首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为探究亚热带红壤区不同植被恢复类型对土壤有机碳周转的影响,本研究以自然恢复草地、马尾松林和木荷林为研究对象,测定植被和土壤有机碳的δ13C,探讨不同林分类型对土壤有机碳来源的影响。结果表明,自然恢复草地植被以C4植物为主,退化草地转变为马尾松林和木荷林后,植被类型以C3植物为主。2种林分从凋落物δ13C到表层土壤有机碳δ13C增加幅度超出了正常的增加范围,显示两个林地有机碳来源为原有草地和当前恢复林分的混合物,表层土壤来源于恢复林分的有机碳低于来源于原有草地的有机碳;2个林分土壤有机碳δ13C均随着深度增加而不断增大。木荷林土壤有机碳的分解速率低于马尾松林,木荷林中土壤有机碳存留时间高于马尾松林。综上所述,尽管马尾松林土壤有机碳来源于新碳的比例高于木荷林,但木荷林中土壤有机碳分解更慢,因此对马尾松林和木荷林土壤的固碳过程需要更加深入的研究。本研究为退化红壤区植被恢复树种的选择提供了理论依据,丰富了南方退化红壤区植被恢复林土壤有机碳研究。  相似文献   

2.
为了揭示长期封育草地深层土壤碳、氮固持及固持速率,采用空间序列代替时间序列的方法,研究了黄土高原宁夏固原云雾山自然保护区长期封育草地土壤有机碳(SOC)、土壤全氮(STN)储量及其固持速率的变化特征。结果表明封育30年草地0—500cm各土层SOC储量显著高于封育10年草地和放牧草地,封育10年草地不同深度SOC储量与放牧草地并无差异;封育30年、10年和放牧草地STN储量在各土层无统计学上的差异,而封育30年不同深度STN储量显著高于封育10年和放牧草地;封育30年SOC,STN固持主要发生在10~30年间,0—500cm固持量分别为(482.5±39.3)Mg/hm~2,(27.7±2.4)Mg/hm~2,封育前10年有机碳、全氮固持量小,分别为(42.8±6)Mg/hm~2,(3.4±2.1)Mg/hm~2;封育30年0—500cm土层SOC和STN固持分别为(525.3±62.0)Mg/hm~2,(25.0±3.0)Mg/hm~2,固持速率分别为(17.5±2.1)Mg/(hm~2·a),(0.83±0.3)Mg/(hm~2·a);碳氮比随着封育年限增加而增大,随土层深度增加而降低。封育草地深层土壤有巨大固碳潜力,评估碳氮固持不仅要时间尺度,也要考虑深层土壤碳氮固持,以达到对生态系统碳氮储量评估的无偏估计。  相似文献   

3.
为了揭示植被退化对湿地土壤碳矿化过程的影响,以甘南尕海4种不同植被退化梯度的湿地(未退化(UD)、轻度退化(LD)、中度退化(MD)及重度退化(HD))为研究对象,采用室内恒温培养和碱液吸收法研究不同土层土壤有机碳(SOC)矿化速率和累积矿化量,结合一级动力学方程,分析土壤半矿化分解时间(T1/2)、有机碳矿化潜势(C0)等参数对植被退化的响应。结果表明:(1)不同植被退化梯度湿地SOC矿化速率在培养期内呈现出基本一致的变化趋势,表现为,培养初期(0~4天)矿化速率快速下降,且数值较高,培养中后期缓慢下降(4~41天)并趋于平稳;各培养温度下,不同植被退化梯度湿地土壤在各土层有机碳矿化速率大小均为UD>LD>MD>HD。(2)在整个培养期间,各植被退化梯度湿地土壤有机碳矿化速率均随土层加深而降低,表层0-10 cm的矿化速率(1.14~16.23 mg/(g·d))均显著高于10-20 cm(1.05~2.85mg/(g·d))和20-40 cm土层(0.94~1.26 mg/(g·d))。(3)4种植被退化梯度湿地在不同温度下的土壤有机碳累积矿化量均值排序为5°C(34.54 mg/g)<15°C(46.67 mg/g)<25°C(58.28 mg/g)<35°C(86.46 mg/g)。(4)一级动力学方程的C0值随植被退化程度增加呈递减趋势,而C0/SOC随着温度的升高而降低。因此,植被退化能显著降低高寒湿地土壤有机碳矿化速率,而气候变暖能够显著增加湿地土壤有机碳矿化量。  相似文献   

4.
开垦年限对松嫩碱化草地土壤碳库的影响   总被引:3,自引:0,他引:3  
《土壤通报》2017,(1):127-133
采用等质量计算土壤碳储量的方法,研究了不同开垦年限对碱化草地0~100 cm土层土壤有机碳、无机碳和总碳储量的影响。结果表明:开垦24年后,耕地与天然草地相比0~100 cm土层土壤平均有机碳含量下降了11.22%,无机碳含量上升了27.47%;草地开垦以后,0~100 cm土层土壤有机碳储量以0.88 Mg hm~(-2)a~(-1)的速率下降,土壤无机碳储量以8.18 Mg hm~(-2)a~(-1)的速率增加;无机碳储量的增加弥补了有机碳储量的下降,从而使得0~100 cm土层土壤总碳储量以7.30 Mg hm~(-2)a~(-1)的速率增加。与等体积法得到的结果相比,应用等质量法估算得到的结果提高了土壤的碳库储量,使得0~100 cm土层土壤有机碳储量的损失速率降低了2.75 Mg hm~(-2)a~(-1),而土壤无机碳储量的截获速率则提高了7.65 Mg hm~(-2)a~(-1)。以上结果表明,在估算富含无机碳的土壤碳库时应将土壤无机碳库考虑在内,而且在土地利用方式改变后,将土壤容重考虑在内的等质量法估算土壤碳库储量可能比等体积法更合适。  相似文献   

5.
若尔盖高原退化湿地土壤有机碳储量   总被引:3,自引:1,他引:3  
为了定量评价若尔盖高原泥炭沼泽湿地退化的碳储存潜力,研究通过土壤剖面法,收集了3个样点的泥炭沼泽湿地土壤样品(原始泥炭地0—200cm、中度退化沼泽湿地0—100cm和重度退化泥炭地0—100cm)。研究表明:(1)中度退化沼泽湿地(1.11±0.18g/cm~3)和重度退化泥炭地(0.72±0.04g/cm~3)土壤容重平均值较原始泥炭地增加了251.8%和129.7%;中度退化沼泽湿地(46.18±6.61g/kg)和重度退化泥炭地(87.37±6.36g/kg)土壤有机碳含量平均值较原始泥炭地降低了74.2%和51.1%。(2)土层深度为0—100cm时,原始泥炭地土壤有机碳储量较中度退化沼泽湿地(384.73±95.57t/hm~2)显著高了47.0%,而与重度退化泥炭地(518.39±33.07t/hm~2)土壤有机碳储量无显著差异;当原始泥炭地有机层增加到0—200cm后,中度退化沼泽湿地和重度退化泥炭地土壤有机碳储量较原始泥炭地(1 088.17±172.84t/hm~2)降低了64.6%和52.4%,退化湿地土壤有机碳储量的降低可能主要是土壤有机碳含量降低的原因。尽管退化湿地土壤有机碳储量下降,但仍是中国(102.89t/hm~2)和全球(116.56t/hm~2)陆地土壤有机碳储量的3~5倍,该研究可为保护与恢复若尔盖高原湿地提供科学依据。  相似文献   

6.
植被重建下露天煤矿排土场边坡土壤碳储量变化   总被引:5,自引:0,他引:5  
植被重建是治理排土场边坡水土流失最直接也是最有效的生物措施,研究不同植被重建模式下土壤有机碳(SOC)和全氮(TN)含量的空间分布规律是筛选适宜排土场边坡生长的植被模式的重要条件。选取内蒙古黑岱沟露天煤矿治理15年的排土场边坡中4种植被重建模式(自然恢复地、草地、灌木林、乔木林),采集270个土壤剖面(0~100 cm)样品,研究不同重建模式下SOC储量的变化。结果表明:(1)植被重建模式显著影响剖面SOC、TN含量及分布(p0.05),0~10 cm和10~20 cm SOC、TN均呈草地灌木乔木自然恢复地,20 cm以下各土层SOC、TN虽然也表现相似的特征,但差异随土层深度增加越来越小。(2)剖面SOC密度和储量表现为原地貌区治理排土场新建排土场。经15年植被重建后,排土场边坡表现出巨大的固碳能力,1 m深度的林地和草地碳储量分别增加了5.38、11.85 t hm-2,但仅原地貌水平的1/2和3/5。(3)林地和草地的固碳速率分别为35.87、79.01 g m-2a-1,草地的固碳速率是林地的2.2倍,从土壤固碳及水土流失防治的角度考虑,建议矿区排土场边坡植被重建优先选择草地,其次灌木。  相似文献   

7.
研究退化荒地森林恢复后生态系统有机碳的变化,可为原先低碳密度生态系统碳库的恢复提供理论和实践参考。研究红壤侵蚀退化形成的荒地(HD),以及在此基础上通过人为干预形成的木荷马尾松混交林(MM)、阔叶林(KY)、柑桔林(GJ)、封育林(FY),调查其地上、地下碳库和年均细根生物量。结果表明:木荷马尾松混交林(267.22t/hm~2)、阔叶林(233.48t/hm~2)、封育林(112.01t/hm~2)生态系统碳储量显著大于荒地(27.04t/hm~2),而柑桔林(84.16t/hm~2)与荒地之间无显著差异(p0.05)。植物部分碳储量木荷马尾松混交林(187.88t/hm~2)、阔叶林(164.17t/hm~2)、柑桔林(15.24t/hm~2)、封育林(61.75t/hm~2)分别为荒地(4.31t/hm~2)的43.56,38.06,3.53,14.32倍。地下土壤部分(0—80cm)碳储量木荷马尾松混交林(79.34t/hm~2)、阔叶林(69.31t/hm~2)、柑桔林(68.93t/hm~2)、封育林(50.26t/hm~2)均显著高于对照(22.73t/hm~2)(p0.05)。混交林(112.15g/m~2)、阔叶林(88.71g/m~2)、柑桔林(257.70g/m~2)、封育林(211.21g/m~2)年均细根生物量分别为荒地(92.33g/m~2)的1.21,0.96,2.79,2.29倍,细根生物量与土壤有机碳显著相关(p0.05)。不同森林恢复类型生态系统、地上和地下碳积累的速率分别变化在2.04~8.58,0.39~6.56,0.98~2.02tC/(hm~2·a)范围。表明强力的人为干预有助于红壤侵蚀退化荒地生态系统碳库的快速增加。  相似文献   

8.
红壤丘陵区典型植被群落根系生物量及碳储量研究   总被引:5,自引:0,他引:5  
采用标准地法和"WinRhizo根系分析系统"平面扫描,研究了红壤丘陵区六种典型植被群落的根系特征、生物量、固碳量及土壤碳储量.结果表明:(1)根系特征值随土壤深度增加呈递减趋势,马尾松、杉木混交林和马尾松、木荷混交林土壤表层根系分布密集,特征值较大,马尾松低效林根系分布稀疏,特征值最小;(2)不同植被群落,0-40 cm土层的根系生物量所占比例在58.89%~84.88%.0-20 cm土层的土壤碳储量所占比例在35.89%~48.67%;(3)该区乔木混交林的根系生物量大于纯林和火烧迹地,植被群落的灌草覆盖度是影响根系生物量的主要因素.马尾松、木荷混交林根系净生产力最大,为6.74 t/(hm~2·a),马尾松低效林最小,为1.28t/(hm~2·a);(4)马尾松、木荷混交林的根系固碳量和土壤碳储量最大,分别为60.66 t/hm~2和9086.32 t/hm~2,马尾松低效林最小,分别为15.97 t/hm~2和1 683.75 t/hm~2,根系固碳量只占土壤碳储量的极少部分,但根系通过改良土壤结构,对增强碳源汇集和贮存、积累碳素具有重要的影响.  相似文献   

9.
[目的]研究南方红壤侵蚀地不同恢复年限植被生态系统碳库储量,为该地区马尾松人工林制定合理的森林经营方式提供理论支持。[方法]以福建省长汀县河田镇裸地、不同恢复年限(10,20,30a生)马尾松人工林和天然次生林为研究对象,测定不同恢复阶段林地植被和土壤碳库储量。[结果]马尾松人工林植被恢复能够显著提高植被和土壤碳库储量。10a,20a,30a生马尾松人工林与裸地相比生态系统碳库储量分别增加2.80,3.54,8.56倍,但依然低于天然次生林;马尾松人工林植被恢复能够显著提高表层(0—10cm)土壤碳库储量,而对深层土壤碳库储量影响不显著;不同恢复阶段植被和土壤碳库增加速率不同,呈现非线性增加。[结论]南方红壤严重侵蚀地植被恢复能够增加生态系统碳库储量,但该地区土壤碳库的恢复是长期的缓慢过程。今后应加强南方红壤地区森林植被的保护,避免植被过度干扰和破坏而引起严重土壤侵蚀。  相似文献   

10.
以黄土丘陵区典型草原带宁夏固原地区为例,研究了退耕地在植被自然恢复过程中土壤有机碳密度及微生物量碳的动态变化。结果表明,植被自然恢复过程中,土壤有机碳(SOC)和微生物量碳(SMBC)表现为0-5cm土层5-10cm土层10-20cm土层,且在不同土层之间的差异性达到极显著水平(P0.01)。SOC和SMBC在植被自然恢复过程中亦表现出一定的表聚性。土壤剖面各土层SOC和SMBC皆随植被恢复年限的增加总呈上升趋势,且与恢复年限之间呈极显著的对数函数关系。植被恢复0~23a期间,表层土壤(0-5cm)SOC和SMBC年增长率分别为4.81%和6.96%,增加幅度较大;植被恢复23~75a期间,表层土壤SOC和SMBC的年增长率均为0.25%,增加趋势减缓。土壤剖面各土层微生物熵(SMQ)变化于2.113~4.375。土壤有机碳周转速率在恢复前期(0~12a)较快,恢复后期(12~75a)趋于稳定,土壤有机碳积累与转化主要发生在土壤表层。SOC和SMBC之间有极显著的线性正相关关系。植被恢复0~23a期间,与对照农地相比,0-20cm土层土壤有机碳密度增加了85.23%,增加速率较快;而在植被恢复23~75a期间,有机碳密度仅增加了6.60%,增幅减缓。表明植被自然恢复有助于黄土丘陵区土壤有机碳储量的增加,促进土壤碳固定。  相似文献   

11.
利用武威市白云试验站18a长期定位试验资料,研究了不同施肥条件下,土壤有机碳、无机碳和微生物量碳在0-40 cm土层的变化状况.结果表明,氮肥与有机肥长期配合施用和长期施用农肥可以在0 20 cm土层增加土壤有机碳含量,减少土壤中的无机碳含量,增加土壤微生物量碳含量;单施秸秆可增加土壤有机碳,而对无机碳和微生物量碳影响无明显差异;长期施用氮肥对土壤的有机碳、无机碳和微生物量碳均无明显差异.土壤有机碳与土壤无机碳含量呈显著负相关关系,而与土壤微生物量碳呈显著正相关关系.  相似文献   

12.
雅安紫色土小流域土壤有机碳及碳组分分布特征   总被引:2,自引:0,他引:2  
以四川省雅安市和平小流域紫色土为研究对象,研究不同侵蚀强度紫色土小流域土壤有机碳分布特征。结果表明:自小流域上部向下部土壤侵蚀强度逐渐降低,土壤有机碳含量逐渐升高,且下部与上部和中部相比差异性极显著(P<0.05);小流域内同一坡面不同坡位土壤总有机碳及碳组分含量均呈现坡脚>坡顶>坡中这一分布特征。小流域内阴坡和阳坡在土壤总有机碳及碳组分含量上有显著差异,具体表现为阳坡<阴坡。小流域内不同土层深度土壤总有机碳及碳组分含量均随土层的加深而降低。研究土壤碳的空间分布规律对该区退耕还林还草工程具有重要的指导意义。  相似文献   

13.
Soil acidity is an important parameter that can regulate ecosystem structure and function. However, a quantitative understanding of the relationships between soil pH and environmental factors remains unavailable. In this study, relationships of soil pH with both climatic and edaphic factors in alpine grasslands on the Tibetan Plateau, China were quantified using data obtained from a regional soil survey during 2001-2004. Our results showed that soil pH decreased along the gradient of both mean annual temperature and precipitation. Likewise, soil pH exhibited consistent negative correlations with soil moisture and silt content. However, soil organic and inorganic carbon contents played opposite roles in shaping patterns of soil pH: the accumulation of soil organic matter led to higher soil acidity, while the existence of soil inorganic matter was favorable for maintaining higher soil alkalinity. The variation partitioning analysis indicated that the combination of climatic and edaphic variables explained 74.3% of the variation in soil acidity. These results suggest that soil pH could be predicted from routinely-measured variables, allowing a robust pedotransfer function to be developed. The pedotransfer function may facilitate land surface models to generate more reliable predictions on ecosystem structure and function around the world.  相似文献   

14.
黄土丘陵区不同恢复年限对天然草地土壤碳库动态的影响   总被引:1,自引:0,他引:1  
[目的]揭示不同恢复年限的天然草地土壤碳库动态变化及其剖面分布特征,全面认识和理解天然草地恢复下土壤有机库、无机碳库的动态特征。[方法]采用野外调查与室内试验分析相结合的方法,以农田为对照,对黄土丘陵区不同恢复年限(11,16,22和35a)的天然草地土壤有机碳(SOC)、无机碳(SIC)、总碳(STC)的动态变化及其剖面分布特征进行了探讨。[结果](1)天然草地恢复过程中表层(0—10cm)SOC含量随植被恢复年限显著增加,下层(10—100cm)SOC含量随植被恢复年限变化不明显;0—100cm土层SOC储量呈先减少后增加趋势,但仍未达到农田SOC储量的水平。(2)天然草地0—20cm土层SIC含量呈相对脱钙现象,0—100cm土层SIC库储量约为SOC库储量的2.7~4.5倍。土壤无机碳库随植被恢复年限的增加无明显变化,但SIC的剖面分布深度发生改变。(3)土壤总碳库随恢复年限增加无明显变化,0—100cm土层SIC储量在STC库中所占比例约为75.6%~86.0%。[结论]短时间内天然草地的土壤碳汇效应并不明显,碳库增汇效应需要长期的过程。  相似文献   

15.
吉林西部盐碱地区稻田土壤有机碳矿化特征   总被引:3,自引:1,他引:3  
以吉林西部盐碱地区(前郭灌区)土壤为研究对象,选取不同盐碱程度的4块水田(P1、P2、P3和P4),采用野外实地调研采样与室内模拟试验相结合的方法,分别在培养期的第1,4,7,10,14,21,28,35,70天测定土壤CO_2气体的排放通量,结合土壤基本理化性质,分析盐碱稻田矿化模拟培养过程中CO_2通量的动态变化,研究土壤盐碱化程度对有机碳矿化过程的影响。结果表明:P1、P2、P3为弱碱化土,P4为强碱化土;各样地土壤有机碳(SOC)含量差异显著,并存在表层富集现象,与碱化度(ESP)呈显著负相关关系(r=-0.945);SOC矿化量累积过程与培养时间符合一级动力学模型C_t=C_0(1-e-kt),各样地土壤在矿化培养初期CO_2释放量较大,释放强度降低较快,矿化速率随时间延长呈缓慢平稳下降,在培养期结束时降至最低。SOC矿化过程受多种因子共同作用,ESP是该过程的主要影响因子。土壤的盐碱化抑制了土壤碳循环的速度,相对于碳源过程而言,对碳汇的影响更大。伴随SOC含量增加,SOC矿化反应强度和矿化反应的完全程度加强,矿化反应累积量增加,反之,随ESP程度增加而减弱。  相似文献   

16.
长白山森林土壤有机碳库大小及周转研究   总被引:3,自引:0,他引:3  
主要分析不同森林植被下有机碳的分解动态和土壤碳库各组分大小、周转时间。结果表明:土壤样品培养90天,CO2累计释放量表层大致为1723~5065mg/kg、下层大致为178~642mg/kg。分解速率总的趋势是前期快,后期慢,表层明显大于下层。大小顺序为:冷杉林〉针阔混交林和阔叶林〉针叶林。在不同植被下的表层和下层土壤中,活性碳占总有机碳的0.54%~1.67%,0.45%~5.48%.平均驻留时间为11~56天、60~88天;缓效性碳占总有机碳的23.0%~63.3%,33.2%~72.2%,平均驻留时间为4~70年、24~161年;惰效性碳占总有机碳的35.5%~75.5%.26.0%~65.%。表层土壤的总有机碳、活性碳、缓效性碳和惰效性碳含量都明显大于下层。凋落物的化学组成主要决定活性碳库、缓效性碳库含量,土壤的粘粒含量等性质主要决定惰效性碳库含量。  相似文献   

17.
长期不同施肥措施下黑土有机碳的固存效应   总被引:5,自引:0,他引:5  
利用开始于1979年的黑土长期定位试验,研究长期不同施肥措施下土壤有机碳含量演变特征、固碳效应及外源碳输入对土壤固碳的贡献。结果表明:长期单施化肥土壤有机碳含量较试验前下降了11.6%~16.1%,有机肥与化肥配施土壤有机碳含量呈上升趋势,常量有机肥化肥配施(MNP、MNPK)土壤有机碳含量分别上升了6.5%和8.4%,二倍量有机肥化肥配施(M2N2、M2N2P2)土壤有机碳含量分别上升了7.7%和11.6%。不施肥和施化肥土壤有机碳储量呈现亏缺,亏缺量在3.5~6.1t/hm2。有机肥与化肥配施土壤有机碳储量表现为盈余,M2N2P2处理盈余量最高,达到1.9t/hm2。年均有机碳投入量与土壤固碳速率呈显著的线性正相关,表明黑土仍具有一定的固碳潜力。黑土碳投入的转化效率为34.1%,若要维持黑土有机碳库平衡,则每年至少投入1.416t/hm2有机碳。可见,在黑土区增加土壤碳投入(有机肥)仍然是最有效的土壤固碳措施。  相似文献   

18.
The priming effect (PE) plays a critical role in the control of soil carbon (C) cycling and influences the alteration of soil organic C (SOC) decomposition by fresh C input.However,drivers of PE for the fast and slow SOC pools remain unclear because of the varying results from individual studies.Using meta-analysis in combination with boosted regression tree (BRT) analysis,we evaluated the relative contribution of multiple drivers of PE with substrate and their patterns across each driver gradient.The results showed that the variability of PE was larger for the fast SOC pool than for the slow SOC pool.Based on the BRT analysis,67%and 34%of the variation in PE were explained for the fast and slow SOC pools,respectively.There were seven determinants of PE for the fast SOC pool,with soil total nitrogen (N) content being the most important,followed by,in a descending order,substrate C:N ratio,soil moisture,soil clay content,soil pH,substrate addition rate,and SOC content.The directions of PE were negative when soil total N content and substrate C:N ratio were below 2 g kg~(-1)and 20,respectively,but the directions changed from negative to positive with increasing levels of this two factors.Soils with optimal water content (50%–70%of the water-holding capacity) or moderately low pH (5–6) were prone to producing a greater PE.For the slow SOC pool,soil p H and soil total N content substantially explained the variation in PE.The magnitude of PE was likely to decrease with increasing soil pH for the slow SOC pool.In addition,the magnitude of PE slightly fluctuated with soil N content for the slow SOC pool.Overall,this meta-analysis provided new insights into the distinctive PEs for different SOC pools and indicated knowledge gaps between PE and its regulating factors for the slow SOC pool.  相似文献   

19.
20.
Abstract

We estimated the carbon (C) sequestration potential of organic matter application in Japanese arable soils at a country scale by applying the Rothamsted carbon (RothC) model at a 1-km resolution. After establishing the baseline soil organic carbon (SOC) content for 1990, a 25-year simulation was run for four management scenarios: A (minimum organic matter application), B (farmyard manure application), C (double cropping for paddy fields) and D (both B and C). The total SOC decreased during the simulation in all four scenarios because the C input in all four scenarios was lower than that required to maintain the baseline 1990 SOC level. Scenario A resulted in the greatest depletion, reflecting the effects of increased organic matter application in the other scenarios. The 25-year difference in SOC accumulation between scenario A and scenarios B, C and D was 32.3, 11.1 and 43.4?Mt?C, respectively. The annual SOC accumulation per unit area was similar to a previous estimate, and the 25-year averages were 0.30, 0.10 and 0.41?t?C?ha?1?year?1 for scenarios B, C and D, respectively. The system we developed in the present study, that is, linking the RothC model and soil spatial data, can be useful for estimating the potential C sequestration resulting from an increase in organic matter input to Japanese arable soils, although more feasible scenarios need to be developed to enable more realistic estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号