首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
煤矸石充填复垦地理化特性与重金属分布特征   总被引:15,自引:8,他引:7  
为研究煤矸石充填复垦地农作物产量达到最佳时的覆土厚度及煤矸石充填复垦地重金属分布状况,该文以新庄孜矿煤矸石充填复垦地作为研究对象,采取室外田间小区试验和室内试验分析方法,选取不同覆土厚度50~60,60~70,70~80,80~90 cm的4类试验地块及对照地块对其土壤理化性质及农作物根系分布、长势产量、重金属元素含量进行调查分析,发现复垦地块各项指标与对照地块差异显著,劣于对照地块;煤矸石充填基质土壤理化性质较差;70~80 cm的厚度是煤矸石充填复垦造地较经济合理的覆土厚度。煤矸石复垦地重金属元素有向上迁移的趋势;复垦土壤及煤矸石基质中Pb、Zn、Cr元素含量处于安全水平;大部分监测的Cu、Ni、Cd元素含量高于淮南土壤背景值,低于中国土壤环境质量标准二级标准,对复垦土壤已构成潜在的威胁性,应予以重视;覆土厚度50~60 cm地块的煤矸石基质中Cu、Ni元素含量处于安全水平,煤矸石基质中Cd元素含量高于淮南土壤土壤背景值,低于中国土壤环境质量标准二级标准,应予以重视。结果表明70~80 cm的厚度是煤矸石充填复垦造地最佳覆土厚度;新庄孜煤矸石充填复垦地重金属有向上迁移的趋势,复垦土壤中重金属含量符合国家二级标准,未出现重金属污染情况,但部分重金属元素含量高于淮南市土壤背景值,应予以重视。  相似文献   

2.
Abstract

Excess soil moisture is believed to cause reduced levels of soil mineral N and crop production in winter wheat on the Southern Piedmont. Artificial subsurface drainage was used to relieve excess soil moisture and soil mineral N levels, mineralization, nitrification, denitrification and a group of soil properties were analyzed in both drained and undrained treatments. Drainage increased rates of mineralization and nitrification and decreased rates of denitrification, leading to higher levels of soil mineral N in drained plots than in undrained plots. Wheat yields were not affected by drainage, probably because the rate of N applied in spring (80 kg‐N/ha) was high enough to counteract the effects of decreased soil mineral N levels in undrained treatments.  相似文献   

3.
A field experiment was conducted from 1983 to 1992 in Tsukuba, Japan to investigate the effects of tillage on soil conditions and crop growth in a light-colored Andosol. Three tillage methods (NT: no-tillage, RT: no-tillage for summer cropping and moldboard plowing for winter cropping, and CT: conventional rotary tillage to a depth of 15 cm) were employed in combination with crop residue application (+R, −R) and fused magnesium phosphate (FMP) fertilization (+P, −P). Under the combination of NT and +R, diurnal variation of soil temperature at a depth of 5 cm was smaller during the summer cropping season and soil temperature in the daytime was lower during the winter cropping season than under CT. Soil inorganic N concentration at a depth of 0–30 cm was +R > −R and NT > RT > CT. The early growth of summer crops was accelerated under NT in comparison with CT, and yields were higher under NT and RT in comparison with CT. On the other hand, winter crop yields were significantly reduced under NT, while they were still higher under RT in comparison with CT. Yields were higher with +R and +P application, respectively, and these effects were more pronounced in winter cropping. The positive effect of FMP fertilization was greater in combination with NT, and that of residue treatment was greater in combination with RT and NT than with CT. In conclusion, the best tillage practice for Andosols on the Kanto Plain is RT, i.e. a combination of NT for summer cropping and CT for winter cropping. The application of NT for winter cropping is not recommended, although the application of phosphate and crop residues could reduce the risk of yield reduction, because of improved soil nutrient status and moderation of diurnal soil temperature.  相似文献   

4.
Purpose

The quantification of spatial patterns of soil respiration (RS) is an important step in modelling soil carbon budgets. This study aims to characterise the spatial variability of RS using traditional and geostatistical analyses in a mature temperate forest during the growing season, with emphases on temporal variation in the spatial patterns and soil properties and stand structural parameters driving the variability of RS.

Materials and methods

RS, soil temperature and soil water content were sampled at 780 positions in a 9.12-ha permanent plot in a spruce-fir valley forest in the spring, summer and autumn of 2015. Furthermore, edaphic properties were measured adjacent to each sampling point, and all trees with DBH (diameter at breast height of tree) greater than 1 cm were mapped in the plot.

Results and discussion

RS showed strong spatial variation across the three measurement campaigns, with the autocorrelation length ranging from 10 to 17 m. The spatial variability of RS in the spring period was relatively higher than that of summer and autumn. Soil water content was confirmed to be the primary factor driving spatial RS, followed by soil temperature, soil organic carbon, total nitrogen, C:N, pH and the maximum DBH within radius of 4 m of sampling points. The multiple regression model fitted by soil properties and stand structural parameters could account for 11–32% of the spatial variation of RS. However, the involved factors in the regression model varied with season, and soil temperature was more important in controlling the spatial variability of RS in the spring period.

Conclusions

The study highlights that soil water content and soil temperature play the most important role in determining the spatial patterns of RS across the growing season.

  相似文献   

5.
Grazing of cover crops in grain cropping systems can increase economic return and diversify agricultural production systems, but the environmental consequences of this intensified management have not been well documented, especially under different tillage systems. We conducted a multiple-year investigation of how cover crop management (grazed and ungrazed) and tillage system [conventional (CT; initial moldboard plowing and thereafter disk tillage) and no tillage (NT)] affected soil physical properties (bulk density, aggregation, infiltration, and penetration resistance) on a Typic Kanhapludult in Georgia. Responses were determined in two cropping systems: summer grain/winter cover crop and winter grain/summer cover crop. Soil bulk density was reduced (P = 0.02) with CT compared with NT to a depth of 30 cm at the end of 0.5 year, but only to a depth of 12 cm at the end of 2, 2.5, and 4.5 years. Grazing of cover crops had little effect on soil bulk density, except eventually with 4.5 years of management. Water-stable macroaggregation was reduced (P ≤ 0.01) with CT compared with NT to a depth of 12 cm at all sampling times during the first 2.5 years of evaluation. Stability of macroaggregates in water was unaffected by grazing of cover crops in both tillage systems. Across 7 sampling events during the first 4 years, there was a tendency (P = 0.07) for water infiltration rate to be lower with grazing of cover crops (5.6 mm min−1) than when ungrazed (6.9 mm min−1), irrespective of tillage system. Across 10 sampling events, soil penetration resistance was greater under NT than under CT at a depth of 0–10 cm (P = 0.001) and the difference was greater in ungrazed than in grazed systems (P = 0.06). Biannual CT operations may have alleviated any surface degradation with animal traffic, but the initially high level of soil organic matter following long-term pasture and conversion to cropland with NT may have buffered the soil from any detrimental effects of animal traffic. Overall, the introduction of cattle to consume the high-quality cover crop forage did not cause substantial damage to the soil.  相似文献   

6.
安太堡露天煤矿复垦区不同人工林土壤呼吸特征   总被引:2,自引:0,他引:2       下载免费PDF全文
[目的]探讨复垦模式对土壤呼吸作用的影响,同时为矿区复垦土地质量评价、复垦模式的筛选提供数据支撑。[方法]采用动态密闭气室红外CO2分析法对露天煤矿复垦区5块永久性样地土壤呼吸作用及其相关组分的日变化及季节动态进行跟踪测定。[结果]各样地土壤呼吸作用均呈现出明显的季节变化规律,但日变化趋势却各不相同。土壤呼吸速率日变化在5,9,10月份变幅较为平缓,6,7,8月份变幅较大,且在7,8月份达到最大值。去根系后,土壤温度及水分与未处理之间没有显著差异,但土壤呼吸速率值明显下降,下降幅度为19%~46%。土壤总呼吸速率和去根系土壤呼吸速率均与土壤温度、土壤水分、双因子呈幂或指数函数关系。[结论]刺槐纯林模式更有利于土壤的熟化与肥力的提高。  相似文献   

7.
Lei  Na  Han  Jichang  Mu  Xingmin  Sun  Zenghui  Wang  Huanyuan 《Journal of Soils and Sediments》2019,19(5):2374-2380
Purpose

According to the specific conditions of the region, we sought to determine appropriate soil materials for improving soil conditions after the reclamation of hollow villages into cultivated land and for quickly restoring agricultural production.

Materials and methods

The test plot consisted of seven treatments with an area of 5 m?×?6 m (30 m2) each, and each treatment included three replicates. The plot was filled with raw soil (old wall soil) from an abandoned homestead in Yuzihe Village, Yaotou Town, Chengcheng County, Shaanxi Province, China. The test design was completely randomised with seven treatments: fly ash (T1), organic fertiliser (chicken manure) (T2), improver (ferrous sulphate) (T3), fly ash?+?organic fertiliser (T4), improver?+?organic fertiliser (T5), fly ash?+?improver (T6) and no fertilisation measures (T0). The modified materials were mixed evenly with raw soil then applied to a depth of 0–30 cm onto the test plot.

Results and discussion

After adding the various modified materials, the soil bulk density decreased by 6.52–14.49% and total soil porosity, capillary porosity and non-capillary porosity increased by 7.09–15.75%, 3.14–12.67% and 15.57–38.47%, respectively. The soil permeability coefficient increased by 5.75–10.75×. Organic matter, total nitrogen, available phosphorus and available potassium in reclaimed hollow village soil increased by 12.50–66.44%, 15.15–20.00%, 6.58–64.62% and 18.24–26.82%, respectively, relative to that of T0. Only T4, T2, T6 and T5 significantly increased maize yield and water use efficiency compared with T0. The other treatments did not significantly improve maize yield or water use efficiency.

Conclusions

Organic fertiliser and fly ash composite was an appropriate amendment for improving reclaimed soil in a hollow village in a loess hilly gully region.

  相似文献   

8.
Abstract

Sensitivity of wheat yield and soil nitrogen (N) losses to stepwise changes in means and variances of climatic variables were determined using the FASSET model. The LARS-WG was used to generate climate scenarios using observed climate data (1961–90) from two sites in Denmark, which differed in climate and soil conditions. Scenarios involved changes to (i) mean temperature alone, (ii) mean and variability of temperature, (iii) winter and summer precipitation amounts and (iv) duration of dry and wet series.

The model predicted lower grain yield and N uptake in response to increases in mean temperatures, caused by early maturity, with little change in variability. This, however, increased soil mineral N causing increased N losses. On sandy loam, larger temperature variability lowered grain yields and increased N losses coupled with higher variability at all the mean temperature ranges. On coarse sand, grain yields either remained unaltered or were slightly reduced when larger temperature variability was introduced to increase in mean temperatures of up to +2°C above baseline. However, introducing variability to further increase in mean temperatures lowered yields without any change in variability. Larger temperature variability did not affect soil mineral N and N2O emissions, but increased N leaching on coarse sand.

Large response in grain yield, N uptake and soil N cycling, and in their variability was predicted when summer precipitation was varied, whereas only N leaching responded to changes in winter precipitation. Doubling the duration of dry series lowered grain yield and N removed by grain, but increased N leaching, whereas doubling the duration of wet series showed opposite effect. Predicted responses to changes in precipitation patterns were larger on coarse sand than on sandy loam. This study illustrates the importance of considering effects of changes to mean climatic factors, climatic variability and soil types on both crop yield and soil N losses.  相似文献   

9.
Because of their ability to store a high amount of soil organic matter (SOM), Chernozem soils are one of the most important resources from both agricultural and environmental viewpoints. This study was carried out to determine the SOM budget under grain farming in the Chernozem soil of northern Kazakhstan through the analysis of in situ soil respiration and soil environmental factors such as soil temperature as well as moisture content. Five experimental plots including one fallow field were established at the experimental farm of Barayev Kazakh Research and Production Center of Grain Farming, Shortandy, northern Kazakhstan (mean annual precipitation and average year temperature are 323 mm and 1.6°C, respectively). Mean daily soil temperature increased to above O°C in early April, remaining at above 20°C from mid-June to mid-August, and then sharply decreased to below 5°C at the end of September. Most of the biological activities were considered to be limited from April to September. On the other hand, the soil moisture content remained high after thawing until mid-June and then continuously decreased in the cropped plots except during the rainfall events. The soil respiration rate recorded the highest values from late June to early July and overall fluctuations were similar to those of the soil temperature, unlike the fluctuations of soil microbial C and N contents, which exhibited similar patterns to those of the soil moisture content. In order to represent the daily soil respiration rates using the soil environmental factors, the following relationship was introduced as a model function: Cem = aM pbexp(-E/RT). The coefficients, a, b, and E (activation energy in Arrhenius equation), were determined by stepwise multiple regression after logarithm transformation using the measured data, Cem (daily soil respiration rate), M (volumetric soil moisture content), and T (absolute soil temperature). As a result, a significant relationship was always obtained between the soil respiration rate and the activation energy, E, while the contribution of the soil moisture content to the soil respiration rate was uncertain. Using the regression equations and monitored data of soil temperature and moisture content, cumulative soil respiration throughout the cropping period was calculated to be in the range of 2.5 to 3.2 Mg C hap-1 On the other hand, the amounts of crop residues in the cropped plots that were expected to be incorporated into the soils ranged from 1.6 to 4.4 Mg C hap-1 Except for the plot planted with oats (higher amounts of residues than for wheat), the SOIL budget was slightly negative in this year, that is, the soils lost their organic matter stock. Although it is difficult to generalize the C budget in different years because of the large variations in crop growth due to fluctuating water resources, the disadvantage of summer fallow (no residues) was obvious in terms of SOM budget. The net soil respiration rate in the fallow plot, 2.9 Mg C hap-1 was approximately equivalent to 4% of the total SOM stock in the plow layer (30 cm) (70 to 80 Mg C hap-1 To reduce further loss of SOM, at least evenly extensive use of summer fallow should be reconsidered.  相似文献   

10.
Zhou  Zijun  Zeng  Xiangzhong  Chen  Kun  Li  Zhu  Guo  Song  Shangguan  Yuxian  Yu  Hua  Tu  Shihua  Qin  Yusheng 《Journal of Soils and Sediments》2019,19(5):2143-2152
Proposal

A 12-year field experiment was conducted to assess straw mulch effects on soil organic carbon fractions, the carbon pool management index (CPMI) at different depths, and crop yield under a no-till rice-wheat rotation system on the Chengdu Plain, southwestern China.

Materials and methods

There were two treatments in the experiment: no-till without straw mulch (CK) and no-till with straw mulch (SM). The soil was sampled at 0–5, 5–10, 10–20, and 20–30-cm depths. Soil total organic carbon (TOC), the labile organic carbon fractions, including particulate organic carbon (POC), dissolved organic carbon (DOC), microbial biomass carbon (MBC), and permanganate-oxidizable carbon (KMnO4-C), and the CPMI were analyzed. The crop grains were measured between September 2013 and May 2018.

Results and discussion

Between 2013 and 2018, rice and wheat grain yields under SM were comparable to CK, except there were higher rice yields in 2016 and higher wheat yields in 2017 under SM. The soil organic carbon decreased as soil depth increased in both treatments. Soil TOC, POC, and KMnO4-C concentrations at 0–5 and 5–10 cm, CPMI at 0–5 and 5–10 cm, and DOC at 0–5, 5–10, and 10–20-cm soil depths were significantly greater under SM than under CK, whereas the MBC at 0–5 and 5–10 cm under SM was lower than CK. The POC/TOC, KMnO4-C/TOC, and DOC/TOC ratios were greater under SM in the 0–5 and 5–10 cm, 0–5 cm, and 5–10 and 10–20-cm layers than CK, respectively, whereas the MBC/TOC ratio decreased under SM at 0–5, 5–10, and 10–20-cm depths.

Conclusions

The results showed that straw mulching should be adopted when a no-till rice-wheat cropping system is used in southwestern China because it leads to effective improvements in SOC sequestration while still maintaining normal crop yields.

  相似文献   

11.
Singh  R. K.  Chaudhary  R. S.  Somasundaram  J.  Sinha  N. K.  Mohanty  M.  Hati  K. M.  Rashmi  I.  Patra  A. K.  Chaudhari  S. K.  Lal  Rattan 《Journal of Soils and Sediments》2020,20(2):609-620
Purpose

Accelerated erosion removes fertile top soil along with nutrients through runoff and sediments, eventually affecting crop productivity and land degradation. However, scanty information is available on soil and nutrient losses under different crop covers in a vertisol of Central India. Thus, a field experiment was conducted for 4 years (2010–2013) to study the effect of different crop cover combinations on soil and nutrient losses through runoff in a vertisol.

Materials and methods

Very limited information is available on runoff, soil, and nutrient losses under different vegetative covers in a rainfed vertisol. Thus, the hypothesis of the study was to evaluate if different crop cover combinations would have greater impact on reducing soil and nutrient losses compared to control plots in a vertisol.

This experiment consisted of seven treatment combinations of crop covers namely soybean (Glycine max) (CC1), maize (Zea mays) (CC2), pigeon pea (Cajanus cajan) (CC3), soybean (Glycine max)?+?maize (Zea mays) ??1:1 (CC4), soybean (Glycine ma x))?+?pigeon pea (Cajanus cajan) ?2:1 (CC5), maize (Zea mays)?+?pigeon pea (Cajanus cajan) ??1:1 (CC6), and cultivated fallow (CC7). The plot size was 10?×?5 m with 1% slope, and runoff and soil loss were measured using multi-slot devisor. All treatments were arranged in a randomized block design with three replications.

Results and discussion

Results demonstrated that the runoff and soil loss were significantly (p?<?0.05) higher (289 mm and 3.92 Mg ha?1) under cultivated fallow than those in cropped plots. Among various crop covers, sole pigeon pea (CC3) recorded significantly higher runoff and soil loss (257 mm and 3.16 Mg ha?1) followed by that under sole maize (CC2) (235 mm and 2.85 Mg ha?1) and the intercrops were in the order of maize?+?pigeon pea (211 mm and 2.47 Mg ha?1) followed by soybean?+?maize (202 mm and 2.38 Mg ha?1), and soybean?+?pigeon pea (195 mm and 2.15 Mg ha?1). The lowest runoff and soil loss were recorded under soybean sole crop (194 mm and 2.27 Mg ha?1). The data on nutrient losses indicated that the highest losses of soil organic carbon (SOC) (25.83 kg ha?1), total nitrogen (N), phosphorus (P), and potassium (K) (7.76, 0.96, 32.5 kg ha?1) were recorded in cultivated fallow (CC7) as compared to those from sole and intercrop treatments. However, sole soybean and its intercrops recorded the minimum losses of SOC and total N, P, and K, whereas the maximum losses of nutrients were recorded under pigeon pea (CC3). The system productivity in terms of soybean grain equivalent yield (SGEY) was higher (p?<?0.05) from maize?+?pigeon pea (3358 kg ha?1) followed by that for soybean?+?pigeon pea (2191 kg ha?1) as compared to sole soybean. Therefore, maize?+?pigeon pea (1:1) intercropping is the promising option in reducing runoff, soil-nutrient losses, and enhancing crop productivity in the hot sub-humid eco-region.

Conclusions

Study results highlight the need for maintenance of suitable vegetative cover as of great significance to diffusing the erosive energy of heavy rains and also safe guarding the soil resource from degradation by water erosion in vertisols.

  相似文献   

12.
ABSTRACT

The influence of the long-term combination of rice straw removal and rice straw compost application on methane (CH4) and nitrous oxide (N2O) emissions and soil carbon accumulation in rice paddy fields was clarified. In each of the initial and continuous application fields (3 and 39?51 years, respectively), three plots with different applications of organic matter were established, namely, rice straw application (RS), rice straw compost application (SC) and no application (NA) plots, and soil carbon storage (0?15 cm), rice grain yield and CH4 and N2O fluxes were measured for three years. The soil carbon sequestration rate by the organic matter application was higher in the SC plot than in the RS plot for both the initial and continuous application fields, and it was lower in the continuous application field than in the initial application field. The rice grain yield in the SC plot was significantly higher than those in the other plots in both the initial and continuous application fields. Cumulative CH4 emissions followed the order of the NA plot < the SC plot < the RS plot for both the initial and continuous application fields. The effect of the organic matter application on the N2O emissions was not clear. In both the initial and continuous application fields, the increase in CH4 emission by the rice straw application exceeded the soil carbon sequestration rate, and the change in the net greenhouse gas (GHG) balance calculated by the difference between them was a positive, indicating a net increase in the GHG emissions. However, the change in the GHG balance by the rice straw compost application showed negative (mitigating GHG emissions) for the initial application field, whereas it showed positive for the continuous application field. Although the mitigation effect on the GHG emissions by the combination of the rice straw removal and rice straw compost application was reduced by 21% after 39 years long-term application, it is suggested that the combination treatment is a sustainable management that can mitigate GHG emissions and improve crop productivity.  相似文献   

13.
Appropriate soil amendments may increase plant available water and crop yields on coarse sandy soils under drought conditions. In this study, we applied straw ash or straw biochar from gasification to a Danish coarse sandy subsoil to assess the effects on soil water retention, evapotranspiration and crop yields. Spring barley (2016, 2017) and winter wheat (2018) were grown over three years in columns containing 25cm of organic matter-rich topsoil, 80 cm of amended coarse sandy soil (1.5%, 3%, 6% wt. ash or 1% wt. biochar or control soil) and 45 cm of un-amended subsoil. Precipitation, evaporative demands and soil moisture were recorded across the growth seasons, with 2018 having severe drought conditions. This year evapotranspiration levels increased with increasing ash and biochar content (by 54% and 33% for the 6% ash- and 1% biochar-amended soils, respectively), and plant dry matter increased by 18% in both the 1% biochar- and 6% ash-treated soils compared to the untreated control. A linear relationship was established between in situ field capacity and ash dosage (R= .96), showing an increase of 2.2% per percentage (wt.) of ash added, while the 1% biochar treatment increased the capacity by 3.5%, indicating a higher efficiency than for ash. However, we did not find significant positive effects on grain yields. The results show that ash and biochar have the potential to significantly increase soil water retention, evapotranspiration and total dry matter yield in drought conditions, but that this may not correspond to an increase in grain yield.  相似文献   

14.
Purpose

The purpose of this paper is to study the responses of soil biological parameters as indicator of ecological status on PAH-contaminated soil.

Materials and methods

Studies are conducted on the soils and natural grassy vegetation of monitoring plots subjected to Novocherkassk power station (NPS) emissions. Monitoring plots were established at different distances from the NPS (1.0–20.0 km).

Results and discussion

The level of polycyclic aromatic hydrocarbons (PAHs) around NPS is the highest at the monitoring plot located at distance 1.6 km to the northwest through the prevailing wind direction. Gradually, decrease of PAHs was observed while increasing the distance from the NPS through the prevailing wind direction. Calculation of correlations between PAH level and biological activity parameters of soils showed lack of dependence with total and every PAH content in all 12 studied monitoring plots. The most significant correlations were found between PAH content and enzyme activity in the monitoring plots situated through the prevailing wind direction from NPS.

Conclusions

The main pollution source in the studied area is NPS. It was found that contamination of soil by PAHs has a direct dependence on the activity of all biological communities in chernozems, as well as the activities of dehydrogenase and the phytotoxicity of soils. Inverse correlations have been revealed between the PAH contamination and abundance of soil bacteria.

  相似文献   

15.
Abstract

Understanding seasonal soil nitrogen (N) availability patterns is necessary to assess corn (Zea mays L.) N needs following winter cover cropping. Therefore, a field study was initiated to track N availability for corn in conventional and no‐till systems and to determine the accuracy of several methods for assessing and predicting N availability for corn grown in cover crop systems. The experimental design was a systematic split‐split plot with fallow, hairy vetch (Vicia villosa Roth), rye (Secale cereale L.), wheat (Triticum aestivum L.), rye+hairy vetch, and wheat+hairy vetch established as main plots and managed for conventional till and no‐till corn (split plots) to provide a range of soil N availability. The split‐split plot treatment was sidedressed with fertilizer N to give five N rates ranging from 0–300 kg N ha‐1 in 75 kg N ha‐1 increments. Soil and corn were sampled throughout the growing season in the 0 kg N ha‐1 check plots and corn grain yields were determined in all plots. Plant‐available N was greater following cover crops that contained hairy vetch, but tillage had no consistent affect on N availability. Corn grain yields were higher following hairy vetch with or without supplemental fertilizer N and averaged 11.6 Mg ha‐1 and 9.9 Mg ha‐1 following cover crops with and without hairy vetch, respectively. All cover crop by tillage treatment combinations responded to fertilizer N rate both years, but the presence of hairy vetch seldom reduced predicted fertilizer N need. Instead, hairy vetch in monoculture or biculture seemed to add to corn yield potential by an average of about 1.7 Mg ha‐1 (averaged over fertilizer N rates). Cover crop N contributions to corn varied considerably, likely due to cover crop N content and C:N ratio, residue management, climate, soil type, and the method used to assess and assign an N credit. The pre‐sidedress soil nitrate test (PSNT) accurately predicted fertilizer N responsive and N nonresponsive cover crop‐corn systems, but inorganic soil N concentrations within the PSNT critical inorganic soil N concentration range were not detected in this study.  相似文献   

16.
Purpose

A large area of desert land in the desert-oasis ecotone in northwestern China is being reclaimed for continuous cotton production for several decades. However, little is known about the possible effect of reclamation and long-term monocultural cotton cultivation on soil properties and microbial communities in the desert-oasis ecotone area.

Materials and methods

Soil samples were collected from the 0–20-cm mineral soil from croplands that had been continuously planted cotton for 5, 25, and 50 years after reclamation, as well as a desert land (t?=?0, before reclamation, used as the control). Soil physical and chemical properties, enzyme activities, and bacterial and fungal community diversities were determined.

Results and discussion

Soil organic carbon, total nitrogen, and enzyme activities increased up to 25 years after reclamation, and further monocultural cotton cropping was not beneficial to improve soil quality. Soil urease, alkaline phosphatase, and sucrase activities increased by 121~205%, 100~167%, and 206~719% in croplands as compared with the desert land, respectively, after reclamation with the highest value at 25 years of cotton cultivation. Bacterial richness and diversity increased from desert land to the 5-year-old cropland and then remained stable after 5 years of cotton cropping, and soil fungal richness and diversity were not affected by reclamation and cropping years.

Conclusions

Crop rotation or fallow should be considered to maintain or improve soil quality over the long-term monocultural cropping.

  相似文献   

17.
Abstract

Chlorophyll meter leaf readings were compared to grain yield, leaf N concentration and soil NH4‐N plus NO3‐N levels from N rate studies for dryland winter wheat Soil N tests and wheat leaf N concentrations have been taken in the spring at the late tillering stage (Feekes 5) to document a crop N deficiency and to make fertilizer N recommendations. The chlorophyll meter offers another possible technique to estimate crop N status and determine the need for additional N fertilizer. Results with the chlorophyll meter indicate a positive association between chlorophyll meter readings and grain yield, leaf N concentration and soil NH4‐N plus NO3‐N. Additional tests are needed to evaluate other factors such as differences among locations, cultivars, soil moisture and profile N status.  相似文献   

18.
Purpose

The effect of uncontrolled grazing and unpredictable rainfall pattern on future changes in soil properties and processes of savanna ecosystems is poorly understood. This study investigated how rainfall amount at a gradient of 50%, 100%, and 150% would influence soil bulk density (ρ), volumetric water content (θv), carbon (C), and nitrogen (N) contents in grazed (G) and ungrazed (U) areas.

Materials and methods

Rainfall was manipulated by 50% reduction (simulating drought—50%) and 50% increase (simulating abundance—150%) from the ambient (100%) in both G and U areas. Plots were named by combining the first letter of the area followed by rainfall amount, i.e., G150%. Samples for soil ρ, C, and N analysis were extracted using soil corer (8 cm diameter and 10 cm height). Real-time θv was measured using 5TE soil probes (20 cm depth). The EA2400CHNS/O and EA2410 analyzers were used to estimate soil C and N contents respectively.

Results and discussion

The interaction between grazing and rainfall manipulation increased θv and C but decreased N with no effect on ρ and C:N ratio. Rainfall reduction (50%) strongly affected most soil properties compared to an increase (150%). The highest (1.241?±?0.10 g cm?3) and lowest (1.099?±?0.05 g cm?3) ρ were in the G50% and U150% plots respectively. Soil θv decreased by 34.0% (grazed) and 25.8% (ungrazed) due to drought after rainfall cessation. Soil ρ increased with grazing due to trampling effect, therefore reducing infiltration of rainwater and soil moisture availability. Consequently, soil C content (11.45%) and C:N ratio (24.68%) decreased, whereas N increased (7.8%) in the grazed plots due to reduced C input and decomposition rate.

Conclusions

The combined effect of grazing and rainfall variability will likely increase soil θv, thereby enhancing C and N input. Grazing during drought will induce water stress that will destabilize soil C and N contents therefore affecting other soil properties. Such changes are important in predicting the response of soil properties to extreme rainfall pattern and uncontrolled livestock grazing that currently characterize most savanna ecosystems.

  相似文献   

19.
Abstract

In three field trials in southern Norway, Italian ryegrass (Lolium multiflorum Lam.), white clover (Trifolium repens L.) or subterranean clover (T. subterraneuni L.) was undersown in spring grain at three N fertilizer rates and ploughed under in late October as a green manure for a succeeding spring grain crop. The content of topsoil (0-20 cm) mineral nitrogen was determined during the growth of the grain crop, after grain harvest and after ploughing. In addition, mineralization of nitrogen and carbon was measured in green-manured soil incubated at 15°C and controlled moisture conditions. During grain crop growth, ryegrass tended to reduce soil mineral N compared with the other treatments. After grain harvest, in a small-plot experiment where extra nitrate was added, ryegrass reduced soil nitrate N (0-18 cm) from 4.2 to 0.4 g m?2 within 13 days, while the clovers had negligible effect compared with bare soil. Up to 9.4 g N m?2 was present in above-plus below-ground ryegrass biomass at ploughing. In incubated ryegrass soil, there was a temporary net N immobilization of up to 0.9 g N m?2 as compared with unamended soil. In clover-amended soil, mineral N exceeded that in unamended soil by up to 5 g N m?2.  相似文献   

20.
Abstract

Laboratory and field experiments were conducted at the Regional Research Station of Kandi Area, Ballowal Saunkhri, Punjab, India, to determine the immediate influence of artificial topsoil removal (simulated erosion) on selected soil properties, maize (Zea mays) growth and yield, and restoration of crop productivity with nitrogen (N) fertilization. For the laboratory experiment, soil samples (0–15 cm) were obtained after removing 0, 6, 12, and 18 cm of a sandy loam topsoil from a cereal grain cropped field. In the field experiment, topsoil was removed at 0, 6, 12, and 18 cm in main plots, and six N treatments at rates of 0, 40, 80, 120, 160, and 200 kg N ha‐1 were applied in subplots. Topsoil removal greatly decreased mineralized N, N mineralization potential and rate constant, and increased time for half mineralization of N. Bulk density and penetration resistance increased as a result of topsoil removal and infiltration capacity of the soil decreased. Total profile water was more at the time of harvest than at sowing in the plots where topsoil was removed, but the water expense efficiency decreased. Both grain and straw yield of maize decreased substantially as a result of adverse effect of topsoil removal on plant height, mass and depth of root, length and girth of cob, and thousand grain weight. Nitrogen application improved maize growth and yield, but the crop responded to higher doses of N on eroded plots than the uneroded plots, and yields on eroded plots did not match to those obtained on uneroded plots at any level of N application. In conclusion, artificial surface soil erosion deteriorated soil properties governing maize productivity. More N was required where topsoil had been eroded, but N application alone did not restore crop yield to that level obtained from uneroded soil. Therefore, there is a need to look for and quantify other factors also to improve soil productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号