首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过对华北平原小麦–玉米轮作农田生态系统18年田间施肥试验,研究了长期不同施肥处理对耕层(0—20 cm)土壤腐殖质及活性腐殖质组分碳和氮的影响。试验设化肥NPK不同组合(NPK、NP、NK、PK),全部施用有机肥(OM),一半有机肥+化肥NPK(1/2OMN)及不施肥(CK)共7个处理。结果表明,各施肥处理均能在不同程度上增加土壤腐殖质(胡敏酸、富里酸和胡敏素)及活性腐殖质(活性胡敏酸和活性富里酸)组分碳和氮含量,提高可浸提腐殖质(胡敏酸和富里酸)及活性腐殖质组分碳和氮分配比例;但施肥对土壤活性腐殖质组分碳和氮含量的增加率均分别高于腐殖质组分碳和氮。各处理土壤腐殖质及活性腐殖质组分碳和氮含量均为OM处理最高,且有机肥与化肥NPK配施高于单施化肥各处理;而化肥处理中NPK均衡施用效果最好。说明施用有机肥、有机肥与化肥NPK配施及化肥NPK均衡施用是增加土壤腐殖质及活性腐殖质组分碳和氮的关键;活性腐殖质组分碳和氮较腐殖质组分碳和氮对施肥措施的响应更灵敏。  相似文献   

2.
Active fractions of soil carbon (C) and nitrogen (N) can undergo seasonal changes due to environmental and cultural factors, thereby influencing plant N availability and soil organic matter (SOM) conservation. Our objective was to determine the effect of tillage (conventional and none) on the seasonal dynamics of potential C and N mineralization, soil microbial biomass C (SMBC), specific respiratory activity of SMBC(SRAC), and inorganic soil N in a sorghum [Sorghum bicolor (L.) Moench]-wheat (Triticum aestivum L.)/soybean [Glycine max (L.) Merr.] rotation and in a wheat/soybean double crop. A Weswood silty clay loam (fine, mixed, thermic Fluventic Ustochrept) in southcentral Texas was sampled to 200 mm depth 57 times during a 2-yr period. Potential C mineralization was lowest (≈?2 to 3 g · m?2 · d?1) midway during the sorghum and soybean growing seasons and highest (≈?3 to 4 g · m?2 · d?1) at the end of the wheat growing season and following harvest of all crops. Addition of crop residues increased SMBC for one to three months. Potential N mineralization was coupled with potential C mineralization, SRAC, and changes in SMBC at most times, except during the wheat growing season and shortly after sorghum and soybean residue addition when increased N immobilization was probably caused by rhizodeposition and residues with low N concentration. Seasonal variation of inorganic soil N was 19 to 27%, of potential C and N mineralization and SRAC was 8 to 23%, and of SMBC was 7 to 10%. Soil under conventional tillage experienced greater seasonal variation in potential C and N mineralization, SRAC, bulk density, and water-filled pore space than under no tillage. High residue input with intensive cropping and surface placement of residues were necessary to increase the long-term level of active C and N properties of this thermic-region soil due to rapid turnover of C input.  相似文献   

3.
长期施肥下红壤磷素积累的环境风险分析   总被引:11,自引:0,他引:11  
以长期(始于1988年)施肥的旱地红壤为材料,研究了土壤磷积累与磷吸附的关系,通过分析土壤磷素吸附特征参数及面向环境的土壤磷素表征值的变化,讨论了长期施肥下旱地红壤磷素积累的环境风险。结果表明:长期施磷可显著增加红壤磷素的累积量,降低土壤对外源磷的固持能力,提高土壤的有效磷及易解吸磷的量。供试的7个试验处理,除NK处理及花生秸秆本田还田处理外,土壤有效磷均高于20mg kg-1,已达到丰磷状态,但只有配施厩肥处理的土壤磷素存在环境风险。因此,应在兼顾土壤磷素的农业效应和环境安全的前提下,建立新的施肥制度,使磷素资源的利用更加合理化。  相似文献   

4.
东北黑土区长期不同种植模式下土壤碳氮特征评价   总被引:3,自引:5,他引:3  
土壤碳氮是衡量土壤肥力的重要指标,阐明农田管理措施对土壤碳氮特征的综合影响,可为农田地力培育和土地可持续利用提供理论与技术支撑。该研究借助在吉林公主岭建立的长期定位试验,选择休闲处理与增施有机肥条件下的玉米连作、玉米-大豆轮作、大豆连作等处理,系统评价了种植模式对土壤不同形态碳氮的影响及其相互关系。经过21 a的增施有机肥,玉米连作、玉米-大豆轮作、大豆连作3个处理的耕层(0~20 cm)土壤有机碳、全氮和有效氮比休闲处理分别提高23.5%~46.8%、4.9%~64.3%和35.4%~121.9%,其中以玉米连作处理最高(P0.05);有机碳与全氮、有效氮呈极显著的相关关系(P0.01),表明较高的有机碳会促进氮素有效性。玉米连作处理的耕层土壤微生物量碳分别比玉米-大豆轮作和大豆连作处理高23.1%和41.4%,而土壤微生物量氮则分别高37.8%和135.3%,差异显著(P0.05)。玉米连作处理下耕层2 000μm、≥250~2 000μm、≥53~250μm以及53μm的土壤团聚体结合有机碳均为最高(P0.05)。此外,玉米连作处理的高活性有机碳组分显著(P0.05)高于其他处理,其化学活性指数也显著(P0.05)高于玉米-大豆轮作处理,表明玉米连作处理下的土壤有机碳对外界环境变化较为敏感。上述研究表明,在施用有机肥的条件下,长期玉米连作可提高土壤有机碳质量分数,促进土壤氮素有效性,但应配合采用合理的耕种措施,以降低有机碳分解风险。  相似文献   

5.
In order to assess the changes in soil K pools as affected by K‐fertilizer application and the impact of the changes on K balance, grain yield, and K uptake, an experiment was conducted in Central Zhejiang Province, E China, in a continuous double‐cropping rice system. Two sites were selected: (1) the Agricultural Research Institute of Jinhua (ARI) where soil is calcareous and (2) the Shimen Research Farm (SM) where soil is acidic. Eight consecutive crops were grown (1997–2000) in ARI and five consecutive crops (1998–2000) at SM. Treatments included unfertilized control (CK) and three different fertilizer treatments (NP, NK, and NPK). Potassium extracted by ion‐exchange resin decreased from 26 mg kg–1 to 5–10 mg kg–1 after eight consecutive seasons of growth at the ARI site. Addition of 100 kg K ha–1 for each rice crop was not enough to maintain initial K availability, especially in the calcareous soil at ARI site. In treatments with K, a small increase in readily available K was observed only in SM soil. The K extracted by HNO3 also decreased significantly in the treatments without K addition and was increased slightly in the treatments with K application. In the NP treatment, the decrease in HNO3‐K was several times greater than resin‐K, indicating that nonexchangeable K may be the major source of K supply to rice. Soil K depletion was greater for hybrid rice than for inbred rice, and this difference in K demand should be taken into account in developing fertilizer recommendations for irrigated rice.  相似文献   

6.
以在陕西关中地区户县、周至两县连续2年的20余个3414肥料田间试验为研究对象,研究了不同施氮量下冬小麦收获后土壤2 m剖面硝态氮的分布、累积及其与土壤氮素表观盈亏量间的关系。结果表明:随着氮肥用量的提高,土壤剖面硝态氮累积量明显增加,其向土壤下层淋溶的程度也越严重;当施氮量为180~240 kg/hm2时,一些试验点的土壤氮素已经表现出盈余;当施氮量达到270~360 kg/hm2,所有试验点土壤氮素均明显盈余。不同施氮量时土壤表观氮素平衡值(施氮量与氮素携出量的差值)与土壤02 m剖面硝态氮累积量之间呈极显著正相关,说明土壤表观氮素平衡和盈亏决定了土壤剖面硝酸盐的累积状况;土壤氮素表观盈余值每增加100 kg/hm2,02 m土壤剖面硝态氮累积量增加约62.5 kg/hm2。  相似文献   

7.
《Soil & Tillage Research》2007,96(1-2):348-356
Agricultural soils can be a major sink for atmospheric carbon (C) with adoption of recommended management practices (RMPs). Our objectives were to evaluate the effects of nitrogen (N) fertilization and cropping systems on soil organic carbon (SOC) and total N (TN) concentrations and pools. Replicated soil samples were collected in May 2004 to 90 cm depth from a 23-year-old experiment at the Northwestern Illinois Agricultural Research and Demonstration Center, Monmouth, IL. The SOC and TN concentrations and pools, soil bulk density (ρb) and soil C:N ratio were measured for five N rates [0 (N0), 70 (N1), 140 (N2), 210 (N3) and 280 (N4) kg N ha−1] and two cropping systems [continuous corn (Zea mays L.) (CC), and corn–soybean (Glycine max (L.) Merr.) rotation (CS)]. Long-term N fertilization and cropping systems significantly influenced SOC concentrations and pools to 30 cm depth. The SOC pool in 0–30 cm depth ranged from 68.4 Mg ha−1 for N0 to 75.8 Mg ha−1 for N4. Across all N treatments, the SOC pool in 0–30 cm depth for CC was 4.7 Mg ha−1 greater than for CS. Similarly, TN concentrations and pools were also significantly affected by N rates. The TN pool for 0–30 cm depth ranged from 5.36 Mg ha−1 for N0 to 6.14 Mg ha−1 for N4. In relation to cropping systems, the TN pool for 0–20 cm depth for CC was 0.4 Mg ha−1 greater than for CS. The increase in SOC and TN pools with higher N rates is attributed to the increased amount of biomass production in CC and CS systems. Increasing N rates significantly decreased ρb for 0–30 cm and decreased the soil C:N ratio for 0–10 cm soil depth. However, none of the measured soil properties were significantly correlated with N rates and cropping systems below 30 cm soil depth. We conclude that in the context of developing productive and environmentally sustainable agricultural systems on a site and soil specific basis, the results from this study is helpful to strengthening the database of management effects on SOC storage in the Mollisols of Midwestern U.S.  相似文献   

8.
长期不同施肥下黑土和红壤团聚体氮库分布特征   总被引:2,自引:2,他引:2  
为阐明长期不同施肥下土壤氮库的演变特征,揭示氮库稳定性不同的团聚体对不同施肥的响应,为化肥和有机物的合理施用提供科学依据。本研究通过对黑土和红壤22年的田间肥料定位试验,研究了长期不同施肥模式对土壤全氮、 微生物氮以及各级团聚体中氮贡献率的影响。结果表明,长期不施肥(CK)和施用化肥(NPK),黑土土壤全氮含量以0.015 g/(kga)的速率显著下降(P 0.05);而长期化肥配施有机肥(NPKM),黑土全氮含量以0.025 g/(kga) 的速率显著上升(P 0.05)。在CK、 NPK、 NPKM和秸秆还田(NPKS)处理下,红壤全氮含量均没有显著变化。施肥22年后,NPKM处理下黑土和红壤微生物氮含量较NPK处理下分别增加了15% 和 43%,全氮含量分别增加了43% 和45%,差异均达到显著水平(P 0.05)。氮素在黑土上主要积累在253 m 微团聚体中,达到0.73~1.21 g/kg,在红壤上主要积累在2 m 微团聚体中,达到0.46~0.98 g/kg。与NPK相比,NPKM 处理下黑土和红壤 250~2000 m大团聚体中氮素贡献率均显著提高,分别增加了4.3% 和 5.1%。与NPK相比,NPKM 和 NPKS 处理下,红壤 253 m 微团聚体中氮贡献率分别降低了5.9% 和 9.7%,而黑土除大团聚体外的各级团聚体氮贡献率均没有显著变化。可见,不同土壤类型对施肥响应不同, 主要是253 m 微团聚体中氮素的响应不同,化肥配施有机肥可提高土壤250~2000 m 大团聚体中氮的贡献率,进而增加土壤对作物的氮素供给能力,是有助于提高土壤肥力和生产力的农业生产可持续性施肥模式。  相似文献   

9.
Liu  Jinshan  Zhang  Xiang  Wang  Hui  Hui  Xiaoli  Wang  Zhaohui  Qiu  Weihong 《Journal of Soils and Sediments》2018,18(4):1632-1640
Journal of Soils and Sediments - Nitrogen (N) fertilization is a key factor that affects soil biogeochemical properties and microbial community structures across ecosystems. However, we know less...  相似文献   

10.
过量施氮对旱地土壤碳、氮及供氮能力的影响   总被引:6,自引:8,他引:6  
【目的】过量施氮会影响土壤有机碳、氮的组成与数量,进而改变土壤供氮能力,但关于西北旱地长期过量施用氮肥后土壤有机碳、氮及土壤供氮能力变化的研究尚缺乏。本文在长期定位试验的基础上,通过分析不同氮肥水平特别是过量施氮条件下土壤硝态氮,有机碳、氮和微生物量碳、氮的变化,探讨长期过量施氮对土壤有机碳、氮及供氮能力的影响。【方法】长期定位试验位于陕西杨凌西北农林科技大学农作一站。在施磷(P2O5)100kg/hm2的基础上,设5个氮水平,施氮量分别为N 0、80、160、240、320 kg/hm2。重复4次,小区面积40 m2,完全随机区组排列。种植冬小麦品种为小堰22。本文选取其中3处理,以不施氮为对照(N0)、施氮量N 160 kg/hm2为正常施氮(N160),施氮量N 320 kg/hm2为过量施氮(N320),分别于2012年6月小麦收获后和10月下季小麦播前采集土壤样品,进行测定分析。【结果】过量施氮导致下季小麦播前0—300 cm各土层硝态氮含量显著增加,平均由对照的2.8 mg/kg增加到15.5 mg/kg;同时,0—60 cm和0—300 cm土层的硝态氮累积量分别由对照的47.2和108.9 kg/hm2增加到76.5和727.7 kg/hm2。过量施氮也增加了夏闲期间0—300 cm土层土壤有机氮矿化量,由对照的72.4 kg/hm2增加到130.7 kg/hm2。但过量施氮未显著增加土壤的有机碳含量,却显著增加了土壤有机氮含量,过量施氮0—20、20—40 cm土层土壤有机碳分别为9.24和5.39 g/kg,有机氮分别为1.05和0.71 g/kg,较对照增加52.2%和54.3%。同样,过量施氮未显著影响0—20、20—40 cm土层土壤微生物量碳含量,其平均含量分别为253和205 mg/kg,却显著提高了0—20、20—40 cm土层土壤微生物量氮含量,由对照的24.1和7.5 mg/kg提高到43.6和16.1 mg/kg。【结论】过量施氮可以显著增加旱地土壤剖面中的硝态氮累积量、夏闲期氮素矿化量、小麦播前土壤氮素供应量和土壤微生物量氮含量,但对土壤有机碳和微生物量碳没有显著性影响,同时过量施氮增加了土壤硝态氮淋溶风险,故在有机质含量低的黄土高原南部旱地冬小麦种植中不宜施用高量氮肥,以减少土壤氮素残留和农业投入,达到保护环境和培肥土壤的目的。  相似文献   

11.
Soil quality assessment has been suggested as an effective tool for evaluating sustainability of soil and crop management practices.The objective of this study was to develop a sensitive soil quality index(SQI) based on bulk density(BD),water-holding capacity(WHC),water-stable aggregates(WSA),aggregate mean weight diameter(AMWD),total organic C(TOC) and C input to evaluate the important rice-wheat cropping system on an Inceptisol in India.A long-term experiment has been conducted for 18 years at the Indian Council of Agricultural Research-Indian Institute of Farming Systems Research,Modipuram,India.The treatments selected for this study were comprised of a no-fertilizer control and N,P and K fertilizers(NPK) combined with Zn and S fertilizers(NPK+ Zn+S),farmyard manure(NPK+FYM),green gram residues(NPK+GR) and cereal residues(NPK+CR),laid out in a randomized complete block design with three replications.Soil samples were collected and analyzed for BD,WHC,WSA and TOC.Correlation analysis revealed that both rice and wheat yields signi?cantly increased with the increases in AMWD,TOC and C input,but decreased with the increase in BD.The SQI values were then generated based on regression analysis of BD,WSA,AMWD,TOC and C input with rice and wheat yields for the 0–15 and 15–30 cm soil layers,respectively.Regression analyses between crop yields and SQI values showed a quadratic type of relation with the coeffcient of determination(R~2) varying from 0.78 to 0.89.With regard to soil sustainability,applying crop residues to both rice and wheat could maintain soil quality for a longer period,whereas the highest yields of both the crops were recorded in the NPK+Zn+S treatment.The regression equations developed in this study could be used to monitor soil quality in a subhumid tropical rice-wheat cropping system.  相似文献   

12.
长期不同施肥下红壤氮素的演变特征   总被引:4,自引:0,他引:4  
为阐明长期不同施肥对红壤全氮和碱解氮含量变化的影响,探讨提高土壤肥力和合理施肥的模式,连续观测了16年不同施肥处理的红壤全氮和碱解氮含量,并分析了其相关关系。结果表明,不同施肥16年后,增量氮磷钾化肥有机肥配施(1.5NPKM)处理的土壤全氮含量呈上升趋势,16年增加了43.9%,年均增加0.03 g.kg-1;氮磷钾配合施用及其配施有机物(NPK、NPKS、NPKM和M)处理的土壤全氮含量随时间变化不大,基本维持在0.90~1.33 g.kg-1;不施氮肥(CK、PK)和氮磷(NP)、氮钾(NK)配施下的土壤全氮含量呈下降趋势,这4个处理的土壤全氮16年平均下降了33.8%,年均下降0.02 g.kg-1。不同施肥的土壤碱解氮变化趋势与全氮类似,1.5NPKM处理的土壤碱解氮16年上升86.0%,年均增加3.33 mg.kg-1;NP、NK、NPK、NPKS、NPKM和M处理的土壤碱解氮随时间变化不大,基本维持在84.4~110 mg.kg-1;而CK、PK两处理的土壤碱解氮含量平均下降了30.3%,年均下降1.66 mg.kg-1。在不同施肥处理下,土壤碱解氮含量均与全氮含量呈显著正相关。单施有机肥、无机氮磷钾合理配比、以及有机-无机肥配施是维持和提高土壤氮素肥力的有效措施,而不施氮肥或偏施氮肥都会导致土壤氮素肥力降低。  相似文献   

13.
稻麦轮作条件下长期不同土壤管理对供氮能力的影响   总被引:3,自引:0,他引:3  
通过种植了 25季的长期定位试验研究了稻麦轮作条件下不同土壤耕作方式和培肥制度对土壤供氮能力的影响。结果表明 ,不论免耕还是耕翻 ,0~5cm土壤的氮素释放均较持久 ,5~15cm土壤的氮素释放耕翻较免耕持久。休闲的 0~5cm土壤在免耕条件下其氮素矿化势和短期矿化氮量均远远高于耕翻 ,5~15cm和 15~30cm土壤在免耕和耕翻间则相差不大。施肥的3个处理 0~ 5cm土壤氮素矿化势和短期矿化氮量有免耕高于耕翻的趋势 ,而 5~ 15cm土层免耕明显低于耕翻 ,15~ 30cm土壤免耕与耕翻没有差异。有机肥与化肥配施的免耕与耕翻土壤中 25季作物吸氮量几乎无差异 ,不施肥和单施化肥处理的免耕土壤中作物吸氮量低于耕翻土壤。免耕条件下 ,有机肥配施化肥土壤的供氮能力仅低于休闲土壤 ,不施肥土壤最低 ;耕翻条件下 ,有机肥配施化肥土壤的供氮能力最高。各培肥处理间的差异主要表现在 0~ 5cm土层。  相似文献   

14.
长期免耕对东北地区玉米田土壤有机碳组分的影响   总被引:6,自引:0,他引:6  
Increasing evidence has shown that conservation tillage is an effective agricultural practice to increase carbon (C) sequestration in soils. In order to understand the mechanisms underlying the responses of soil organic carbon (SOC) to tillage regimes, physical fractionation techniques were employed to evaluate the effect of long-term no-tillage (NT) on soil aggregation and SOC fractions. Results showed that NT increased the concentration of total SOC by 18.1% compared with conventional tillage (CT) under a long-term maize (Zea mays L.) cropping system in Northeast China. The proportion of soil large macroaggregates ( 2000 μm) was higher in NT than that in CT, while small macroaggregates (250-2000 μm) showed an opposite trend. Therefore, the total proportion of macroaggregates ( 2000 and 250-2000 μm) was not affected by tillage management. However, C concentrations of macroaggregates on a whole soil basis were higher under NT relative to CT, indicating that both the amount of aggregation and aggregate turnover affected C stabilization. Carbon concentrations of intra-aggregate particulate organic matter associated with microaggregates (iPOM m) and microaggregates occluded within macroaggregates (iPOM mM) in NT were 1.6 and 1.8 times greater than those in CT, respectively. Carbon proportions of iPOM m and iPOM mM in the total SOC increased from 5.4% and 6.3% in CT to 7.2% and 9.7% in NT, respectively. Furthermore, the difference in the microaggregate protected C (i.e., iPOM m and iPOM mM) between NT and CT could explain 45.4% of the difference in the whole SOC. The above results indicate that NT stimulates C accumulation within microaggregates which then are further acted upon in the soil to form macroaggregates. The shift of SOC within microaggregates is beneficial for long-term C sequestration in soil. We also corroborate that the microaggregate protected C is useful as a pool for assessing the impact of tillage management on SOC storage.  相似文献   

15.
长期有机培肥模式下黑土碳与氮变化及氮素矿化特征   总被引:18,自引:3,他引:18  
土壤氮的矿化是土壤氮素肥力的重要指标,是影响作物产量至关重要的因素。本研究依托黑土长期定位试验,通过取样分析研究了32 a不同培肥模式下黑土碳、 氮及主要活性组分的变化,采用淹水培养法研究了不同施肥模式下黑土氮素的矿化特征。结果表明,施肥显著提高黑土可溶性碳(DOC)、 氮(DON)的含量及其比例。在氮、 磷、 钾化肥的基础上配施有机肥,显著降低了土壤微生物量氮(SMBN)占土壤总氮的比例,提高了土壤微生物量的C/N比值(SMBC/SMBN),促进了土壤氮的生物固持。施肥32 a后,单施常量和高量有机肥处理的土壤氮的矿化量(Nt)显著提高,分别相当于不施肥的8.2倍和10.2倍,而单施氮或氮磷钾化肥对黑土氮素矿化量无明显影响。施用有机肥显著提高了土壤氮素的矿化率(Nt/TN),但有机肥配施化肥(氮或氮磷钾)的处理与单施有机肥相比,黑土氮的矿化率显著降低,降低幅度分别为23.5%~32.1% 和14.1%~17.8%。土壤氮素矿化量与土壤有机质、 全氮储量、 活性碳、 氮组分均呈极显著线性相关,但氮素的矿化率随着有机质和全氮含量的提高而提高至0.4% 后基本稳定。表明尽管土壤氮的矿化与有机质的含量直接相关,但土壤有机质的品质同样决定着土壤氮素的矿化能力。施有机氮是提高土壤供氮能力的重要途径。  相似文献   

16.
秸秆与氮肥不同配比对红壤微生物量碳氮的影响   总被引:7,自引:2,他引:7  
【目的】 秸秆碳氮比是影响其养分释放和还田利用的主要因素之一。秸秆还田条件下,如何合理施用氮肥是秸秆利用的关键问题。研究玉米秸秆还田配施不同量氮肥后土壤微生物特性的变化,对于指导秸秆还田和培肥土壤有重要意义。 【方法】 在中国农业科学院衡阳红壤实验站旱地试验田进行尼龙袋大田填埋试验,供试土壤为红壤。尼龙袋装土200 g (以风干土计),共设置6个处理:CK、低量尿素0.157 g (N1)、高量尿素0.939 g (N2)、玉米秸秆9 g (S)、玉米秸秆 + 低量尿素 (SN1)、玉米秸秆 + 高量尿素 (SN2)。S、SN1和SN2处理中混合物的碳氮比分别为53∶1、37∶1、15∶1。填埋后分别于7、14、21、28、49和150 d取样,分析不同碳氮比秸秆还田后土壤有机碳 (SOC)、微生物生物量碳和氮 (SMBC和SMBN)、微生物熵 (SMBC/SOC) 及微生物量碳氮比 (SMBC/SMBN) 等随时间的变化及处理间差异。 【结果】 SMBC和SMBN均随时间先增加后降低,分别在21 d和14 d达到最大值。还田150 d时与CK相比,秸秆还田各处理SMBC增加了4~5倍,SMBN增加了6~8倍。S、SN1和SN2处理的SMBC 6次取样的平均值分别为1425、1379和1462 mg/kg,约为其他处理的10倍;SMBN分别为172、181和193 mg/kg,约为其他处理的8倍;微生物熵分别为3.57、3.41和3.57,约为其他处理的2.8倍,S、SN1和SN2处理间差异不显著。N1、N2的SMBC/SMBN显著低于S处理。在28 d前,S、SN1和SN2处理间SMBC/SMBN值差异不显著,28 d后S处理显著高于SN1和SN2;150 d时S处理SMBC/SMBN值约为10,SN1和SN2处理约为6。 【结论】 玉米秸秆还田显著提高了SMBC、SMBN和微生物熵。秸秆还田和氮肥施用均会降低SMBC/SMBN值,且氮肥用量越大比值越低。当秸秆还田时,将碳氮比调整到37∶1不能满足微生物对氮的需求,因此在南方红壤秸秆还田时要补充氮素。   相似文献   

17.

Purpose

The aim of this study was to understand the effect of nitrogen fertilization on soil respiration and native soil organic carbon (SOC) decomposition and to identify the key factor affecting soil respiration in a cultivated black soil.

Materials and methods

A field experiment was conducted at the Harbin State Key Agroecological Experimental Station, China. The study consisted of four treatments: unplanted and N-unfertilized soil (U0), unplanted soil treated with 225?kg?N?ha?1 (UN), maize planted and N-unfertilized soil (P0), and planted soil fertilized with 225?kg?N?ha?1 (PN). Soil CO2 and N2O fluxes were measured using the static closed chamber method.

Results and discussion

Cumulative CO2 emissions during the maize growing season with the U0, UN, P0, and PN treatments were 1.29, 1.04, 2.30 and 2.27?Mg?C?ha?1, respectively, indicating that N fertilization significantly reduced the decomposition of native SOC. However, no marked effect on soil respiration in planted soil was observed because the increase of rhizosphere respiration caused by N addition was counteracted by the reduction of native SOC decomposition. Soil CO2 fluxes were significantly affected by soil temperature but not by soil moisture. The temperature sensitivity (Q 10) of soil respiration was 2.16?C2.47 for unplanted soil but increased to 3.16?C3.44 in planted soil. N addition reduced the Q 10 of native SOC decomposition possibly due to low labile organic C but increased the Q 10 of soil respiration due to the stimulation of maize growth. The estimated annual CO2 emission in N-fertilized soil was 1.28?Mg?C?ha?1 and was replenished by the residual stubble, roots, and exudates. In contrast, the lost C (1.53?Mg?C?ha?1) in N-unfertilized soil was not completely supplemented by maize residues, resulting in a reduction of SOC. Although N fertilization significantly increased N2O emissions, the global warming potential of N2O and CO2 emissions in N-fertilized soil was significantly lower than in N-unfertilized soil.

Conclusions

The stimulatory or inhibitory effect of N fertilization on soil respiration and basal respiration may depend on labile organic C concentration in soil. The inhibitory effect of N fertilization on native SOC decomposition was mainly associated with low labile organic C in tested black soil. N application could reduce the global warming potential of CO2 and N2O emissions in black soil.  相似文献   

18.
中国东部精细农业中N肥施用的最新动态和建议   总被引:21,自引:0,他引:21  
The Taihu Region in eastern China is one of China‘s most intensive agricultural regions and also one of the economic ally most developed areas. High nitrogen balance surpluses in the summer rice-winter wheat double-cropping systems are leading to large-scMe non-point source pollution of aquifers. In an interdisciplinary approach, four-year (1995-1998) field trials were carried out in two representative areas (Jurong County and Wuxi City) of the Taihu Region. Five farmers‘ field sites were chosen in each of the 2 locations, with each site divided into “standard“ (farmers‘ practice) and “reduced“ (by 30%-40%) N fertilization. For both fertilization intensities, N balance surpluses and monetary returns from grain sales minus fertilizer expenditures were calculated in an economic assessment. Based on the field trials, the mineral N fertilizer application rates reduced by about 10% for rice and 20%-30% for wheat were recommended in 1999. Since 1999, the research focused on the trends in N fertilizer application rates and changes in grain and agricultural commodities prices. Summer rice N fertilizer use, in Wuxi City as of 2001, dropped by roughly 25%, while for winter wheat it decreased by 10%-20%, compared to the 1995-1998 period. This has been achieved not only by grain policy and price changes, but also by an increased environmental awareness from government officials. Nitrogen balance surpluses in Anzhen Town (of Wuxi City) have consequently diminished by 50%-75% in rice and by up to 40% in wheat, with reductions being achieved without concomitant decreases in physical grain yields or returns from sales minus fertilizer costs.  相似文献   

19.
《Applied soil ecology》2006,31(1-2):32-42
Microcosm and litterbag experiments were conducted to determine the effects of litter quality, soil properties and microclimate differences on soil carbon (C) and nitrogen (N) mineralization in alley cropping systems. Bulk soils were collected from 0 to 20 cm depth at three sites: a 21-year old pecan (Carya illinoinensis)/bluegrass (Poa trivialis) intercrop (Pecan site) in north-central Missouri, a 12-year old silver maple (Acer saccharinum)/soybean (Glycine max)–maize (Zea mays) rotation (Maple site) in northeastern Missouri and a restored prairie site (MDC site) in southwestern Missouri. Seven tree and crop litters with varying composition were collected, including pecan, silver maple, chestnut and walnut leaf litter (tree litter) and maize, soybean and bluegrass residues (crop litter). Aerobic microcosm incubations were maintained at 25 °C and a soil water potential of −47 kPa. Unamended MDC soil mineralized 24 and 18% more CO2 than the Pecan and Maple soils, respectively. Soil amended with crop litter mineralized on average 32% more CO2 than when amended with tree litter. Net N mineralization from soybean litter was 40 mg kg−1, while all other litter immobilized N for various durations. A double pool and a single pool model best described C and N mineralization from amended soils, respectively. Cumulative CO2 mineralized, labile C fraction (C1) and potentially mineralizable C (C0) were correlated to litter total N and lignin contents and to (lignin + polyphenol):N ratio. In the field, bluegrass litter decomposed and released N twice as fast as pecan leaf litter. Soybean, maize and silver maple litter released 84, 75 and 63% of initial N, respectively, 308 days after field placement, while no differences in mass loss was observed among the three litter materials. At the Maple site, mass and N remaining, 308 days after field placement was lower at the middle of the alley, corresponding to higher soil temperature and water content. No differences in mass loss and N release patterns were observed at the Pecan site. Microclimate and litter quality effects can lead to differences in nutrient availability in alley cropping systems.  相似文献   

20.
With increasing food demand worldwide, agriculture in semiarid and arid regions becomes increasingly important, though knowledge about organic matter (OM) conserving management systems is scarce. This study aimed at examining organic C (OC) and nitrogen (N) concentrations in various soil OM pools affected by 26-years application of chemical fertilizer and farmyard manure at an arid site of Gansu Province, China. Macro OM (>0.05 mm) was extracted by wet sieving and then separated into light macro OM (<1.8 g cm−3) and heavy macro OM (>1.8 g cm−3) sub-fractions; bulk soil was differentiated into free particulate OM (FPOM, <1.6 g cm−3), occluded particulate OM (OPOM, 1.6-1.8 g cm−3) and mineral-associated OM (>1.8 g cm−3). OC and N concentrations of heavy macro OM and FPOM were slightly affected by long-term N fertilization alone and its combination with P and K, but their magnitudes of change had not significantly contributed to total soil OC and N concentrations. Farmyard manure increased light macro OC and N by 58 and 70%, heavy macro OC and N by 86 and 117%, free particulate OC and N by 29 and 55%, occluded particulate OC and N by 29 and 55%, and mineral-associated OC and N by 44 and 48%, respectively, compared to nil-manure. Mineral fertilization improved soil OM quality by decreasing C/N ratio in the light macro OM and FPOM fractions where farmyard manure was absent. Organic manure led to a decline of the C/N ratio in all physically-separated OM fractions possibly due to the increased input of processed organic materials. We found about two thirds of macro OM was actually located within 2-0.05 mm organo-mineral associations or/and aggregates. In conclusion, this study stresses the vital importance to apply organic manure to the wheat-corn production system characterized by straw removal and conventional tillage in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号