首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This experiment tested whether it was possible to incorporate broiler litter (BL) or cattle farmyard manure (FYM) into a 7‐yr arable rotation on a sandy soil without causing an increase in nitrate‐nitrogen (NO3‐N) leaching. Four manure treatments (with adjusted fertilizer inputs), varying in frequency and timing of application, were imposed on the rotation and compared with a control that received inorganic fertilizer according to recommended rates. Over seven winters, the annual average NO3‐N leached from the inorganic fertilizer treatment (control) was 39 kg/ha in 183 mm drainage. Total manure N loadings over the period of the experiment ranged between 557 and 1719 kg/ha (80–246 kg/ha/yr) for the four treatments. Three of the four manure treatments significantly increased NO3‐N leaching over the rotation (< 0.001). Annual applications of FYM (1719 kg/ha manure N or 246 kg/ha/yr) increased NO3‐N leaching by 39%. We hypothesize that this was due to increased mineralization of the organic N accumulating from repeated FYM applications. BL applied each year (1526 kg/ha manure N or 218 kg N/ha/yr) increased NO3‐N leaching by 52% above the control; BL applied 5 of 7 yr (972 kg/ha manure N or 139 kg N/ha/yr on average) and including inadvisable autumn applications increased leaching by 50%. BL applied in late winter or early spring every 2–3 yr (557 kg/ha manure N or 80 kg N/ha/yr on average) resulted in NO3‐N leaching similar to the control. This suggests that to avoid additional NO3‐N leaching from manure use in an arable rotation, manure should not be applied every year and autumn applications should be avoided; there are real challenges where manure is used on an annual basis.  相似文献   

2.
Abstract. Four management systems combining high and low livestock densities (0.7 and 1.4 livestock units ha−1) and different types of organic manure (slurry and straw based FYM) were applied to an organic dairy crop rotation (undersown barley – grass–clover – grass–clover – barley/pea – oats – fodder beet) between 1998 and 2001. The effects of the management systems on crop yields and nitrate leaching were measured. In all four years, nitrate leaching, as determined using ceramic suction cups, was higher in the three crops following ploughing of grass–clover than under the barley or grass–clover. Overall, no significant differences in nitrate leaching were observed between the management systems. However, the replacement of the winter wheat crop used in the earlier experimental period (1994–97) by spring oats with catch crops in both the preceding and succeeding winters reduced nitrate leaching compared with the earlier rotation. Increasing the livestock density, which increased manure application by c. 60 kg total N ha−1, increased crop yields by 7 and 9% on average for FYM and slurry, respectively. Yields were 3–5% lower where FYM was used instead of slurry. The experiment confirmed the overriding importance of grassland N management, particularly the cultivation of the ley, in organic dairy crop rotations.  相似文献   

3.
Abstract. Nutrient losses from arable land are important contributors to eutrophication of surface waters, and phosphorus (P) and nitrogen (N) usually act together to regulate production of Cyanobacteria. Concentrations and losses of both nutrients in drainage water from pipe drains were studied and compared in 15 crop rotations on a clay soil in southwest Sweden. Special emphasis was placed on P and it was possible to evaluate critical components of the crop rotations by flow-proportional water sampling. Total P concentrations in drainage water were generally small (0.04–0.18 mg L−1), but during two wetter years out of six, high P concentrations were measured following certain management practices, including ploughing-in lucerne ( Medicago sativa L.) and fertilizing in advance without incorporation into the soil to meet the needs of several subsequent crops. This resulted in average flow-weighted concentrations of total P between 0.3 and 0.7 mg L−1. In crop rotations containing green manures, green fallow or leguminous leys, there was also a risk for increased P losses after these crops were ploughed in. The losses increased in the order: cash crops < dairy with grass < dairy with lucerne < monoculture with barley < organic farming with cattle slurry < stockless organic farming with green manure. P balances varied between −9 and +8 kg P ha−1 and N balances between +4 and +35 kg N ha−1. The balances were not related to actual leaching losses. Phosphorus losses in drainage from set-aside were 67–82% of those from cash crops grown in ploughed and P-fertilized soil at the same site, indicating a high background P loss from this clay soil.  相似文献   

4.
Animal slurry can be separated into solid and liquid manure fractions to facilitate the transport of nutrients from livestock farms. In Denmark, untreated slurry is normally applied in spring whereas the solid fraction may be applied in autumn, causing increased risk of nitrate and phosphorus (P) leaching. We studied the leaching of nitrate and P in lysimeters with winter wheat crops (Triticum aestivum L.) after autumn incorporation versus spring surface application of solid manure fractions, and we compared also spring applications of mineral N fertilizer and pig slurry. Leaching was compared on a loamy sand and a sandy loam soil. The leaching experiment lasted for 2 yr, and the whole experiment was replicated twice. Nitrate leaching was generally low (19–34 kg N/ha) after spring applications of mineral fertilizer and manures. Nitrate leaching increased significantly after autumn application of the solid manures, and the extra nitrate leached was equivalent to 23–35% of total manure N and corresponded to the ammonium content of the manures. After spring application of solid manures and pig slurry, only a slight rise in N leaching was observed during the following autumn/winter (<5% of total manure N). Total P leaching was 40–165 g P/ha/yr, and the application of solid manure in autumn did not increase P leaching. The nitrogen fertilizer replacement value of solid manure N was similar after autumn and spring application (17–32% of total N). We conclude that from an environmental perspective, solid manure fractions should not be applied to winter wheat on sandy and sandy loam soils under humid North European conditions.  相似文献   

5.
Abstract. Under a UK Government consultation procedure announced in 2001, it was proposed that measures agreed within already designated Nitrate Vulnerable Zones (NVZ 's) would be extended to include a considerably increased area of England, Wales and Scotland. Since existing NVZ 's in the UK have included relatively little grassland, it is important to examine how nitrate losses from grassland areas, especially from animal manures, one of the major potential sources of nitrate loss, can be minimized. Experiments were carried out on freely draining grassland soils at four sites (Devon, Hampshire, Shropshire and N Yorkshire) representative of a wide range of climatic and farming conditions across lowland England, over a four year period, 1990/91 to 1993/94. Slurry was applied to experimental plots over a range of times (including June and then monthly, from September to January) at a target rate of 200 kg N ha–1. Nitrogen leaching over the four years ranged from 0 to >50% of applied slurry N, with the largest losses occurring following applications in the September to November period. The use of a nitrification inhibitor with slurry applied in November failed to provide consistent reduction in nitrate leaching.
A strategy to reduce the risk of N leaching from manures applied to freely draining grassland soils must take account of the characteristics of the manure, in particular its N content, the application rate and the amount of excess rainfall following application. The experimental results suggest that slurry applications to freely draining grassland, in September, October and November should generally be avoided, the rationale for this being dependent on the amount of excess rainfall subsequent to application. Farmyard manure represents a lower risk and does not justify the restrictions on application timing that appear to be necessary with slurry.  相似文献   

6.
Abstract. Pig slurry was applied by open-slot injection to experimental plots on a sandy loam site at ADAS Gleadthorpe, Nottinghamshire. Volume and distribution of over-winter drainage were adjusted through the use of rainfall exclusion covers or irrigation. The resultant slurry N leaching over the range of drainage values tested (up to 300 mm) could be satisfactorily described by curve-fitting, using a quadratic or exponential function. Initial simulations of slurry N leaching using the manure nitrogen decision support system manner (v. 3.0) compared poorly with the experimental data, predicting both earlier and greater amounts of nitrate leaching. However, the lack of fit could be explained by consideration of the likely ammonia emissions following slurry injection, the actual volumetric soil moisture capacity at the experimental site and the likely time delay for the nitrification of slurry N following application. Good agreement between modelled and observed data was achieved when these factors were taken into account. The manner model was used to simulate nitrate leaching beyond the range of drainage treatments tested in the experiments and the anticipated sigmoidal relationship between nitrate leaching and drainage was observed. The model was then used to study the effects of manure application timing and the likely impact on nitrate leaching, across the range of rainfall conditions found in Great Britain. Simulations for a range of manure types were undertaken, with manures applied at rates up to the limit of permitted N loading on freely draining sandy loams. Rainfall inputs for these simulations were based on long-term average climatic data. Results are presented for two contrasting manure types, cattle slurry and poultry manure, both of which are subject to controls in Nitrate Vulnerable Zones (NVZs) in Great Britain.  相似文献   

7.
Abstract. A survey of cattle manure management was undertaken in England and Wales, in 1997, by postal questionnaire sent out to a stratified sample (by unit size) of 1750 dairy and 1750 beef producers. The level of response obtained, with 471 dairy farmers (27%) and 515 beef farmers (29%) returning questionnaires, reflects well on the interest shown by the industry and on the survey design. The survey provided information on manure production and storage, when and how applied and nutrient value. Dairy farms are estimated to produce manures in the form of c. 65% slurry and 35% farmyard manures (FYM) and, beef units, 80%FYM and 20%slurry (based on survey response data, animal numbers and calculations of undiluted outputs of excreta). Slurry storage within both dairy and beef systems is typically up to 3–6 months capacity, although there is no storage for an estimated 16% of dairy and 25% of beef slurry. Autumn and winter spreading is common practice, with 40–50% of slurry and 50–60% of FYM applied at that time. Although some evidence suggests that farmers make little allowance for the nutrient content of manures in planning fertilizer inputs, the results of this survey suggest that many farmers do make some effort to utilize manure nutrients. However, they currently fail to be assured by the advice available to them or they lack confidence in manures as nutrient sources for a number of technical reasons. Information provided by the survey may be important to policy makers, researchers and consultants, as well as farmers.  相似文献   

8.
Abstract. A decision support system to predict the plant availability of nitrogen (N) following organic manure applications to land has been developed, drawing together the latest UK research information on factors affecting manure N availability and losses. The ADAS MAN ure N itrogen E valuation R outine (MANNER) accounts for manure N analysis, ammonia volatilization, nitrate leaching and mineralization of manure organic N. Only a few easily available inputs are required to predict the amount of N volatilized or leached, and the fertilizer N value for the next crop grown. Predictions from MANNER have been evaluated by comparison with independently collected data from a range of experimental studies where pig, cattle and poultry manures were applied to arable crops. Good agreement was found ( r 2 60–79%, P <0.001), confirming that MANNER can provide a reliable estimate of the fertilizer N value of farm manures spread to arable land under a range of conditions.  相似文献   

9.
Abstract. Measures to reduce ammonia (NH3) emissions by incorporating livestock manures into the soil may increase the potential for nitrate (NO3) leaching. The Manure Evaluation Routine (MANNER) model estimates the amount of N available to crops following livestock manure applications after calculating losses due to NH3 volatilization and NO3 leaching. The main objective of this study was to use the MANNER model to quantify the impact on NO3 leaching of introducing measures to reduce NH3 emissions, following application of livestock manures. The data produced were also used to make preliminary estimates of the likely effect of selected NH3 abatement techniques on the potential for nitrous oxide (N2O) emissions. At typical UK rates of application, the potential for increased NO3 leaching following either injection of slurry or rapid incorporation of solid manures was greatest for broiler/turkey manure (22–58 kg N ha–1) and least for straw‐based cattle manure (6–10 kg N ha–1). The results suggest that in order to avoid substantially increasing the potential for NO3 leaching as a consequence of NH3 abatement, livestock manures should not be applied by low NH3 emission techniques prior to autumn‐sown crops in the UK. Instead, low‐emission applications should be made from October onwards to grassland and where possible, late autumn‐sown combinable crops or to arable land which will be planted in the spring. However, in several areas of England and Wales there is currently insufficient land planted to spring crops on which to incorporate the livestock manures produced in those areas.  相似文献   

10.
Utilization of N in cattle slurry and liquid manure with Dicyandiamide in field trials In several field trials on deep loess soils, effects of DCD on utilization of N in cattle slurry and liquid manure by silage maize, sugar beets and turf was tested. DCD inhibited nitrification of NH4 nitrogen added with slurry or liquid manure and thus decreased losses by infiltration or leaching considerably. If measured as so called “Nmin nitrogen” at the start of vegetation, amounts of nitrogen actually present in the soil are underrated in plots with slurry or liquid manure + DCD. Addition of DCD at a rate of 30 kg/ha to slurry and 15–30 kg to liquid manure improved in all cases utilization of N in slurry applied in April or between August and November and of liquid manure applied in November. By use of the nitrification inhibitor Dicyandiamide as complement to slurry or liquid manure it is therefore possible to inhibit decomposition of ammonium nitrogen in these organic manures for 2–4 months depending on temperature, and to “preserve” it during periods without vegetation when soils are especially exposed to leaching. By this means, utilization of slurry-nitrogen by the following crop can be improved considerably.  相似文献   

11.
Abstract. In dairy farming systems the risk of nitrate leaching is increased by mixed rotations (pasture/arable) and the use of organic manure. We investigated the effect of four organic farming systems with different livestock densities and different types of organic manure on crop yields, nitrate leaching and N balance in an organic dairy/crop rotation (barley–grass-clover–grass-clover–barley/pea–winter wheat–fodder beet) from 1994 to 1998. Nitrate concentrations in soil water extracted by ceramic suction cups ranged from below 1 mg NO3-N l?1 in 1st year grass-clover to 20–50 mg NO3-N l?1 in the winter following barley/pea and winter wheat. Peaks of high nitrate concentrations were observed in 2nd year grass-clover, probably due to urination by grazing cattle. Nitrate leaching was affected by climatic conditions (drainage volume), livestock density and time since ploughing in of grass-clover. No difference in nitrate leaching was observed between the use of slurry alone and farmyard manure from deep litter housing in combination with slurry. Increasing the total-N input to the rotation by 40 kg N ha?1 year?1 (from 0.9 to 1.4 livestock units ha?1) only increased leaching by 6 kg NO3-N ha?1. Nitrate leaching was highest in the second winter (after winter wheat) following ploughing in of the grass-clover (61 kg NO3-N ha?1). Leaching losses were lowest in 1st year grass-clover (20 kg NO3-N ha?1). Averaged over the four years, nitrate concentration in drainage water was 57 mg l?1. Minimizing leaching losses requires improved utilization of organic N accumulated in grazed grass-clover pastures. The N balance for the crop rotation as a whole indicated that accumulation of N in soil organic matter in the fields of these systems was small.  相似文献   

12.
Abstract. We examined whether nitrogen (N) and phosphorus (P) export was enhanced from grassland receiving inorganic fertilizer and manures typical of intensive livestock production. Buffer strips were included in the study to determine if they could reduce nutrient export. Hillslope plots receiving granular inorganic fertilizer, liquid cattle slurry and solid cattle manure (FYM) were compared using rainfall simulation for 4 storms on consecutive days at 22 mm h-1 and 35 minutes duration. The plots were hydrologically isolated in a randomized block layout of 4 treatments × 3 replicates and measured 30 × 5m; the upper 20m received either fertilizer, slurry or FYM, while the lower 10 m acted as an unfertilized grass buffer strip. Nitrogen and P export in surface runoff from grassland receiving inorganic fertilizer exceeded that from FYM or slurry treatments; concentrations up to46mgN1--1 and 15 mgP1–1 were recorded.
Sixty eight % and 62% of the N from FYM and slurry respectively, was exported in organic form. Seventy four % (FYM) and 39% (slurry) of the P was in particulate or dissolved organic form. The buffer strip reduced N export in surface runoff by 94% and P export by 98% from inorganic fertilizer plots. A 75% reduction in N export was recorded from the buffer zone below slurry plots but only a 10% reduction in P, with most P remaining in the particulate or dissolved organic fraction. There was no significant difference in N export from the buffer zone between the inorganic fertilizer treatment and the untreated control.  相似文献   

13.
The objective was to estimate the potential risk of N leaching into the groundwater under various types of agriculture by using lysimeter experiments on the nitrogen(N)‐cycle of various soil types. Results were obtained with 12 weighable, monolithic lysimeters with a surface area of 1 m2, a total depth of 3 m, and free drainage. Mean annual N‐leaching losses of 5 to 44 kg ha—1 and nitrate concentrations of the seepage water (leachate) between 80 and 200 mg l—1 were measured during the period of intensive agricultural use. On fallow land with a well‐established grass vegetation, some nitrate was removed by the plants. As a result, the nitrate concentrations in the leachate were reduced significantly. Ecological farming measures generally reduced N leaching losses and kept the N‐concentration in the leachate below the German threshold value for drinking water with 50 mg l—1 nitrate. However, ploughing in of clover or leguminous vegetation and the application of farmyard manure in autumn caused the nitrate concentration in the leachate to rise significantly above the mentioned threshold value.<?show $6#>  相似文献   

14.
Abstract

Alabama's broiler chicken (Gallus gallus) industry produces large amounts of waste, which are disposed of by application to crop and pasture land. Land application of litter (manure and bedding) from broiler production can lead to contamination from losses of nutrients accumulated in soil. A study was conducted on 2 and 4% slopes from 1991 to 1993 at Belle Mina, Alabama, to determine the effects of broiler litter (BL) on soil elemental concentrations and nitrate leaching under a corn (Zea mays L.) ‐ winter rye (Secale cereale L.) cropping system amended with either: l) 9 mg#lbha‐1 of BL, 2) 18 mg#lbha‐1 of BL, or 3) commercial fertilizer (F) at a recommended rate. Soil was sampled to 100 cm prior to corn planting and subsequent to com harvest. Soil leachate samples were collected biweekly with wick lysimeters installed at a depth of 100 cm. Litter applications increased concentrations of soil organic carbon (C), extractable phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), copper (Cu) and zinc (Zn). Post harvest soil sampling indicated leaching of soil nitrate that was generally highest under BL18. Soil electrical conductivity measurements were highest under BL18, but values were not in the range considered detrimental to crops. Nitrate‐N (NO3‐N) concentrations measured in soil percolate at 1‐m depth on the 2% slope were higher under F than litter treatments. Both the F and BL18 treatments produced some NO3‐N concentrations above the primary drinking water standard, but averaged only 8.3 and 4.8 mg#lbL‐1, respectively. The BL9 treatment consistently remained under 10 mg NO3‐N#lbL‐1 with a mean concentration of 1.3 mg#lbL‐1. Overall, litter applied a 9 mg#lbha‐1 produced agronomic results comparable to F and appeared to be the optimal rate of application under the conditions of this study.  相似文献   

15.
The goal of these studies was to evaluate lysimeter experiments performed over a number of years on the nitrogen cycle of different soil types to estimate the potential hazard of various types of farming usage resulting from N-leaching losses into the groundwater. The studies were carried out in monolithic lysimeters measuring 1m2 with a depth of 3m located in Brandis (near Leipzig, Saxony, Germany). The soils were four pedohydrotopes (Top a-d) characterised by increasing depth, usable field capacity (nFK) and sorption capacity. The average values calculated for the experiments lasting 21 years were as follows for the extreme pedohydrotopes a and d respectively: annual nitrogen losses - 85 and 185kg/ha; annual nitrogen leaching -51 and 5kg/ha; and leachate nitrate levels - 100 and 39mg/l. Viewed on a year-by-year basis, effects due to weathering and soil type outweighed the usage-related leaching risk. Organic farming usually reduces N leaching and the leachate N level below the recommended limits. However, ploughing in clover (usually carried out in autumn to improve the supply of nutrients in biologically dynamic organic agriculture) and also spreading stable manure combined with winter black fallow raised the level of nitrate in leachate above the maxima. Hence N fertilisation as prescribed by the computer program BEFU within environmentally sustainable land use does not appear to be sufficient to significantly reduce N leaching.  相似文献   

16.
Strategies to encourage better use of nitrogen in animal manures   总被引:4,自引:0,他引:4  
Abstract. Research conducted in the MAFF Nitrate Programme has been used to formulate new and improved guidelines on the efficient use of manure nitrogen (N). In order to reduce nitrate leaching losses, manures containing large amounts of available N (i.e. slurries and poultry manures) should not be applied to free-draining soils in the period from autumn to early winter. Also, for efficient nutrient utilization manure application rates should be consistent with agronomic requirements (up to 250 kg total N ha−1 yr−1). Existing farm machinery was shown to be capable of applying manures evenly to grassland and arable stubbles, but required an accurate estimate of application rate and the careful matching of spreading widths. To provide growers with detailed guidance on the fertilizer N replacement value of manures the computer-based decision support system MANNER (MANure Nitrogen Evaluation Routine) has been developed. The much improved understanding of manure N losses and availability has been summarized in a series of 'Managing Livestock Manures' booklets, the MAFF Fertilizer Recommendation booklet and the Codes of Good Agricultural Practice.  相似文献   

17.
Resource use efficiency requires a correct appreciation of the nitrogen (N) fertilizer replacement value (NFRV, percentage of total N applied) of manures. We assessed the NFRVs of the liquid fraction originating from separated pig slurry (MC), untreated pig slurry (PS), untreated cattle slurry (CS), the solid fraction from separated pig slurry (SF) and solid farmyard manure from cattle (FYM) in two consecutive years in silage maize grown on a sandy soil. Maize yields responded positively to each of these N sources applied at rates up to 150 kg of mineral fertilizer equivalents per ha per year (i.e. NFRV × total N rate). The observed NFRVs, relative to calcium ammonium nitrate fertilizer, amounted to 78% for MC, 82% for PS, 79% for CS, 56% for SF and 34% for FYM when averaged over both years. NFRVs were positively related to the ammonium‐N share in the total N content. Rye cover crop establishment after the harvest of maize reduced nitrate concentrations of the upper groundwater by, on average, 7.5 mg nitrate‐N/L in the first year and 10.9 mg/L in the second year, relative to a bare soil. Regardless of the presence of a cover crop, nitrate concentrations responded positively to the applied rate of effective N (total N × NFRV) but less to postharvest residual soil mineral N.  相似文献   

18.
The present study evaluated the effect of fertilizer amendments (organic manure and mineral fertilizers), management practices (fallow and untilled vs. cropped and tilled) on changes of N in bulk soil and N associated with different particle‐size fractions. The long‐term field experiment was conducted since 1962 in Gumpenstein, Austria, on a Dystric Cambisol. The N content of the topsoils changed distinctively during 28 and 38 yr of treatments under both fallow and cropped management practices. Highest increase in total N content was found in animal‐manure (liquid)‐treated plots. The remaining ranking was: animal manure (solid) > cattle slurry > half cattle slurry + straw = PK = NPK. Quite short N‐half‐life values of around 2 yr were found for the cattle‐slurry application, while animal manure exhibited longer N‐half‐lives of around 8 yr. Crop removal of N and mineralization losses in cropped plots obviously were higher than N losses from the bare soil plots lacking a plant cover to keep N in the system. This was confirmed by a consistent shift in the natural 15N abundances. Comparing the mean N contribution of particle‐size fractions to the total N amounts revealed the following ranking after 28 and 38 yr of different treatments: silt > clay > fine sand > coarse sand, with small exceptions. Particle‐size separates showed more significant responses to changes in the N dynamics of the system due to the various treatments than the bulk soil and can be regarded as the better indicators in this respect.  相似文献   

19.
Long-term nitrogen supply from cattle slurry   总被引:4,自引:0,他引:4  
Abstract. Manures can supply nitrogen (N) beyond the year of application, producing residual effects that are are not fully expressed in short-term experiments. From 1997 to 2003 we conducted a field experiment on a sandy soil in the Netherlands to quantify the residual N effect. Treatments comprised different time series of cattle slurry applied at rates ranging from 0 to 220 kg total-N ha−1 yr−1, while compensating for differences in available potassium and phosphorus. Dry matter and N yields of silage maize responded positively ( P <0.05) to both current cattle slurry applications and applications in previous years. N yields could be satisfactorily predicted with a simple N model by adopting an annual relative decomposition rate (RDR) of the organic N in cattle slurry of 25–33%. Subsequent model calculations indicated that the relative N fertilizer value (RNFV) of cattle slurry rises from approximately 55–60% when manure is first applied to approximately 80% after 6 and 8 years for RDRs of 33% and 25%, respectively. Given the long manuring history of most agricultural systems, rethinking the fertilizer value of manure seems justified.  相似文献   

20.
Abstract. Nitrate leaching was measured over the eight drainage seasons spanning the nine years from 1990–1998 on the 157‐year old Broadbalk Experiment at Rothamsted, UK. The weather pattern of two dry, three wet and three dry years was the dominant factor controlling nitrogen (N) loss. Both the concentration of nitrate in the drainage waters and the amount of N leached increased with the amount of N applied, mostly because of long‐term, differential increases in soil organic matter and mineralization. On average, losses of N by leaching were 30 kg ha?1yr?1 when no more than the optimum N application was applied and were typical of amounts leached from arable land in the UK. Losses increased significantly in both amounts and as the percentage of N applied for supra‐optimal applications of N and from autumn‐applied farmyard manure (FYM). Extra spring‐applied fertilizer was very effective at increasing yields on plots given FYM in the autumn but at the expense of leaching losses three times those from optimum fertilizer N applications. Losses increased after potatoes because they left significant amounts of mineral N in the soil, and decreased after forage maize because it used applied N more effectively. Losses measured 120 years ago from identical treatments were 74% greater than current losses because of today's larger yields and more efficient varieties and management practices. Average concentrations of nitrate in drainage waters did not exceed the EU limit of 11.3 mg NO3‐N l?1 until supra‐optimal amounts of N fertilizer (>150–200 kg ha?1yr?1) were applied in spring or FYM was applied in autumn. However some drainage waters from all plots, even those that have not received fertilizer for >150 years, exceeded the limit when rain followed a dry summer and autumn. Nitrate leaching into waters will remain a problem for profitable arable farming in the drier parts of Eastern England and Europe despite increased N use efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号