首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For most bacterial lung infections, the concentration of unbound antimicrobial agent in lung interstitial fluid has been considered as the gold standard for estimating the antibacterial efficacy. In this study, the pharmacokinetics of florfenicol (FF) in porcine lung interstitial fluid was investigated after single intramuscular administration at two different doses (20 and 50 mg/kg). Twelve pigs underwent thoracotomy under general anesthesia. Then, the CMA/30 probe was implanted into the lung and perfused at 1 μL/min. The microdialysis (MD) samples were collected on a preset schedule and analyzed by high‐performance liquid chromatography (HPLC). Noncompartmental pharmacokinetic analysis was performed. FF exhibited rapid distribution and slow elimination in porcine lung interstitial fluid. The main pharmacokinetic parameters at 20 and 50 mg/kg were 4.88 ± 0.54 and 10.36 ± 2.52 μg/mL for the maximum concentration (Cmax), 3.25 ± 0.32 and 3.50 ± 0.27 h for the time to Cmax (Tmax), 9.47 ± 6.84 and 7.75 ± 3.23 h for the half‐life (t1/2), 0.10 ± 0.06 and 0.10 ± 0.04 1/h for the terminal elimination rate constant (λz), 13.85 ± 7.97 and 11.42 ± 2.79 h for the mean residence time (MRT), 37.77 ± 8.13 and 71.15 ± 16.99 h·μg/mL for the area under the curve from time 0 to 18.25 h (AUC0–18.25), and 51.18 ± 20.11 and 88.78 ± 27.58 h·μg/mL for the area under the curve from time 0 to infinity (AUC0–∞), respectively.  相似文献   

2.
3.
4.
The pharmacokinetics of florfenicol, a structural analogue of thiamphenicol, were studied in six pigs after single oral and intramuscular doses of 15 mg/kg bodyweight, and after feeding them with medicated feed containing 250 mg/kg for three days, a concentration which provided approximately the same dose rate of the drug. The oral doses contained a specially prepared pelleted formulation of the drug. The bioavailability of the drug was similar for the oral and intramuscular doses. Florfenicol was absorbed rapidly from the feed and its concentration in plasma remained between 2 and 6 microg/ml - above the minimum inhibitory concentration values for common pig pathogens - during the three days.  相似文献   

5.
单剂量氟苯尼考内服及肌注在家兔体内药代动力学研究   总被引:1,自引:0,他引:1  
健康新西兰白兔20只,随机分为A、B 2组,A组内服单剂量30 mg/kg氟苯尼考试验品,B组肌注单荆量30mg/kg氟苯尼考试验品.用高效液相色谱法测定血浆中的药物浓度,3p97药代动力学程序软件处理药--时数据,A组药--时数据符合--室开放模型(W=1/C2),主要药代动力学参数T1/2Ka=(0.461±0.066)h,T1/2ke=(2.013±0.195)h,Tpeak=(1.180±0.123)h,Cmax=(7.332±1.000)mg/L,AUC=(31.445±3.566)mg·L-1·h,V/F=(2.995±0.330)L/kg;B组药-时数据也符合一室开放模型(W=1/C2),主要药代动力学参数T1/2Ka=(0.802±0.098)h,T1/2ke=(2.317±0.136)h,Tpeak=(1.805±0.103)h,Cmax=(6.646±0.578)mg/L,AUC=(38.714±3.727)mg·L-1·h,V/F=(2.772±0.303)L/kg.试验结果表明,氟苯尼考在家兔体内主要药动学特征为内服吸收迅速、分布快而广、消除较快;肌注吸收速度显著慢于内服.分布广泛,消除也较快.  相似文献   

6.
The pharmacokinetics and intramuscular (IM) bioavailability of flumequine (15 mgkg(-1)) were investigated in healthy pigs and the findings related to published minimal inhibitory concentrations (MICs) for susceptible bacteria of animal origin, and to experimentally determined MICs for susceptible strains of porcine origin. We found MICs for Escherichia coli, Salmonella spp., Pasteurella spp. and Bordetella spp. in the range 0.5 to >64 microg mL(-1) isolated from infected pigs in the Forli area of Italy; only the Pasteurella multocida strains were sensitive (MIC(90)=0.5 microg mL(-1)). After intravenous (IV) injection, flumequine was slowly distributed and eliminated (t(1/2lambda(1))1.40+/-0.16 h and t(1/2lambda(2))6.35+/-1.69 h). The distribution volume at steady state (V(dss)) was 752.59+/-84.03 mL kg(-1) and clearance (Cl(B)) was 237.19+/-17.88 mL kg(-1)h(-1). After IM administration, peak serum concentration (4.99+/-0.92 microg mL(-1)) was reached between the 2nd and the 3rd hour. The results on MIC of isolated bacteria, although only indicative, suggest that the efficacy of flumequine on Gram-negative bacteria may be impaired by the emergence of less sensitive or resistant strains.  相似文献   

7.
研究了两种头孢噻呋注射液给猪肌注后的比较药物动力学特征。选用12头健康猪随机分为两组,每组6头,分别肌注上海公谊兽药厂生产的长效盐酸头孢噻呋注射液和美国辉瑞生产的盐酸头孢噻呋注射液(速解灵注射液),每头5mg/kg。采用超高效液相色谱法测定猪血浆中头孢噻呋的的药物浓度,用Winnonlin5.2药动学分析软件非房室模型处理药时数据,模型200处理肌注给药后的药代动力学参数。结果表明:健康猪肌注两种注射液后,参数MRT、Cmax、tmax统计差异极显著(P〈0.01),长效盐酸头孢噻呋注射液单剂量肌注给药较速解灵注射液吸收慢,达峰时间显著延迟,达峰浓度显著降低,平均驻留时间显著延长;参数AUC、Kel、t1/2允统计无显著性差异(P〉0.05),长效盐酸头孢噻呋注射液的相对生物利用度为98.41%,与速解灵注射液的生物利用度相当。本研究可为头孢噻呋注射液的临床合理用药提供参考。  相似文献   

8.
Bayesian population pharmacokinetic models of florfenicol in healthy pigs were developed based on retrospective data in pigs either via intravenous (i.v.) or intramuscular (i.m.) administration. Following i.v. administration, the disposition of florfenicol was best described by a two‐compartment open model with the typical values of half‐life at α phase (t 1/2α), half‐life at β phase (t 1/2β), total body clearance (Cl), and volume of distribution (V d) were 0.132 ± 0.0289, 2.78 ± 0.166 hr, 0.215 ± 0.0102, and 0.841 ± 0.0289 L kg?1, respectively. The disposition of florfenicol after i.m. administration was best described by a one‐compartment open model. The typical values of maximum concentration of drug in serum (C max), elimination half‐life (t 1/2Kel), Cl, and Volume (V ) were 5.52 ± 0.605 μg/ml, 9.96 ± 1.12 hr, 0.228 ± 0.0154 L hr?1 kg?1, and 3.28 ± 0.402 L/kg, respectively. The between‐subject variabilities of all the parameters after i.m. administration were between 25.1%–92.1%. Florfenicol was well absorbed (94.1%) after i.m. administration. According to Monte Carlo simulation, 8.5 and 6 mg/kg were adequate to exert 90% bactericidal effect against Actinobacillus pleuropneumoniae after i.v. and i.m. administration.  相似文献   

9.
The pharmacokinetics of florfenicol (FF) was studied in plasma after a single dose (40 mg/kg) of intramuscular (i.m.) or oral gavage (p.o.) administration to crucian carp (Carassius auratus cuvieri) in freshwater at 25 °C. Ten fish per sampling point were examined after treatment. The data were fitted to two-compartment open models follow both routes of administration. The estimates of total body clearance (CL(b) ), volume of distribution (V(d) /F), and absorption half-life (T(1/2(ka)) ) were 0.067 L/h/kg and 0.145 L/h/kg, 2.21 L/kg and 1.04 L/kg, 2.75 and 1.54/h following i.m. and p.o. administration, respectively. After i.m. injection, the elimination half-life (T(1/2(β)) ) was calculated to be 38.2h, the maximum plasma concentration (C(max) ) to be 16.82 μg/mL, the time to peak plasma FF concentration (T(max) ) to be 1.50 h, and the area under the plasma concentration-time curve (AUC) to be 597.4 μg/mL·h. Following p.o. administration, the corresponding estimates were 2.17 h, 29.32 μg/mL, 1.61 h, and 276.1 μg/mL·h.  相似文献   

10.
The pharmacokinetics and oral bioavailability of tylosin tartrate and tylosin phosphate were carried out in broiler chickens according to a principle of single dose, random, parallel design. The two formulations of tylosin were given orally and intravenously at a dose level of 10 mg/kg b.w to chicken after an overnight fasting (= 10 chickens/group). Serial blood samples were collected at different time points up to 24 h postdrug administration. A high performance liquid chromatography method was used for the determination of tylosin concentrations in chicken plasma. The tylosin plasma concentration's time plot of each chicken was analyzed by the 3P97 software. The pharmacokinetics of tylosin was best described by a one‐compartmental open model 1st absorption after oral administration. After intravenous administration the pharmacokinetics of tylosin was best described by a two‐compartmental open model, and there were no significant differences between tylosin tartrate and tylosin phosphate. After oral administration, there were significant differences in the Cmax (0.18 ± 0.01, 0.44 ± 0.09) and AUC (0.82 ± 0.05, 1.57 ± 0.25)between tylosin phosphate and tylosin tartrate. The calculated oral bioavailability (F) of tylosin tartrate and tylosin phosphate were 25.78% and 13.73%, respectively. Above all, we can reasonably conclude that, the absorption of tylosin tartrate is better than tylosin phosphate after oral administration.  相似文献   

11.
健康白羽肉鸡20只,随机分为A、B两组,以20mg/kg的剂量单次灌服两种工艺的20%氟苯尼考粉。并于给药后不同时间点从翅下静脉采血,采用已建立的UPLC-MS/MS测定血浆中的药物浓度。采用 WinNonlin 5. 2. 1 药动学分析软件的非房室模型拟合血药浓度-时间数据。结果显示:A组达峰时间(Tmax)和达峰浓度(Cmax)分别为1.675±0.782 h、1073.20±425.72 ng/mL,平均消除半衰期T1/2λz约为4.729±3.347 h,平均曲线下面积 (AUClast) 为 4498.76±2596.16 h?ng/mL;B组达峰时间(Tmax)和达峰浓度(Cmax)分别为1.523±1.723 h、4654.64±1669.75 ng/mL,平均消除半衰期T1/2λz约为2.193±1.515 h,平均曲线下面积 (AUClast)为15392.84±2586.10 ng/mL;相对生物利用度约为342.16%。结果表明,采用环糊精包合工艺的氟苯尼考粉的生物利用度显著高于普通工艺的氟苯尼考粉。  相似文献   

12.
The objective of this study was to determine the pharmacokinetics of diphenhydramine (DPH) in healthy dogs following a single i.v. or i.m. dose. Dogs were randomly allocated in two treatment groups and received DPH at 1 mg/kg, i.v., or 2 mg/kg, i.m. Blood samples were collected serially over 24 h. Plasma concentrations of DPH were determined by high‐performance liquid chromatography, and noncompartmental pharmacokinetic analysis was performed with the commercially available software. Cardio‐respiratory parameters, rectal temperature and effects on behaviour, such as sedation or excitement, were recorded. Diphenhydramine Clarea, Vdarea and T1/2 were 20.7 ± 2.9 mL/kg/min, 7.6 ± 0.7 L/kg and 4.2 ± 0.5 h for the i.v. route, respectively, and Clarea/F, Vdarea/F and T1/2 20.8 ± 2.7 mL/kg/min, 12.3 ± 1.2 L/kg and 6.8 ± 0.7 h for the i.m. route, respectively. Bioavailability was 88% after i.m. administration. No significant differences were found in physiological parameters between groups or within dogs of the same group, and values remained within normal limits. No adverse effects or changes in mental status were observed after the administration of DPH. Both routes of administration resulted in DPH plasma concentrations which exceeded levels considered therapeutic in humans.  相似文献   

13.
Healthy mature pony mares (n = 6) were given a single dose of gentamicin (5 mg/kg of body weight) IV or IM 8 days apart. Venous blood samples were collected at 0, 5, 10, 20, 30, and 45 minutes and at 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 18, 24, 30, 36, 40, and 48 hours after IV injection of gentamicin, and at 10, 20, 30, and 45 minutes and at 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 18, 24, and 30 hours after IM injection of gentamicin. Gentamicin serum concentration was determined by a liquid-phase radioimmunoassay. The combined data of IV and IM treatments were analyzed by a nonlinear least-square regression analysis program. The kinetic data were best fitted by a 2-compartment open model, as indicated by residual trends and improvements in the correlation of determination. The distribution phase half-life was 0.12 +/- 0.02 hour and postdistribution phase half-life was 1.82 +/- 0.22 hour. The volume of the central compartment was 115.8 +/- 6.0 ml/kg, volume of distribution at steady state was 188 +/- 9.9 ml/kg, and the total body clearance was 1.27 +/- 0.18 ml/min/kg. Intramuscular absorption was rapid with a half-life for absorption of 0.64 +/- 0.14 hour. The extent of absorption was 0.87 +/- 0.14. Kinetic calculations predicted that IM injections of 5 mg of gentamicin/kg every 8 hours would provide average steady-state serum concentrations of 7.0 micrograms/ml, with maximum and minimum steady-state concentrations of 16.8 and 1.1 micrograms/ml, respectively.  相似文献   

14.
Florfenicol is a broad‐spectrum antibacterial drug. Exopalaemon carinicauda is important in the prawn aquaculture industry in China. Florfenicol pharmacokinetics in E. carinicauda were studied at different temperatures and via different routes of administration to provide a scientific basis for the rational use of drugs for E. carinicauda production. At water temperatures of 22 ± 0.4°C and 28 ± 0.3°C, after intramuscular (IM) injection and oral (per ora (PO)) administration of florfenicol at 10 mg/kg body weight (BW) and 30 mg/kg BW, respectively, the florfenicol concentration in the plasma, hepatopancreas, gills, muscles, and carapace of E. carinicauda was determined by high‐performance liquid chromatography. After IM injection at different temperatures, the metabolism of florfenicol in E. carinicauda conformed to a two‐compartment open model with zero‐order absorption. After PO administration, the metabolism of florfenicol in E. carinicauda was consistent with a two‐compartment open model with first‐order absorption. Using an identical administration route but different water temperatures, the metabolism of florfenicol in E. carinicauda was quite different. Overall, florfenicol was absorbed rapidly and distributed widely in E. carinicauda, but elimination was slow and the bioavailability was not high. A low temperature and PO administration resulted in a low elimination rate.  相似文献   

15.
This study aimed to define the pharmacokinetic profiles of dexmedetomidine and methadone administered simultaneously in dogs by either an oral transmucosal route or intramuscular route and to determine the bioavailability of the oral transmucosal administration relative to the intramuscular one of both drugs, so as the applicability of this administration route in dogs. Twelve client‐owned dogs, scheduled for diagnostic procedures, were treated with a combination of dexmedetomidine hydrochloride (10 μg/kg) and methadone hydrochloride (0.4 mg/kg) through an oral transmucosal route or intramuscularly. Oral transmucosal administration caused ptyalism in most subjects, and intramuscular administration caused transient peripheral vasoconstriction. The results showed reduced and delayed absorption of both dexmedetomidine and methadone when administered through an oral transmucosal route, with median (range) Cmax values of 0.82 (0.42–1.49) ng/ml and 13.22 (2.80–52.30) ng/ml, respectively. The relative bioavailability was low: 16.34% (dexmedetomidine) and 15.5% (methadone). Intramuscular administration resulted in a more efficient absorption profile, with AUC and Cmax values for both drugs approximately 10 times higher. Dexmedetomidine and methadone administered simultaneously by an oral transmucosal route using injectable formulations were not well absorbed through the oral mucosa. Nevertheless, additional studies on these drugs combination using alternative administration routes are recommended.  相似文献   

16.
氟苯尼考在猪的群体药动学   总被引:4,自引:0,他引:4  
收集临床消化道和呼吸道细菌性疾病猪 2 15头 ,其中原种猪 91头 ,杂交商品猪 12 4头 ;公猪 112头 ,母猪 10 3头 ;体重范围 5~ 4 1kg,平均为 18.6 8± 0 .4 7;日龄 6 3~ 117天 ,平均为 85 .2 4± 0 .78。动物随机分为两组 ,第 1组动物数量为总体数量的 2 / 3,共 14 6头 ,为模型组 ,用于建立群体药动学模型 ;第 2组动物数量为总体动物数量的 1/ 3,共 6 9头 ,为验证组。给药前测定每头猪血清生化指标。试验猪颈部肌肉注射 30 %氟苯尼考注射液 ,剂量为 2 0 mg· kg- 1体重。给药前采一次空白血浆及血清 (测定血清生化指标 ) ,给药后随机采样 ,每只猪采样 2~ 4次 ,就整个群体而言使采样时间均匀分布于药物的吸收相、分布相和消除相内 ,采样时间为给药后 0 .183~ 4 8.36 7h,以高效液相色谱法测定血浆药物浓度 ,应用 NONMEM程序处理所收集的数据 ,包括药时数据、猪只的体重、日龄、性别、种属及血清生化指标、对研究组数据拟合发现最佳药动学模型为一级吸收一室模型 ,药动学参数随机效应及自身变异的最佳模型均为对数加法模型。体重对机体清除率、表观分布容积有显著影响 ,机体清除率、表观分布容积随体重的增加而增加 ,基本呈线性关系。种属对吸收速率常数有显著影响。把研究组得到的群体药动学参数值应用  相似文献   

17.
18.
Summary

The disposition and urinary excretion of ciprofloxacin (CIP) following intravenous (IV) or intramuscular (IM) administration of 7.5 mg/kg body weight in sheep (n = 5) was studied. The intravenous plasma concentration curve was best described pharmacokinetically by a two‐compartment open model, while the intramuscular administration data fitted better to a one‐compartment open model. Mean elimination half‐lives after IV and IM administration were 72 and 184 minutes, respectively. The absorption of intramuscularly administered CIP in sheep was fast: maximal plasma concentration (Cmax) was reached quickly (tmax 31.93 min) and attained values of 0.69 ± 0.27 mg/l. The bioavailability was 49%. The urinary data showed a significant decrease in the elimination rate constant of CIP when CIP was administered intramuscularly. The other parameters calculated did not display differences between the two routes of administration. The results obtained suggest that when CIP was administered by the IM route in the assayed dose, it was able to maintain serum concentrations above the MIC of most common pathogens over an 8‐hour period.  相似文献   

19.
Objective-To evaluate hemodynamic effects in dogs after IM administration of dexmedetomidine (7.5 μg/kg, butorphanol (0.15 mg/kg), and tiletamine-zolazepam (3 mg/kg [DBTZ]) or dexmedetomidine (15 μg/kg), butorphanol (0.3 mg/kg), and ketamine (3 mg/kg [DBK]). Animals-5 healthy adult mixed-breed dogs. Procedures-Each dog received DBTZ and DBK in a randomized crossover study with a 48-hour interval between treatments. Anesthesia was induced and maintained with sevoflurane in 100% oxygen while instrumentation with Swan-Ganz and arterial catheters was performed. Following instrumentation, hemodynamic measurements were recorded at 3.54% (1.5 times the minimum alveolar concentration) sevoflurane; then sevoflurane administration was discontinued, and dogs were allowed to recover. Six hours after cessation of sevoflurane administration, baseline hemodynamic measurements were recorded, each dog was given an IM injection of DBTZ or DBK, and hemodynamic measurements were obtained at predetermined intervals for 70 minutes. Results-DBTZ and DBK induced hypoventilation (Paco(2), approx 60 to 70 mm Hg), respiratory acidosis (pH, approx 7.2), hypertension (mean arterial blood pressure, approx 115 to 174 mm Hg), increases in systemic vascular resistance, and reflex bradycardia. Cardiac output, oxygen delivery, and oxygen consumption following DBTZ or DBK administration were similar to those following sevoflurane administration to achieve a surgical plane of anesthesia. Blood l-lactate concentrations remained within the reference range at all times for all protocols. Conclusions and Clinical Relevance-In healthy dogs, both DBTZ and DBK maintained oxygen delivery and oxygen consumption to tissues and blood lactate concentrations within the reference range. However, ventilation should be carefully monitored and assisted when necessary to prevent hypoventilation.  相似文献   

20.
Comparative pharmacokinetic profiles of diaveridine following single intravenous and oral dose of 10 mg/kg body weight in healthy pigs and chickens were investigated, respectively. Concentrations of diaveridine in plasma samples were determined using a validated high‐performance liquid chromatography–ultraviolet (HPLC‐UV) method. The concentration–time data were subjected to noncompartmental kinetic analysis by WinNonlin program. The corresponding pharmacokinetic parameters in pigs or chickens after single intravenous administration were as follows, respectively: t1/2β (elimination half‐life) 0.74 ± 0.28 and 3.44 ± 1.07 h; Vd (apparent volume of distribution) 2.70 ± 0.99 and 3.86 ± 0.92 L/kg; ClB (body clearance) 2.59 ± 0.62 and 0.80 ± 0.14 L/h/kg; and AUC0‐∞ (area under the blood concentration vs. time curve) 4.11 ± 1.13 and 12.87 ± 2.60 μg?h/mL. The corresponding pharmacokinetic parameters in pigs or chickens after oral administration were as follows, respectively: t1/2β 1.78 ± 0.41 and 2.91 ± 0.57 h; Cmax (maximum concentration) 0.43 ± 0.24 and 1.45 ± 0.57 μg/mL; Tmax (time to reach Cmax) 1.04 ± 0.67 and 3.25 ± 0.71 h; and AUC0‐∞1.33 ± 0.55 and 9.28 ± 2.69 μg?h/mL. The oral bioavailability (F) of diaveridine in pigs or chickens was determined to be 34.6% and 72.2%, respectively. There were significant differences between the pharmacokinetics profiles in these two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号