.1 mg/kg [0.045 mg/lb], SC) and buprenorphine (0.01 mg/kg [0.0045 mg/lb], SC) 30 minutes before induction. Cats were then placed into an induction chamber, and anesthetic induction was initiated. One technique involved a conventional flow-through system that used an oxygen flowmeter and an isoflurane vaporizer to flow vapors into the induction chamber. Alternatively, liquid isoflurane was injected into a vaporization tray that was mounted to the interior surface of the chamber lid. Inductions were videotaped for analysis. Five variables (head bobbing, head swinging side to side, paddling, rotating 180 degrees to 360 degrees, and rolling over or flipping) were scored to assess induction quality. Time variables recorded during induction corresponded to the interval until onset of excitatory motion, duration of excitatory motion, interval until recumbency, and interval until complete induction. RESULTS: Compared with cats anesthetized by use of a conventional vapor chamber technique, cats anesthetized by use of the liquid injection technique had a significantly shorter interval until recumbency and interval until complete induction and lower scores for quality of induction, indicating a smoother induction. CONCLUSIONS AND CLINICAL RELEVANCE: Anesthetic induction in cats by use of a liquid injection technique was more rapid and provided a better quality of induction, compared with results for cats induced by use of a conventional vapor technique.  相似文献   

20.
O bjectives : The objective of this study was to investigate medetomidine-buprenorphine preanaesthetic medication in cats.
M ethods : Forty American Society of Anesthesiologists (ASA) I female cats were enrolled in this prospective, blinded, clinical study. Cats were randomised into one of four groups: group M30 were injected intramuscularly with 30 μg/kg medetomidine, groups M10+B, M30+B and M50+B received 10, 30 and 50 μg/kg of medetomidine, respectively, each in combination with 20 μg/kg buprenorphine. After 30 minutes, a sedation score was allocated. Anaesthesia was induced using intravenous propofol and maintained using isoflurane in oxygen, while cats underwent ovariohysterectomy. Heart rate, respiratory rate, end-tidal carbon dioxide tension and oxygen saturation of haemoglobin were recorded. Atipamezole was administered intramuscularly at volatile agent discontinuation. Time taken to lift their head, sit in sternal and stand were recorded along with quality of recovery.
R esults : M30+B cats required significantly less isoflurane compared with M30 cats. Heart rate and oxygen saturation of haemoglobin were significantly lower in M50+B cats than in M30 cats. All M+B groups experienced significantly better recoveries compared with the medetomidine only M30 control group.
C linical S ignificance : The addition of buprenorphine to medetomidine preanaesthetic medication in cats reduces volatile agent vaporiser setting and improves the quality of recovery from anaesthesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号