首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work reports on the successful incorporation of commercial formulated Artemia replacement diets as 50% of a larval American lobster diet. Combination diets of either live Artemia nauplii or frozen adult n-3 fatty acid enriched Artemia with a rotation of three commercial formulated diets resulted in equivalent survival to stage IV (19–25%), postlarval size and subsequent early juvenile performance compared to an Artemia nauplii plus frozen Artemia combination diet. A 100% formulated diet resulted in reduced larval survival (6%) and postlarval size, while a larval diet of 100% frozen adult Artemia resulted in reduced postlarval quality and early juvenile performance. The much lower price of the formulated diets compared to the prices of Artemia nauplii and frozen Artemia makes its inclusion in the lobster larval diet the most cost-effective diet choice.  相似文献   

2.
Experiments were conducted to evaluate different prophylactic methods to control the bacterial load in brine shrimp, Artemia, hatching. The first experiment evaluated three treatments to control Vibrio spp. during the Artemia hatching: microalgae (Chaetoceros calcitrans), probiotic (Bacillus spp.), and antibiotic (Florfenicol). In the second experiment, Artemia metanauplius were enriched in distinct treatments with C. calcitrans, probiotic, and emulsion rich in docosahexaenoic and eicosapentaenoic fatty acids. Enriched Artemia metanauplius and nauplii (control) were offered to white shrimp, Litopenaeus vannamei, postlarvae (PL7–PL19). Presumptive Vibrio were quantified in Artemia, PL, and rearing water. Microalgae and probiotic were effective to control Vibrio spp. in Artemia nauplii. The enrichment process increased the Artemia bacterial load but did not affect Vibrio load in L. vannamei.  相似文献   

3.
Growth rate, soluble-protein content and digestive-enzyme activities were studied in Litopenaeus vannamei (Boone, 1931) early post-larvae under six feeding regimens, which included combinations of freshly hatched Artemia nauplii, an artificial diet and algae. Growth (0.11 mg DW day−1) and soluble-protein content (61.8 μg protein larvae−1 at PL10) of post-larvae fed mixed diets were significantly higher (P < 0.05). An artificial diet used alone or co-fed with algae caused the lowest growth (0.03–0.05 mg DW day−1) and soluble-protein content (13.7–15.5 μg protein larvae−1 at PL10). Trypsin-like activity was higher (up to 10 times) in post-larvae fed Artemia nauplii and an artificial diet alone or plus algae. The artificial diet stimulated chymotrypsin activity, apparently in response to squid meal present in this diet. Amylase activity increased when post-larvae were fed the artificial diet. This was apparently related more to the origin of the starch than to the total carbohydrate level of the diet. No obvious relationship was found between enzyme activity and growth in any feed combination. Based on growth and soluble-protein content, we determined that partial substitution (50%) of Artemia nauplii by artificial diet and the use of algae co-fed beyond the first post-larval stage benefits growth and the nutritional state of L. vannamei post-larvae.  相似文献   

4.
Growth rate, soluble protein content, osmotic stress and digestive enzyme activity were studied in early Litopenaeus schmitti postlarvae under different feeding regimens, by partially or completely replacing Artemia nauplii with Moina micrura. Growth was significantly higher in the postlarvae fed with a mixture of M. micrura, Artemia nauplii and algae (0.030 mg dry weight (dw) larva?1 day?1, 17.4 ± 2.1% day?1), together with the postlarvae fed on Artemia nauplii and algae (0.027 mg dw larva?1 day?1, 18.3 ± 1.9% day?1). Complete replacement of Artemia nauplii by M. micrura produced the lowest growth rate (0.018 mg dw larva?1 day?1, 14.3 ± 1.6% day?1) and induced the highest protease and α‐amylase activities and lower soluble protein contents. No significant difference among the treatments could be detected in postlarval resistance to osmotic stress. Based on the growth results, soluble protein content, enzymatic activity and osmotic stress resistance, we determined that the partial replacement of Artemia nauplii by M. micrura did not affect the growth, the soluble protein content and the nutritional state in the postlarvae of L. schmitti. To our knowledge, this is the first reported use of M.micrura as feed for early postlarvae of L. schmitti.  相似文献   

5.
The effects of several food items on larvae production and survival ofthe mysid Mysidopsis almyra were compared. A total of sixdiets were used. The diets were: 1) phytoplankton (Isochrysisgalbana), 2) an artificial diet (Liqualife®, Cargill,Minneapolis, MN), 3) a mixed diet composed of both zooplankton (mostlycopepods)and phytoplankton, 4) 750 mg g–1 of HUFA enrichedArtemia nauplii and 250 mgg–1 of the artificial diet, 5) newly hatchedArtemia nauplii (24-hour incubation at 28°C) and 6) newly hatched Artemia naupliienriched with HUFA (SELCO®, INVE Inc., Ghent, Belgium) for 12 hours. Mysidsfed HUFA enriched Artemia nauplii (diet 6) had the highestproduction and survival rates, although not significant (P > 0.05), comparedto diets 3, 4 and 5, while the phytoplankton and the artificial diet hadsignificantly lower production and survival rates (p > 0.05).  相似文献   

6.
Nutritional efficacy of fairy shrimp (Streptocephalus sirindhornae) nauplii, as a live food, was studied for growth performance and survival rate of giant freshwater prawn (Macrobrachium rosenbergii) postlarvae. A feeding experiment was designed with four different feeds: dry commercial feed, fairy shrimp nauplii, Artemia sp. nauplii and adult Moina macrocopa. Results from the nutritional composition revealed that fairy shrimp nauplii had protein and lipid contents of 54.58 ± 2.8 g kg?1 and 255 ± 2.8 g kg?1, respectively. The highest value for an individual amino acid in fairy shrimp was lysine (140.7 ± 1.6 g kg?1). The essential amino acids content in the whole body of the larval prawns was in the range of 66.7–67.5 g kg?1. Fairy shrimp nauplii had the highest essential amino acid ratio (A/E) of lysine, similarly, in musculature of prawn larvae. Weight gain and specific growth rate of the postlarvae fed with fairy shrimp nauplii were significantly higher than those fed with Artemia nauplii, adult Moina and dry commercial feed. The presented results suggest that S. sirindhornae nauplii can be used as a nutritionally adequate food for freshwater prawn M. rosenbergii postlarvae.  相似文献   

7.
Microbound feeds have been well accepted by shrimps and farmers in many penaeid shrimp hatcheries. The present study focused on an adequate level of replacement of Artemia nauplii and microalgae by a microbound diet for rearing Litopenaeus setiferus (Burkenroad) larvae. A microbound diet (MBD) consisting of fishmeal, squid meal, shrimp meal, yeast meal and soybean meal was used. The first experiment was designed to obtain the optimum level of MBD to complete the live feeding schedule, from Protozoea (PZIII) to Mysis (MIII). The experimental levels of the microbound diet tested were 2, 4, 6 and 8 mg MBD L?1 day?1. The next step was to determine the Artemia nauplii replacement level from PZI to MIII by MBD. These experiments were carried out either in the presence (Experiment 2) or in the absence of algae (Experiment 3). Four replacement levels were tested: 0% (4 mg MBD L?1 day?1: 1 Artemia nauplii mL?1), 40% (5.5 mg MBD L?1 day?1: 0.6 Artemia nauplii), 60% (6.5 mg MBD L?1 day?1: 0.4 Artemia nauplii) and 100% (8 mg MBD L?1 day?1: 0 Artemia nauplii). In all experiments growth, survival, development, quality index (QI) and performance index (PI), were used to determine the optimum concentration of microbound diet. Results showed that 6 mg MBD L?1 day?1 can be recommended as a complement to live food for L. setiferus larvae from PZIII to MIII. In the presence of algae, maximum growth and survival may be obtained in 40–60% (5.5–6.5 mg MBD L?1 day?1) of Artemia nauplii replacement levels. In the absence of algae, the Artemia nauplii replacement resulted in slower development, less salinity resistance, lower growth and lower survival than was obtained in larvae fed with algae.  相似文献   

8.
The use of dried Artemia biomass meal as an exclusive feed for postlarval white shrimp (Litopenaeus vannamei) was compared with four commercial feeds and three crustacean meals in a series of trials. Postlarvae (PL1–PL6) were stocked at a density of 1.5–2.5/litres in 16 tanks (100 litres volume) and fed, ad libidum, five times a day, over 23–29 days. Feeding postlarval shrimp with dried Artemia biomass resulted in a significantly larger size than feeding with three of the commercial feeds, and the crustacean meals. There was no significant size difference observed in animals fed with Artemia biomass and the commercial 'Golden Pearls' feed for postlarvae, however the coefficient of variation among the size of the 'Golden Pearls' fed animals was significantly higher. The weight increase of animals fed with Artemia biomass was higher than in animals fed with all the tested feeds. The survival rate was not significantly different in animals fed with Artemia flakes from 'Salt Creek', 'Bio-Marine', 'Golden Pearls' and Artemia biomass, however the survival rate was significantly larger in animals fed with Artemia biomass than in animals fed with the crustacean meals and 'Artemac.' Results suggest that dried Artemia biomass is a well-suited feed for postlarval L. vannamei.  相似文献   

9.
The effects of several food items on larvae production and survival ofthe mysid Mysidopsis almyra were compared. A total of sixdiets were used. The diets were: 1) phytoplankton (Isochrysisgalbana), 2) an artificial diet (Liqualife®, Cargill,Minneapolis, MN), 3) a mixed diet composed of both zooplankton (mostlycopepods)and phytoplankton, 4) 750 mg g?1 of HUFA enrichedArtemia nauplii and 250 mgg?1 of the artificial diet, 5) newly hatchedArtemia nauplii (24-hour incubation at 28°C) and 6) newly hatched Artemia naupliienriched with HUFA (SELCO®, INVE Inc., Ghent, Belgium) for 12 hours. Mysidsfed HUFA enriched Artemia nauplii (diet 6) had the highestproduction and survival rates, although not significant (P > 0.05), comparedto diets 3, 4 and 5, while the phytoplankton and the artificial diet hadsignificantly lower production and survival rates (p > 0.05).  相似文献   

10.
Largemouth bass (LMB) Micropterus salmoides fry do not accept prepared diets at first feeding. Fry are initially reared in fertilized ponds on natural live foods until large enough to be feed trained. Unpredictable weather patterns and depletion of natural forages can affect nursery pond survival. A series of experiments was conducted to investigate the use of Artemia nauplii prepared diets and optimal feeding schedules to raise LMB fry from first feeding through habituation to a commercial dry diet. In Studies 1, 2, and 3, swim-up fry were transferred to a recirculating system and stocked into either 3-L (Studies 1 and 2) or 10-L (Study 3) acrylic aquaria. Study 1 screened candidate diets to evaluate whether LMB fry could be transitioned directly to prepared diets or if they required live foods. In Study 2 the optimum duration for feeding live Artemia (1, 2, or 3 weeks) and the appropriate size of commercial diets (<200 or 200–360 μm) were evaluated. Study 3 was designed to identify the best transitional feed. Results from Study 1 indicate that fry fed Otohime-A (<200 μm) and decapsulated Artemia cysts performed better than those fed other diets tested. However, survivals were low (6%–8%) indicating a need for live feed initially. In Trial 2, fry fed live Artemia nauplii for two weeks and then transitioned to a 200–360 μm diet (Otohime-B) performed better than other diet combinations tested. In Study 3, survival was significantly higher in treatments using decapsulated Artemia cysts or Otohime-B as transitional diets between initial live Artemia feeding and trout starter. These data indicate that LMB fry can be successfully raised from first feeding to fully habituated to a commercial trout starter by feeding live Artemia nauplii for two weeks, followed by a gradual transition to either decapsulated Artemia cysts or Otohime-B for one week, then gradually transitioning to trout starter. Surviving fish were easily transitioned to commercial floating feed (Study 4). This protocol yielded survival rates of approximately 70% and may improve the reliability of LMB fingerling production by eliminating the outdoor nursery pond phase.  相似文献   

11.
The use of dried Artemia biomass meal as an exclusive feed for postlarval white shrimp (Litopenaeus vannamei) was compared with four commercial feeds and three crustacean meals in a series of trials. Postlarvae (PL1–PL6) were stocked at a density of 1.5–2.5/litres in 16 tanks (100 litres volume) and fed, ad libidum, five times a day, over 23–29 days. Feeding postlarval shrimp with dried Artemia biomass resulted in a significantly larger size than feeding with three of the commercial feeds, and the crustacean meals. There was no significant size difference observed in animals fed with Artemia biomass and the commercial 'Golden Pearls' feed for postlarvae, however the coefficient of variation among the size of the 'Golden Pearls' fed animals was significantly higher. The weight increase of animals fed with Artemia biomass was higher than in animals fed with all the tested feeds. The survival rate was not significantly different in animals fed with Artemia flakes from 'Salt Creek', 'Bio-Marine', 'Golden Pearls' and Artemia biomass, however the survival rate was significantly larger in animals fed with Artemia biomass than in animals fed with the crustacean meals and 'Artemac.' Results suggest that dried Artemia biomass is a well-suited feed for postlarval L. vannamei.  相似文献   

12.
Major challenges in culture of Atlantic halibut larvae have been slow growth during the late larval stages and inferior juvenile quality due to pigmentation errors and incomplete eye migration during metamorphosis. The hypothesis of this study was that feeding on‐grown Artemia would alleviate these problems. Artemia were grown for 3–4 days on Origreen or Origo. The growth and nutrient composition of Artemia nauplii and on‐grown Artemia were analysed, and both Artemia types were fed to Atlantic halibut larvae, on‐grown Artemia from 15 days post‐first feeding (dpff). The body length of Artemia increased with 20%–70% in response to on‐growing. In all experiments, protein, free amino acids and the ratio of phospholipid to total lipid increased, while lipid and glycogen decreased. The fatty acid composition improved in some cases and not in others. The micronutrient profiles were not negatively affected in on‐grown Artemia. All these changes are thought to be beneficial for marine fish larvae. The final weight of Atlantic halibut postlarvae was similar, and 90% of the juveniles had complete eye migration in both groups. It is concluded that the present version of Artemia nauplii probably covers the nutrient requirements of Atlantic halibut larvae.  相似文献   

13.
Use of ongrownArtemia in nursery culturing of the tiger shrimp   总被引:1,自引:0,他引:1  
Juvenile and adultArtemia produced in a semi flow-through culture system were used as food for postlarval shrimp. The growth performance of shrimp reared on such ongrownArtemia live prey is identical to the growth obtained when feeding newly hatchedArtemia. However, a significantly better stress resistance is obtained when the postlarvae are exposed to a low salinity in a stress test. Besides nutritional and energetic advantages, the use ofArtemia biomass for feeding postlarval shrimp also results in improved economics as expenses for cysts and weaning diets can be reduced.  相似文献   

14.
The present study was conducted to study probiotics treatment in the post‐larval diet of Macrobrachium rosenbergii. Three hundred postlarvae (average weight, 114–118 mg±0.11) were divided in five experimental groups each with four replicates. The experiment was conducted for 60 days. Experimental diets were identical in all the aspects except for variation in the probiotics strain. T1 and T2 groups were fed Lactobacillus acidophilus (140×1011 CFU 100 g?1) and L. sporogenes (24×107 CFU 100 g?1) respectively. The T3 group was fed L. sporogenes bioencapsulated in Artemia nauplii. T4 was the control group (without probiotic) whereas T5 was fed Artemia along with control diet. The bacteriological study indicated that the gut microflora of postlarvae are devoid of lactic acid bacteria. The probiotic strains were found to have inhibitory effects against the gram‐negative bacterial flora present in the gut. Growth of the probiotic fed groups was significantly higher (P<0.05) than the control group. Significantly higher growth (P<0.05), per cent weight gain (132.5%), specific growth rate (1.41%), feed efficiency ratio (FER) (0.45), protein efficiency ratio (1.29) and protein gain (161.6%) were recorded in T3 group fed Artemia bioencapsulated L. sporogenes over the control group (P<0.05). Although insignificant (P>0.05), growth‐promoting effects of L. sporogenes were found to be higher than L. acidophillus. Survival of the postlarvae was not affected by probiotics in the diet.  相似文献   

15.
The aim of this study was to evaluate the effects of hatchery‐tank colours (white, yellow, red, blue, green and black) on the performance of larval culture of Macrobrachium amazonicum. The larvae were fed daily with newly hatched Artemia nauplii. The hatchery‐tank colours affected the light level inside the tanks, the consumption of Artemia nauplii (AN), larval development, survival, mass gain and productivity of postlarvae (PL). The overall consumption of Artemia nauplii per larva during the larval cycle was 30% and 45% higher in the green and red tanks respectively. The significant variation of AN consumption among tank colours (= 0.0006) indicates that M. amazonicum larvae are visual predators. Survival was higher in the black, blue and green tanks, reaching more than 75%. However, the highest productivity was obtained in the black tanks (80.1 PL L?1). Lighter coloured tanks and excess luminosity (more than 2 μmol s?1 m2 at tank bottom) appear to be important stress factors for larvae, contributing to reduce survival and productivity. The results indicate that rearing M. amazonicum in black tanks will improve larvae condition, ensure greater productivity of postlarvae and lower Artemia consumption, increasing technological and economic viability.  相似文献   

16.
The impact of shrimp larvae development, as well as water and food inputs upon the increase of bacterial populations within the bacterial community of hatchery tank biofilms, was studied. For this study, a total of 68 biofilm samples were collected from concrete tanks at three larvae production times in a commercial shrimp hatchery. Seventeen samples were taken at each larval development stage (Zoea I, Mysis I, postlarvae 1 and postlarvae 16), as well as 37 samples from water, shrimp nauplii and food, introduced into the shrimp hatchery tanks. Culturable and direct bacterial counts were performed and 16S‐rRNA‐targeted oligonucleotide probes were used to quantify the presence of specific bacterial groups. An average of 27–70% of DAPI total cell counts were detected with the EUB338 probe, while the GAM42a probe signal ranged from 1% to 11%. Vibrio‐like bacteria (VLB) counts in TCBS agar ranged from <10 to 101 VLB/cm−2, with a tendency to increase at the last postlarvae stage. The most significant external source of bacteria registered with GAM42a probe and TCBS agar were found in live Artemia nauplii, used as food; nevertheless, biofilms remain with low counts of these groups.  相似文献   

17.
Biofloc rearing media provides a potential food source for shrimp reared in limited or zero water exchange systems. This culture system is environmentally friendly as it is based on limited water use and minimal effluent is released into the surrounding environment. In this study, we evaluated the survival, growth performance and salinity stress tolerance of pink shrimp Farfantepenaeus paulensis postlarvae reared from PL10 to PL25 in a biofloc technology limited water exchange system. PL (mean ± SD weight and length of 14 ± 10 mg and 8.10 ± 0.7 mm, respectively) were reared in nine 40-L plastic tanks with a stocking density of 10PL/L. Three culture treatments were applied (1) culture in the presence of bioflocs and commercial feed supply (FLOC + CF); (2) culture in the presence of biofloc without feed supply (FLOC) and (3) culture in clear water with feed supply (control). Final biomass and survival were significantly higher in FLOC + CF treatment than the control (P < 0.05), but did not differ from FLOC. PL reared in the FLOC + CF treatment achieved a significantly higher final weight, weight gain and length in comparison with the other two treatments (P < 0.05). No significant difference (P > 0.05) between treatments was found for salinity tolerance over 24 and 48 h durations. The proximate analysis of floc shown high levels of crude protein (30.4%), but low levels of crude lipids (0.5%). The continuous availability of bioflocs had a significant effect on growth and survival of F. paulensis postlarvae cultured in BFT nursery systems.  相似文献   

18.
An experiment was conducted to evaluate the effect of a hot water extract of brown seaweeds Sargassum duplicatum and Sargassum wightii on the growth and white spot syndrome virus (WSSV) resistance in shrimp Penaeus monodon postlarvae (PL). Artemia nauplii (instar II) were enriched with both seaweed extracts at various concentrations (250, 500 and 750 mg L?1) and fed to the respective P. monodon (PL15–35) group for 20 days. A control group was also maintained without seaweed extract supplementation. The weight gain of the experimental groups was significantly higher (0.274–0.323 g) than the control group (0.261 g). Similarly, the specific growth rate was also significantly higher (16.27–17.06%) in the experimental groups than in the control group (16.03%). After 20 days of the feeding experiment, the shrimp PL were challenged with WSSV for 21 days. During the challenge test, the control shrimp displayed 100% mortality within 8 days. In contrast, the mortality percentage of the highest concentration (750 mg L?1) of seaweed extract enriched Artemia nauplii fed shrimp was 54–79%. Comparatively, low mortality was observed in S. wightii extract‐enriched Artemia nauplii fed shrimp. The polymerase chain reaction analysis indicated the concentration‐dependent infection of WSSV in P. monodon PL.  相似文献   

19.
Daily food intakes, optimal feeding regimes and food concentrations for laboratory reared Paralithodes camtschaticus (Tilesius, 1815) larvae were investigated. Artemia nauplii hatched at standard conditions were used as food. Daily food intakes of zoeae I–IV at 7–8 °C comprised 11.3, 22.4, 33.2, and 41.8 nauplii individuals (ind)?1 day?1, respectively, taking into account that wet weight of Artemia nauplii used for the experiments constituted 0.026 mg, dry weight 0.0042 mg. Optimal initial Artemia nauplii concentrations for feeding zoeae I–IV was determined as 400–600, 600–800, 800–1000 and 1000–1200 nauplii L?1 respectively. Recommendations on using Artemia nauplii as food for red king crab larvae were outlined on the basis of experimental results. Growth, development and survival rates of zoeae I–IV reared in recycling water system at 7–8 °C and fed Artemia nauplii according to these recommendations were described.  相似文献   

20.
We have evaluated the potential of a formulated diet as a replacement for live and fresh feeds for 7-day post-hatch Panulirus ornatus phyllosomata and also investigated the effect of conditioning phyllosomata for 14–21 days on live feeds prior to weaning onto a 100% formulated diet. In the first trial, the highest survival (>55%) was consistently shown by phyllosomata fed a diet consisting of a 50% combination of Artemia nauplii and 50% Greenshell mussel, followed by phyllosomata fed 50% Artemia nauplii and 50% formulated diet and, thirdly, by those receiving 100% Artemia nauplii. The second trial assessed the replacement of on-grown Artemia with proportions of formulated diet and Greenshell mussel that differed from those used in trial 1. Phyllosomata fed a 75% combination of formulated diet and 25% on-grown Artemia and 50% on-grown Artemia and 50% Greenshell mussel consistently showed the highest survival (>75%). Combinations of Greenshell mussel and formulated diet resulted in significantly (P < 0.05) reduced survival. In trial 3, phyllosomata were conditioned for 14, 18 or 21 days on Artemia nauplii prior to weaning onto a 100% formulated diet, which resulted in survival rates that were negatively related to the duration of feeding Artemia nauplii. In the final trial, phyllosomata were conditioned for 14 days on live on-grown Artemia prior to weaning onto one of three formulated diets (one diet with 44% CP and two diets with 50%). Phyllosomata fed a 44% CP diet consistently showed the highest survival (>35%) among all treatments, while those fed a 50%-squid CP diet showed a significant (P < 0.05) increase in mortality at day 24. The results of these trials demonstrate that hatcheries can potentially replace 75% of live on-grown Artemia with a formulated diet 7 days after hatch. The poor performance associated with feeding combinations of Greenshell mussel and formulated diet, and 100% formulated diet as well as conditioning phyllosomata for 14–21 days on live feeds prior to weaning onto a formulated diet highlights the importance of providing Artemia to stimulate feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号