首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Whole wheat is well known by consumers as a health-providing ingredient. Nevertheless, in extruded products it leads to textures that are less favorable to consumer preference compared to its refined flour. An understanding of the effect of extrusion on whole wheat properties is therefore necessary to improve its texture. Whole wheat flour was extruded under varying conditions of water content (18 or 22%), screw speed (400 or 800 rpm) and barrel temperature (140 or 180 °C) and its physicochemical properties were measured. Changing the extrusion conditions significantly modified the volumetric expansion index (between 9.1 and 20.6) and longitudinal expansion (between 0.93 and 2.98) of the samples. Interestingly, changing the extrusion conditions did not significantly modify the sectional expansion. Increasing barrel temperature, water content or screw speed decreased the shear viscosity of the melt. This can be explained by plasticizing effects and modification of starch properties. The change in shear viscosity at the die can mostly explain the effect of process conditions on volumetric expansion of the extruded whole wheat. The stress at rupture of the extruded samples was varied between 0.49 and 1.86 MPa depending on process conditions. It was the lowest at high water content and low screw speed.  相似文献   

2.
Extrusion processing characteristics of Cherry Vanilla quinoa flour (Chenopodium quinoa Willd) were investigated using a three factor response surface design to assess the impact of feed moisture, temperature, and screw speed on the physicochemical properties of quinoa extrudates. Specific mechanical energy (SME) required to extrude this quinoa variety was higher (250–500 kJ/kg) than previously reported for quinoa. The following characteristics of the extrudates were observed: expansion ratio (1.17–1.55 g/cm3), unit density (0.45–1.02 g/cm3), water absorption index (WAI) (2.33–3.05 g/g), and water solubility index (WSI) (14.5–15.87%). This quinoa flour had relatively low direct expansion compared to cereal grains such as corn or wheat, suggesting that it is not well suited for the making of direct expanded products. The study further suggests that there is a need to understand the processing characteristics of new quinoa varieties for cultivation. Understanding extrusion and other quality traits in advance will help to select the appropriate varieties that would allow food processors to meet consumer needs.  相似文献   

3.
Brewer's spent grain (BSG) is an important by-product from the brewing process produced in high amounts worldwide. BSG is rich in carbohydrates, lignin, proteins and lipids. In this work, the chemical composition of the lipids in BSG was studied in detail by gas chromatography and mass spectrometry. The predominant lipids were triglycerides (67% of total extract), followed by a series of free fatty acids (18%). Lower amounts of monoglycerides (1.6%) and diglycerides (7.7%) were also identified among the lipids in BSG, together with minor amounts of other aliphatic series such as n-alkanes and alkylresorcinols. Steroid compounds (steroid hydrocarbons, steroid ketones, free sterols, sterol esters and sterol glycosides) were also found in important amounts in BSG (ca. 5%), with free and conjugated sterols being the most abundant steroids. BSG can thus be regarded as a valuable source of phytochemicals of interest for the pharmaceutical, cosmetic, food or other industries.  相似文献   

4.
Brewer's spent grain (BG), the most abundant brewing by-product, is used in the present study as a low-cost feedstock for the production of ethanol by the mesophilic fungus Fusarium oxysporum using a consolidated bioconversion process. The production of required cellulolytic and hemicellulolytic enzymes was optimized under solid-state cultivation (SSC) concerning carbon source and initial moisture. The optimal medium contains BG and corn cobs (CC) in a ratio 7:3 while the optimal initial moisture is 66% (w/w). SSC in a laboratory horizontal bioreactor using the optimized medium allowed the large-scale production of a multienzymic system including endoglucanase, cellobiohydrolase, β-d-glucosidase, xylanase, feruloyl esterase, acetyl esterase, β-d-xylosidase and α-l-arabinofuranosidase. Chromogenic (fluorogenic) 4-methylumbelliferyl substrates were used to partially characterize the extracellular proteome of the microbe after the separation by isolectric focusing (IEF) electrophoresis. Alkali pretreatment of brewer's spent grain and different aeration levels were studied for the optimization of the ethanol production by F. oxysporum in a consecutive submerged fermentation. A yield about 65 g ethanol kg−1 of dry BG was obtained with alkali pretreated BG under microaerobic conditions (0.01 vvm) corresponding to 30% of the theoretical yield based on total glucose and xylose composition of BG.  相似文献   

5.
Changes in the solubility of corn proteins occurring during traditional nixtamalization and extrusion processes used to produce tortillas were studied using size exclusion chromatography, SDS-PAGE and the Dumas method to measure 50% propanol-insoluble protein. Size exclusion chromatography (HPL-SEC) studies furthered the understanding of protein solubility changes during both processes. Extrusion caused more protein aggregation in tortilla intermediate and final products than traditional nixtamalization. Mixing during extrusion and in the intermediate step of masa production in the traditional nixtamalization process was critical in reducing protein solubility. Baking tortillas also considerably reduced the protein solubility for the traditional nixtamalization process. Baking produced aggregation that could not be disrupted with a reducing agent.  相似文献   

6.
Representatives of three types of feruloyl esterases were examined for their ability to release mono- and di-meric ferulic acid from water-extractable and water-unextractable cereal cell wall material, either alone or in the presence of a family 10 or family 11 xylanase. A type-C feruloyl esterase from Talaromyces stipitatus (TsFaeC) released 100% of the ferulic acid from water-extractable wheat endosperm arabinoxylan when acting in combination with a xylanase from Trichoderma longibrachiatum. The type-A esterase from Aspergillus niger, AnFaeA, was most effective in releasing ferulic acid from wheat bran and brewers' spent grain, with over 50% of the available ferulic acid being released from wheat bran in the presence of a xylanase from Bacillus subtilis. In general, family 11 xylanases were the preferred synergistic partners with feruloyl esterases for the release of ferulic acid, while family 10 xylanases were preferred for the liberation of diferulic acid, with only the 5,5′ form being released by the action of AnFaeA alone. This suggests that ferulic acid may be located in regions of low substitution on arabinoxylans while the 5,5′ diferulate moiety is located in more branched regions of the xylan chain.  相似文献   

7.
The health benefits associated with dietary fiber have resulted in it now being used in virtually all food product categories, including many products which are manufactured using extrusion processing. The objective of the present study was to determine if extrusion processing affected phytic acid, and soluble and insoluble fiber contents. The effect of screw speeds of 50, 70, and 100% of maximum rotations per minute (% MRPM) on these components was investigated. A BI-EX Model DNDG-62/20D co-rotating intermeshing self-cleaning twin-screw extruder, manufactured by Bühlerag, CH-9240, Uzwil, Switzerland, was used to process wheat, oat and rice brans. It was found that extrusion did not affect the insoluble fiber content of wheat bran; however, a decrease in this component was observed in rice and oat brans. The effect on rice bran insoluble fiber was greatest at screw speeds of 50 and 70% MRPM. This occurred in oat bran at 50% MRPM. Soluble fiber content increased in all brans after extrusion, except ER100. For oat and rice bran soluble fibers, the greatest increase occurred at 50 and 70% MRPM, while for wheat bran this occurred at 70 and 100% MRPM. Extrusion did not affect the phytate content of the cereal brans.  相似文献   

8.
Wholemeal flour from five Czech spring barley materials was processed in a single-screw extruder at 130 °C, addition of 20% water and a screw speed of 220 rpm. Two barleys (AF Cesar, AF Lucius) were hulless cultivars with a standard starch composition, while three barleys (KM 2624, KM 2460-1, KM 2460-2) were hulled waxy lines. The effect of extrusion on content of different dietary fibre fractions was determined. Also the changes of the molar mass of β-glucan were studied. Regardless of the barley genotype (standard starch or waxy), the extrusion had no significant effect on arabinoxylan content. A significantly higher beta-glucan and soluble dietary fibre content in barley cultivars with standard starch composition was observed after extrusion. The content of insoluble dietary fibre decreased significantly in all extruded flours. The molar mass of water-extractable beta-glucan increased independently of the barley variety after extrusion. But the increase in beta-glucan extractability due to extrusion was not observed.  相似文献   

9.
To develop a simple and fast method for screening genetically modified ingredients from processing by-product and waste, direct quantitative PCR (qPCR) kit-Taqman which omitting multi genomic DNA preparing steps was developed in this study. A total of 18 oil crop processing by-products and wastes including 10 soybean and 8 cotton materials were collected from food processing factories. Compared with 2 commercial direct qPCR kits, conditions of DNA releasing procedure and PCR amplification were optimized. Element screening was performed at the initial step of genetically modified (GM) ingredient testing procedure via direct qPCR. GM event identification was carried out in positive samples by initial screening. Totally 5 screening elements (P–35S, T-NOS, Cp4-epsps, bar and pat) for soybean materials and 6 screening elements (P–35S, T-NOS, NPTII, Cry1Ac, bar and pat) for cotton samples were detected. In GM event identification, MON531 and MON1445 were found in cotton materials. Results were further confirmed by real-time PCR with DNA extraction and purification. The direct qPCR system proposed by this research was convenient for rapid screening and identification of GM ingredients in oil crop primary by-product and waste.  相似文献   

10.
Brewers' spent grain (BSG) is the insoluble residue generated from the production of wort in the brewing industry. This plant-derived by-product is known to contain significant amounts of valuable components, which remain unexploited in the brewing processes. Therefore, it is essential to develop a more detailed characterization of BSG in order to highlight its potential in developing new value-added products and simultaneously solve the environmental problems related to its discharge. The content of BSG in several biologically active compounds (fatty acids, polyphenols, flavonoids, antioxidant capacity) as well as its volatile fingerprint were assessed and compared with the composition of barley, malt and wheat flour samples. The obtained results emphasized the importance and the opportunities of the re-use of this agro-industrial by-product.  相似文献   

11.
Brewer's spent grain (BSG), the most abundant brewing by-product, has hidden and underexploited nutritional potential. In order to valorize BSG, the effects of three commercial xylanases and a peptidase on water unextractable arabinoxylans (WUAX) were studied. Comparing all treatments, higher addition of xylanase resulted in an increase in water extractable arabinoxylans (WEAX). In the most efficient treatment, xylanase alone was able to solubilise 23.7% of WUAX, while the peptidase showed no effect. However, when added together with xylanase, peptidase increased the solubilisation of WUAX up to 1.6 folds. A positive correlation between particle size reduction and solubilisation of WUAX was also proved through milling BSG. These results suggest that access to xylan backbone increases with proteolytic activities, proving a synergistic effect of these specific enzymes. Therefore, if properly treated before being added as ingredient, BSG could add health functionalities to foodstuff while reducing the environmental impact of brewing industries.  相似文献   

12.
Land suitability analysis of Moringa oleifera tree cultivation is important to enhance its product, as the demand for this tree for medicinal values and food sources is increasing worldwide. Therefore, this study aimed to assess suitable land for Moringa oleifera tree cultivation by using the integration of multi-criteria evaluation with geospatial technologies in the Dhidhessa catchment, western Ethiopia. Five parameters, namely: slope, land use and land cover(LULC), soil texture, land surface ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号