首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I.P. Abrol  I.S. Dahiya 《Geoderma》1974,11(4):305-312
A saline-sodic soil (pH 10.0, ESP 100.0, total soluble salts 10.0 mequiv./100 g) rich in soluble sodium carbonate (7.8 mequiv./100 g) was leached in the laboratory with calcium-containing water. The effect of varying flow velocities and concentration of calcium in the leaching water on the extent of carbonate precipitation was studied by following the composition of leachate in one set of experiments and the redistribution of soluble carbonates in the soil column in another experiment. The results showed that precipitation of soluble carbonates in the soil increased with increasing flow velocity and concentration of calcium in the leaching solution. The results have been discussed in terms of actual flow processes occurring at the wetting front. It is suggested that by controlling the extent of carbonate precipitation, the quantity of amendments containing calcium necessary for the reclamation of sodic soils rich in soluble carbonates can be considerably reduced. The results also suggest that the usual method of determining the gypsum requirement of soils is likely to overestimate the gypsum needs of these soils because a large portion of the soluble carbonates is leached out without reaction with the added gypsum.  相似文献   

2.
Lysimeter experiments were conducted with sandy‐clay‐loam soil to study the efficiency of two amendments in reclaiming saline‐sodic soil using moderately saline and SAR (sodium‐adsorption ratio) irrigation water. Gypsum obtained from industrial phosphate by‐products and reagent grade Ca chloride were applied to packed soil columns and irrigated with moderately saline (ECe = 2.16 dS m–1), moderate‐SAR water (SAR = 4.8). Gypsum was mixed with soil prior to irrigation at application rates of 5, 10, 15, 20, 25, and 32 Mg ha–1, and Ca chloride was dissolved directly in leaching water at application rates of 4.25, 8.5, 12.75, 17.0, and 21.25 Mg ha–1, respectively. The highest application rate in both amendments resulted in 96% reduction of total Na in soil. The hydraulic conductivity (HC) of soils receiving gypsum increased in all treatments. The highest HC value of 6.8 mm h–1 was obtained in the highest application rate (32 Mg ha–1), whereas the lowest value of 5.2 mm h–1 was observed with the control treatment. Both amendments were efficient in reducing soil salinity and sodicity (exchangeable‐sodium percentage, ESP); however, Ca chloride was more effective than gypsum as a reclaiming material. Exchangeable Na and soluble salts were reduced with gypsum application by 82% and 96%, and by 86% and 93% with Ca chloride application, respectively. Exchangeable Ca increased with increasing amendment rate. Results of this study revealed that sodium was removed during cation‐exchange reactions mostly when the SAR of effluent water was at maximum with subsequent passage of 3 to 4 pore volumes. Gypsum efficiently reduced soil ESP, soil EC, leaching water, and costs, therefore, an application rate of 20 Mg ha–1 of gypsum with 3 to 4 pore volumes of leaching water is recommended for reclaiming the studied soil.  相似文献   

3.
Solonetzes of experimental trials established in 1981 and 1986 in the Baraba Lowland were examined. It was found that gypsum-based ameliorants improve the soil and lead to a decrease in the content of soluble salts in the soil profile. Exchange processes between cations of the soil adsorption complex and calcium of gypsum were particularly intensive in the first years after gypsum application. This resulted in a sharp rise in the content of soluble salts that migrated down the soil profile to the groundwater. In the following years, the reclaimed solonetzes were desalinized under the conditions of relatively stable groundwater level. On the 30th year after single gypsum application, the groundwater level sharply rose (to 50 cm), and the soil was subjected to the secondary salinization; the contents of bicarbonates, carbonates, and sodium in the soils increased. Spring leaching caused some desalinization, but the content of soluble salts in the upper soil meter increased again in the fall. A close correlation between the salt compositions of the groundwater and the reclaimed solonetzes was revealed.  相似文献   

4.
水分调控对盐碱地土壤盐分与养分含量及分布的影响   总被引:6,自引:4,他引:2  
为给新疆地区盐碱地开发利用提供合理的灌溉指导,该文研究了滴灌条件下内陆干旱区重度盐碱地水分调控对土壤盐分与养分的影响,2008-2010年连续3 a设置了滴头正下方20 cm处5个土壤基质势下限控制灌溉:-5 kPa(S1)、-10 kPa(S2)、-15 kPa(S3)、-20 kPa(S4)和-25 kPa(S5),每个处理重复3次,按随机区组布置,于2008年试验前和2008-2010年试验后采集土壤样品(0~5、5~10、10~20、20~30和30~40 cm),测定土壤盐分(电导率、钠吸附比)以及土壤养分(速效N、P、K,全N、全P,有机质)含量。结果表明:3 a试验结束后,各处理0~40 cm土层土壤电导率与钠吸附比均显著(p0.05)降低,其中-5 kPa(S1)处理土壤电导率降至5.3 dS/m,降低幅度最大,为89%;速效N、P、K,全N、全P以及有机质含量较试验前均有显著升高,升高幅度均在20%以上,且与土壤基质势下限成正比。各处理速效养分均在滴头周围形成累积区,且随与滴头距离的增加而减少,养分全量与有机质含量在土壤剖面垂直分布差异显著。各处理土壤C/N均较第1年播种前降低,且降低率(4.3%~13.5%)随土壤基质势下限的降低而升高。综合土壤盐分的淋洗效果以及土壤养分的改良程度,滴头正下方20 cm处土壤水基质势控制下限-5 kPa可以作为内陆干旱区前3 a盐碱地水分调控的指导灌溉制度。  相似文献   

5.
Abstract

An adequate supply of available Ca in the soil solution of the pegging zone during fruit development is required for production of high yields of high quality peanuts (Arachis hypogaea L.). On low Ca soils, application of gypsum during early bloom is recommended in order to ascertain adequate availability of Ca. Reaction of gypsum in soils under leaching conditions vary considerably and play an important role in fruit development and yield of peanuts. A laboratory study was conducted in leaching soil columns to investigate the effects of one gypsum amendment on leaching of Ca, K, Mg, and SO4 to a depth of 8 cm (fruiting zone of peanut). Six soils of varying physical and chemical properties representative of major peanut growing soils in Georgia were utilized. Following leaching with 15 cm water through gypsum‐amended soil columns, 50% to 56% and 74% to 77% of applied Ca and SO4, respectively, were leached below 8 cm in the sandy‐Carnegie, Dothan, Fuquay and Tifton soils. The respective values for the sandy clay loam‐Greenville and Faceville soils were 28% to 36% and 58% to 69%. Lower initial Ca status and greater leaching of Ca from the applied gypsum in the sandy soils as compared to sandy clay loam soils suggest greater beneficial effects of supplemental gypsum application for peanut production in the former soils than in the latter soils. Leaching of K or Mg (as percentage of Mehlich 1 extractable K or Mg) in gypsum‐amended treatment was considerably greater in sandy soils than that in the sandy clay loam soils. In view of the reported adverse effects of high concentrations of soil K and Mg in the fruiting zone on the yield and quality of peanuts, greater leaching of K and Mg from the fruiting zone in gypsum amended sandy soils enable them to maintain a favorable cation balance for the production of high yields of quality peanuts.  相似文献   

6.
Salt and sodicity of saline-alkali soil adversely affect the construction of ecological landscapes and negatively impact crop production. The reclamation potential of biochar (BC, wheat straw biochar applied at 1% by weight), gypsum (G, 0.4% by weight), and gypsum coupled with biochar (GBC) was examined in this laboratory-based study by evaluating their effects on a saline-alkali soil (silt loam) with no amendment as a control (CK). Saline ice and fresh water (simulated rainfall) were leached through soil columns to investigate changes in salt content, sodium adsorption ratio (SAR), alkalinity, and pH of the leachate and the soil. Results showed that saturated water content and field water capacity (FWC) significantly increased by 4.4% and 5.6%, respectively, in the BC treatment after a short incubation time. Co-application of biochar and gypsum (GBC) increased soil saturated hydraulic conductivity (Ks) by 58.4%, which was also significantly higher than the sole addition. Electrical conductivity (EC) of the leachate decreased sharply after saline ice leaching; subsequent freshwater leaching accelerated the removal of the rest of the salts, irrespective of the amendment application. However, the application of gypsum (G and GB) significantly enhanced the removal of exchangeable Na+ and reduced leachate SAR. After leaching, the soil salt content decreased significantly for all treatments. The application of gypsum resulted in a significantly lower soil pH, exchangeable sodium percentage (ESP), SAR, and alkalinity values than those recorded for the CK and BC treatments. These results demonstrated that the co-application of gypsum and biochar could improve saline-alkali soil hydraulic conductivity and decrease leaching-induced sodicity over a short period.  相似文献   

7.
Potential for carbon dioxide (CO2) biosequestration was determined during the reclamation of highly saline–sodic soils (Aridisols) after rice (2003) and wheat (2003–2004) crops at two sites in District Faisalabad, Pakistan. Two treatments were assessed: T1, tube-well brackish water only; and T2, soil-applied gypsum at 25% soil gypsum requirement?+?tube-well brackish water. The irrigation water used at both sites had different levels of salinity (EC 3.9–4.5 dS m?1), sodicity (SAR 21.7–28.8), and residual sodium carbonate (14.9 mmolc L?1). Composite soil samples were collected from soil depths of 0–15 and 15–30 cm at presowing and postharvest stages and analyzed for pH, ECe, and sodium adsorption ratio (SAR). After rice harvest, there was no significant effect of gypsum application on ECe, pH, and SAR at both sites, except pH at 0–15 cm depth decreased significantly with gypsum at site 1. After wheat harvest, ECe, pH, and SAR decreased significantly with gypsum at site 1, whereas the effect of gypsum on these parameters was not significant at site 2. Compared to initial soil, ECe and SAR in soil decreased considerably after rice or wheat cultivation, particularly at site 1, whereas pH increased slightly due to cultivation of these crops. For rice, the total CO2 sequestration was significantly increased with gypsum application at both sites and ranged from 1499 to 2801 kg ha?1. The total sequestration of CO2 was also significantly increased with gypsum application in wheat at both sites and ranged from 2230 to 3646 kg ha?1. The amounts of CO2 sequestered by crops due to gypsum application were related to seed and straw yield responses of rice and wheat to gypsum, which were greater at site 1 than site 2. Also, the yield response to applied gypsum was greater for rice than wheat at site 1, whereas the opposite was true at site 2. Overall, the combined application of gypsum with brackish water reduced soil ECe and SAR compared to brackish water alone, particularly at site 1. Our findings also suggest that the reclamation strategies should be site specific, depending on soil type and quality of brackish water used for irrigation of crops. In conclusion, the use of gypsum is recommended on brackish water–irrigated salt-prone soils to improve their quality, and for enhancing C biosequestration and crop production for efficient resource management.  相似文献   

8.
Reclamation of saline soils involves heavy leaching with water, with or without the addition of gypsum, depending upon the calcium content of the soil. Many a time, flushing the soil becomes difficult because of its low permeability due to high clay content, as obtained in most of the coastal saline soils of India. There is also the danger of hydrolysis under conditions of prolonged leaching, which may result in raising the pH, dispersion of the soil, impeded drainage, root penetration and aeration. Reclamation of such soils, therefore, calls for the improvement of physical conditions for better permeability and addition of calcium rich substances. Indigenous materials like basic slag, lime sludge, calcareous soil and iron rich mineral soil, in addition to gypsum, may serve as useful amendments for improving the soil's physical conditions. It was, therefore, thought worth-while to study the effect of addition of these materials on the improvement of saline soils.  相似文献   

9.
The effectiveness of sequential application of gypsum followed by matured mixed municipal solid waste (MSW) compost was investigated for the reclamation of saline-sodic soils. Soil plots were treated with 50 dt/ha (dry tone/hectare) of gypsum, followed by the addition of matured MSW compost at the 50, 100, and 150 dt/ha with five replications for each treatment. A number of physical, chemical and biological properties were investigated. The results from different treatments were compared with the Tukey-Kramer method. The results of this study show that the sequential application of gypsum followed by matured MSW compost can effectively restore degraded soils suffering from high soluble salts and exchangeable sodium content.  相似文献   

10.
Abstract

Soil salinization and sodication affect large areas of agricultural land in the world. Amelioration of these soils to make them suitable for agricultural production depends on understanding sodium dynamics and chemical interactions governing nutrient availability. Three locations in eastern Croatia were characterized to the 5‐m depth. The two solonetz‐solonchak soils were alkaline, whereas the solonetz soil had near‐neutral A/E horizon and alkaline deeper horizons. Electrical conductivity of the saturated extract (ECe) was greater than 4 dS m?1 in the top horizons in the solonetz‐solonchak soils. The solonetz soil had 2.8–4.7 dS m?1 in shallow A/E, CG, and G horizons and up to 6.3 dS m?1 below 1.5 m. Highly alkalinized sodic horizons (exchangeable sodium percentage, ESP >20) had 24–47% Ca2+ and 27–33% Mg2+ on the cation exchange complex. Sodium adsorption ratio (SAR) was high (18–26) in the P horizon and even more so in Bt,na horizon (35–36) of solonetz‐solonchak soils. A strong negative exponential relationship existed between soluble Ca2+ and SAR (SAR increased greatly when Ca2+ dropped to around 3 mg dm?3). An increase in pH to greater than 8.4 resulted in an exponential increase in SAR. Leaching of Na+ with successive volumes of water was similarly effective for the P and Bt,na horizons in the solonetz‐solonchak soils, but SAR remained greater than 15 even after six successive cycles of leaching. In conclusion, extensive amelioration of tested soils with gypsum and leaching will be required to overcome poor physical and chemical characteristics caused by various degrees of alkalization and sodication to bring these soils into production.  相似文献   

11.
Exchange-induced dissolution of gypsum and the reclamation of sodic soils   总被引:2,自引:0,他引:2  
A study was undertaken to define the dissolution kinetics of gypsum in the presence of ion exchange resins and to study sodic soil reclamation in laboratory soil columns.
Gypsum pellets were prepared at 1.5 MPa pressure and the time course of their dissolution followed by measuring the electrical conductivity of the solution. Dissolution experiments were carried out in distilled water with and without Na- and Cl-saturated exchange resins or a combination of the two. The results indicate that in the presence of resin the reaction is first order as calcium and/or sulphate are removed from solution by the resin driving the reaction to completion. In water alone the reaction follows second-order kinetics and depends on the rate of mixing as the reaction is transport controlled.
The effect of gypsum placement (uniformly mixed with the entire soil, mixed with the top third of the soil, applied to the soil surface or applied as a saturated gypsum solution) on the efficiency of exchangeable sodium removal, leaching of soluble salts and soil hydraulic conductivity was studied. In addition, the effect of various flow rates on reclamation efficiency was investigated.
The amount of leachate required for reclamation was found to be dependent on gypsum placement, tending to decrease in the order mixed < top third mixed < saturated gypsum solution < gypsum surface application < water. Soil hydraulic conductivity was much higher in the mixed gypsum column than in the gypsum applied on the surface; a result of the higher effective gypsum solubility. Sodic soil electrical conductivity in the presence of solid-phase gypsum is linearly related to the total amount of exchangeable sodium expressed in mol dm−3.  相似文献   

12.
硫酸法钛石膏作为土壤调理剂在油菜上的施用效果研究   总被引:1,自引:0,他引:1  
为研究钛白粉生产过程中经无害化处理的副产品钛石膏作为土壤调理剂的施用效果及安全性,试验对供试钛石膏通过成分鉴定—土柱淋溶—盆栽种植的方式,研究了钛石膏和钛石膏淋溶液中的有害元素含量以及钛石膏与土壤不同比例掺混后对油菜生长、产量和功能叶光合速率影响。结果表明:钛石膏主要成分为CaSO_4和Fe_2O_3,固体中的重金属含量均符合国家安全标准。钛石膏淋溶液中含有较少量的Ca~(2+)、Mg~(2+),不含其他有害物质,施用后不会随雨水和灌溉污染土壤和地下水。随着钛石膏添加比例的增加,油菜产量呈先增高后降低的趋势,过量的钛石膏施用会抑制油菜的生长。钛石膏与土壤按照1∶4体积比混合施用后效果最好,与常规土壤栽培方式相比,油菜出苗20天后功能叶蒸腾速率提高了11.86%;出苗30天后功能叶SPAD值增加了4.33%,收获时油菜株高提高了12.97%,产量增加了14.08%。相关性分析显示,油菜产量(y)与钛石膏添加比例(x)的关系为y=0.0001x~3-0.0212x~2+0.6966x+41.815(R~2=0.999 4),综合考虑函数及其他因素,在实际生产中若每公顷施用300t的钛石膏能起到最佳增产效果。  相似文献   

13.
In low Ca soils, gypsum is applied at flowering of peanut (Arachis hypogaea L.) to insure adequate availability of Ca in the fruiting zone (0 to 8 cm soil depth) during pod development. Effects of 15.2 cm water applied as 1, 2, 4 or 12 split applications over 28-d period following the application of gypsum on the distribution of Ca and other cations in the fruiting zone and immediately below the fruiting zone (8 to 16 cm depth) were investigated on the Lakeland and Tifton soils under controlled conditions in rainout shelter plots. In Lakeland soil, the fruiting zone Ca concentration was greater for the high frequency (15.2 cm in 4 or 12 split applications) irrigation treatments than for the low frequency (15.2 cm in 1 or 2 split applications) treatments at 7 d. Those differences became non-significant after 14 d. In Tifton soil, leaching of Ca below the fruiting zone was significantly greater for the low frequency irrigation treatments than for the high frequency treatments throughout the duration of this e experiment. High frequency irrigation of moderate quantities should result in low Ca losses from the fruiting zone. Irrigation following gypsum application decreased K and Mg concentrations in the fruiting zone for both soils. The gypsum-induced leaching of K or Mg was lower in high frequency irrigation treatments than in low frequency treatments. High frequency irrigation following gypsum application resulted in a decrease in soil pH during the initial 7 d.  相似文献   

14.
The effect of natural grasses namely Ghab (Phragmites communis) and Nisela (Panicum repens) compared to leaching and gypsum addition on reducing the salinity and alkalinity of heavy clay texture salt affected soil in northern Egypt was investigated for 2 years. In a field experiment 18 plots (6×7 m2 each) were prepared for six treatments. Each treatment had three replicates. The treatments were ponding (8–10 cm water depth), gypsum (12 t per feddan, where one feddan=4200 m2) and the last four treatments were cultivation of Ghab and Nisela with and without gypsum.

Ghab and Nisela grasses reduced the salinity of the upper 50 cm soil layer more than leaching in both years. The reduction was more pronounced after the second year. The relative EC for the upper 50 cm after the first year compared to its initial value was in the range of 26.8–44.7% for ponding, 30.3–45.6% for gypsum, 23.6–42.2% for Ghab, 21.2–35.9% for Nisela, 20.9–40.1% for Ghab+gypsum and 19.7–32.5% for Nisela+gypsum. The reduction was even greater after the second year and reached to its maximum at Nisela+gypsum (5.5–5.9%). However, the reduction of the sodium adsorption ratio (SAR) took the same trend recorded with salinity but with less magnitude in both years. Therefore, Ghab and Nisela reduced both salinity and alkalinity of the upper surface layer more than leaching or gypsum and produced high fresh yield which could be utilized in livestock fodder during the reclamation of such unproductive soils.  相似文献   


15.
Abstract

Saline‐sodic irrigation water, coupled with low annual rainfall and high evapotranspiration in the arid and semi‐arid regions have resulted in accumulation of soluble salts in the soil solution and of cations (especially sodium ions) on exchange sites, which can alter the structure and, consequently, affect the soil hydraulic conductivity (HC). Among the different factors, the amount of gypsum applied and the flow rate of leaching solution are major factors influencing the HC of the soil in the presence of saline sodic solutions. The study was initiated to improve the understanding of swelling and dispersion processes (as two major mechanisms responsible for reduction in HC) in response to saline‐sodic conditions, in particular, the role of gypsum application and the flow rate of leaching solutions. The study was conducted in a series of two leaching experiments. In the first set, different rates of gypsum (i.e., 0, 10, 20, and 30 tons ha‐1) were mixed with 4 soil samples and leached with a saline‐sodic solution of concentration of 100 meq (NaCl+CaCl2)L‐1 with sodium adsorption ratio (SAR) 20 and the base flow rate (BFR) of 15 mL min‐1. In the second set of experiments, the same soils treated with the same gypsum level and the same leaching solutions as in the first set, but leached with the BFR of 5 mL min‐1 instead of the BFR of 15 mL min‐1. In general, the gypsum application modified the suppressing effect of salinity and sodicity on the HC values of the tested soils, and the effects were more pronounced for higher rates of gypsum applied. However, increase in the BFR from 5 to 15 mL min‐1, significantly masked this recovering effect of gypsum application, and the effect was reflected in both swelling and dispersion processes.  相似文献   

16.
A field experiment was carried out at the University of Agriculture, Faisalabad (Pakistan) during 1988–90 to evaluate the comparative efficiency of chemical and biological methods for the reclamation of a calcareous saline-sodic soil (pHs
  • 1 pHs = pH of saturated soil paste
  • = 8.2–8.6; ECe
  • 2 ECe = Electrical conductivity of the saturation extract
  • = 7.4–9.0 dS m−1; SAR
  • 3 SAR = Sodium adsorption ratio
  • = 55.6–73.0 for upper 30 cm layer). Five treatments were assessed, three involved cropping: sesbania (Sesbania aculeata), sordan (Sorghum bicolor x Sorghum sudanese), and kallar grass (Leptochola fusca) and two were non-cropped (control and gypsum at 100.0 per cent GR-15·0 cm) were employed. Water of low electrolyte concentration (EC = 0.27 dS m−1) was used for irrigation and leaching. Sesbania and kallar grass were found to be effective biotic materials for soil reclamation. These plant species produced substantial biomass and also improved the soil environment by lowering the EC and SAR of the soil. Sordan was relatively less-effective due to its sensitivity to high temperature and sodicity during germination and early seedling stages. After two cropping seasons, wheat (cultivar LU 26S) was sown as a test crop. Efficiency of treatments as indicated by wheat grain yield was in the order: sesbania = gypsum > kallar grass > sordan > control.  相似文献   

    17.
    河北滨海盐碱区暗管改碱技术的降雨有效性评价   总被引:8,自引:1,他引:8  
    在河北滨海盐碱荒地和盐碱低产田开展暗管改碱技术面临淡水资源严重短缺、灌溉条件差的问题,降水资源的利用对于该区域暗管改碱技术实施效果的影响很大。本文以河北省黄骅市为研究区域, 对河北滨海盐碱区的降水特征及其对暗管改碱技术的影响进行分析。结果表明: 当土壤含盐量<0.3%时, 年内次降水量可完全满足土壤初次淋洗脱盐过程需要; 当土壤盐分含量>0.3%但<0.5%时, 在较容易淋洗的土壤上, 暗管埋深合适时, 脱盐需要的次降水量仍可基本满足; 但当土壤含盐量达到0.5%左右时, 仅靠自然降水不能保证土壤脱盐需要。暗管埋设条件下, 雨季(6~9 月)降水量对大面积的轻度盐碱地淋洗脱盐效果非常显著; 但重度盐碱地却不能达到理想脱盐效果。从年降水量的变化情况看, 研究区域降水量逐年降低的趋势比较明显, 干旱年份多于洪涝年份, 且旱情较为严重。因此未来推广实施暗管改碱工程时有必要考虑亏缺灌溉对自然降水淋盐的补充效果。  相似文献   

    18.
    Abstract

    Soil salinization is a serious problem in the arid and semi-arid regions of Central Asia. To address the problems, we analyzed the dynamics and distribution patterns of salts in both rice-based and cotton-based cropping fields in selected farms of southern Kazakhstan and Uzbekistan with special emphasis on the dynamics of gypsum, which had a lower solubility than Na salts, as an index of water-movement regimes in irrigated fields. Most of the rice-based plots and some of the cotton-based plots exhibited no surface accumulation of soluble salts or gypsum because of repeated washing by a huge amount of irrigation water in the former or comfortable drainage in the latter. These soils are probably free from the risk of secondary salinization under present conditions and management practices. In contrast, uncultivated plots near canals accumulate both soluble salts and gypsum in the surface soil layers, and these salts would not be leached out without a drastic change to a predominantly downward pattern of water movement. In the intermediate stages in terms of soil salinization, some soils accumulated substantial amounts of soluble salts in surface layers but relatively low amounts of gypsum. In this case, periodic irrigation could have washed out most of the gypsum and soluble salts in a downward direction and, consequently, it is possible to leach out the accumulated soluble salts by applying additional irrigation water if necessary. However, there were some cases in which soils accumulated large amounts of gypsum in surface layers as well as soluble salts, suggesting that irrigation/drainage is generally insufficient to remove gypsum with a lower solubility and that these profiles are dominated by an overall upward movement of water. For these soils, drainage facilities should be improved to ensure the efficient leaching of accumulated salts on cropping. Thus, the condition of irrigated plots in terms of the direction of water movement and resulting salt regimes can be well understood from the distribution patterns of both soluble salts (or cations) and gypsum.  相似文献   

    19.
    Biological, chemical and bio‐chemical strategies have been tested in the past for reclamation of saline‐sodic and sodic soils. The efficiency of two crop rotations (rice‐wheat and Sesbania‐wheat) alone or in combination with either gypsum (CaSO4.2H2O) or sulfuric acid (H2SO4) was tested for ionic displacement from four saline‐sodic soils. Pure gypsum was applied at 50 per cent of soil gypsum requirement at the time of planting rice and Sesbania, whereas 95 per cent pure sulfuric acid was added at 50 per cent soil gypsum requirement as one‐third applications by mixing with the first three irrigations. The rice crop biomass decreased at a soil saturation extract electrical conductivity (ECe) of 8 dS m−1, whereas wheat and Sesbania were influenced at a sodium adsorption ratio (SAR) of ≥40. Gypsum treatment helped the crops flourish well at these ECe and SAR levels. The infiltrated volume of water dropped with decrease in ECe : SAR ratio of soils and increase in crop biomass production. Crops rotation treatments alone helped leach sodium (Na+) and other ions successfully at SAR ≤ 21 but were less effective at SAR ≥ 40 at which point plants growth was also curtailed. Gypsum and H2SO4 treatments significantly aided leaching of Na+ and other ions with water at SAR ≥ 40 under both the crop rotations. Hence, crops effectively reclaimed soil at low sodicity level, whereas at high SAR, chemical amendments are obligatory in order to reclaim soils. This study also suggests that the required dose of H2SO4 should be applied with pre‐planting irrigation for better yield of the first crop. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

    20.
    In order to utilize the wasted saline-sodic soils under shallow groundwater condition,a 3-year field study was carried in a field cropped with Lycium barbarum L.and irrigated by drip irrigation with saline groundwater under the water table depth of 30-40 cm in the northern Yinchuan Plain,China.Effects of cropping duration (one,two,and three years) on soil salinity,soil solution composition,and pH in three adjacent plots were investigated in 2008.Results showed that a high irrigation frequency maintained high soil water potential and subsequently facilitated infiltration and downward movement of water and salt in the crop root zone.Salt accumulated on the edges of the ridges,and soil saturated-paste electrical conductivity (ECe) was higher in the edge.Concentrations of Na+,Ca2+,Mg2+,Cl-,and SO42- in the soil increased with the soil depth as did the ECe,while HCO3- and pH had a relative uniform distribution in soil profile.As planting year increased,the ECe and soil salts in the field had a decreasing tendency,while in the root zone they decreased immediately after irrigation and then remained relatively stable in the following growing seasons.HCO3- and pH had little change with the planting year.Results suggested that the application of drip irrigation with saline water could ameliorate saline-sodic soil and provide a relatively feasible soil environment for the growth of salt-tolerant plant Lycium barbarum L.under the saline-sodic soils with shallow groundwater.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号