首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolism of theanine, gamma-glutamylethylamide, in rats   总被引:8,自引:0,他引:8  
The metabolism of theanine, one of the major amino acid components in tea (Camellia sinensis), was studied in rats. High-performance liquid chromatography (HPLC) with fluorometric detection was used to evaluate the nature of theanine's metabolites in plasma, urine, and tissues. In the urine samples collected after administration of 100, 200, and 400 mg each of theanine, intact theanine, L-glutamic acid, and ethylamine, these compounds were detected in a dose-dependent manner. When 200 mg of theanine was orally administered to rats, the plasma concentrations of theanine and ethylamine reached their highest levels about 0.5 and 2 h after administration, respectively. It seems most likely that the enzymatic hydrolysis of theanine to glutamic acid and ethylamine was accomplished in the kidney. These results indicate that orally administered theanine is absorbed through the intestinal tract and hydrolyzed to glutamic acid and ethylamine in the rat kidney.  相似文献   

2.
3.
4.
Abstract

The seasonal patterns of foliage nutrient concentrations and contents were monitored for two growing seasons in an 11‐year—old Pinus el1iottii stand. In the first growing season after needle initiation, N, P, K, Mg, and Zn concentrations decreased, but this was followed by an increase in the fall and winter months. Another drop in concentration of all elements, except P, occurred in the second growing season. Decreases in total contents indicated that this drop was a result of translocation to other tissues. In contrast to the mobile elements, the concentration and fascicle contents of Ca, Mn, and Al increased with aging of the needles.

Between‐tree variability was least for N, P, and Zn and the N, K, Mg, Mn, and Zn in the current foliage had consistently lower variation than that in the 1‐year‐old foliage. Between‐tree variation for K was lower in the winter than the spring.

For pine foliage, recommended sampling period for N, P, Mg, and Zn is mid to late summer and for the other elements it is late fall to late winter.

There are several sources of variation that influence the level of nutrients in tree foliage. The most important of these, apart from the tree nutrient status, are seasonal fluctuations, variation between trees, and age of needles . Smaller sources of variation are associated with position of the needles within the crown, diurnal changes, year to year variation, and analytical errors1,2. These variables must be studied in order to develop suitable sampling techniques and in Pinus this has been undertaken for P. banksiana 1, P. taeda 3, P. strobus 4, P. resinosa 4, P. sylvestris 5, and P. radiata 6,7. However, foliage sampling has not been studied in detail for slash pine (Pinus elliottii Englem var. elliottii) and earlier studies with other pines have been largely confined to temperate or cool climates.

This study reports the variation in elemental concentrations with season, age of foliage, and between slash pine trees growing in a subtropical climate in Florida.  相似文献   

5.
The distribution of zinc, manganese, copper, cobalt, and nickel in Andosols was investigated. Sixty nine soil samples were collected from different horizons of an Andosols profile in Miyakonojo Basin in south Kyushu, Japan, The total contents of heavy metals were determined by digestion and four extraction solutions, 1 M NH4Ac (ammonium acetate) pH 4.5, 0.1 M HCl, 0.01 M EDTA (ethylenediaminetetraacetic acid) pH 6.5, and 0.005 M DTPA (diethylenetri-aminepentaacetic acid) pH 7.3 were used to determine the contents of available Zn, Mn, Cu, Co, and Ni in Andosols in relation to the organic carbon content. The results of the extraction analysis showed that by the use of 0.1 M H Cl high value of extracted heavy metals in the upper layers of the humus horizons were obtained while EDTA extraction yielded a large amount of the above mentioned metals in the high humus horizons. The extractable heavy metals contents were high and these metals closely related to the organic carbon content mostly in the humus horizons in the profile. Where, biocycling process may play an important role in the concentration of heavy metals. Based on the study, it was found that the total content of Zn increased towards the C horizons or pumice layers in the soil profile. Such a trend was also found in the case of the Mn content. While the Cu content in the humus horizons was much higher in the upper part of each humus horizon. According to this study the distribution of heavy metals, Cu (organic matter complexes) in the Andosols profile was more stable than that of Zn (organic matter complexes) in soils. It was shown that Zn in the surface humus horizon was enriched but that some amount was leached under buried conditions. The same phenomenon was also observed in the distribution of Mn in the profile. The movement of Co and Ni in the soil profile was limited, as evidenced by the sharp reduction in the concentrations of these two metals in buried soils.

Hence, it is concluded that the distribution of Zn, Mn, Cu, Co, and Ni was considerably higher in the humus horizons of the Andosols profiles.  相似文献   

6.
The literature on the fluxes of six heavy metals in temperate forest ecosystems is reviewed. Special attention is given to wet and dry deposition and internal flux, to metal budgets for ecosystems and soils, to concentrations in aqueous compartments of the ecosystem and to speciation in soil solutions. Metal fluxes are discussed in relation to pollution load, soil type, tree species and land use. The mobility of Cu and Pb is strongly dependent on the solubility of organic matter. These metals are commonly accumulated in forest soils. Zinc, Cd and Ni are greatly influenced by soil acidity and are often lost in considerable amounts from acidified soils. Chromium is often at balance in forest ecosystems. Implications for metal solubility and budgets in forest soils are discussed in connection with an increase in soil acidification.  相似文献   

7.
Sandstorms which distribute a great number of particles are a special atmospheric occurrence and are uncommon in northern China. This study was conducted to determine, for the first time, the concentration of organochlorine pesticides (OCPs) in sandstorm depositions. Samples were collected from urban areas of Beijing and a total of eight OCPs were measured. All samples contained OCP residues. The total hexachlorocyclohexane (HCHs) concentration ranged from 20.6 to 59.8ng g?1 and the total dichlorodiphenyltrichloroethane (DDTs) concentration ranged from 12.0 to 14.3ng g?1. Furthermore, increasing HCH contamination was observed from the northwest to the southeast and a uniform distribution of DDT contamination was discovered in Beijing. Analysis of the sources of contamination showed that HCHs in the sandstorm depositions were derived from a relatively old source of lindane, and DDTs mainly originated from an old source of dicofol in Beijing. The preliminary pollution assessment of the samples indicated that HCH levels might be categorized as low pollution and DDT levels might be categorized as no pollution. The present study suggests that sandstorm depositions may not produce the special risk of adverse health effect from OCPs for the residents of Beijing, China.  相似文献   

8.
The results of residue determinations of the growth promotors carbadox, tylosin, and virginiamycin in kidney, liver, and muscle from pigs in feeding experiments are described as well as the analytical methods used. Residues of the carbadox metabolite quinoxaline-2-carboxylic acid were found in liver from pigs fed 20 mg/kg in the diet with a withdrawal time of 30 days. No residues were detected in muscle with zero withdrawal time. The limit of determination was 0.01 mg/kg for both tissues. No residues of virginiamycin and tylosin were found in pigs fed 50 and 40 mg/kg, respectively, in the diet, even with zero withdrawal time. Residues of tylosin of 0.06 mg/kg and below were detected in liver and kidney from pigs fed 200 or 400 mg/kg and slaughtered within 3 h after the last feeding.  相似文献   

9.
Abstract

To investigate the activity of free cadmium (Cd2+), copper (Cu2+), lead (Pb2+), and zinc (Zn2+) ions and analyze their dependence on pH and other soil properties, ten contaminated soils were sampled and analyzed for total contents of Cd, Cu, Pb, and Zn (CdT, CuT, PbT, and ZnT, respectively), 0.43 MHNO3‐extractable Cd, Cu, Pb, and Zn (CdN, CuN, PbN, and ZnN, respectively), pH, dissolved organic matter (DOC), cation exchange capacity (CEC), ammonium oxalate extractable aluminum (Al) and iron (Fe), and dissolved calcium [Ca2+]. The activity of free Pb2+, Cd2+, Cu2+, and Zn2+ ions in soil solutions was determined using Donnan equilibrium/graphite furnace atomic absorption (DE/GFAA). The solubility of Cd in soils varied from 0.16 to 0.94 μg L‐1, Cu from 3.43 to 7.42 μg L‐1, Pb from 1.23 to 5.8 μg L‐1, and Zn from 24.5 to 34.3 μg L. In saturation soil extracts, the activity of free Cd2+ ions constituted 42 to 82% of the dissolved fraction, for Cu2+the range was 0.1 to 7.8%, for Pb2+ 0.1 to 5.1% and for Zn2+2 to 72%. The principal species of Cd, Cu, Pb, and Zn in the soil solution is free metal ions and hydrolyzed ions. Soil pH displayed a pronounced effect on the activity of free Cd2+, Cu2t, Pb2+, and Zn2+ ions.  相似文献   

10.
11.
The liquid chromatographic determination previously developed for benzimidazoles in cattle liver has been slightly modified and applied to the determination of 4 benzimidazoles in milk. Recoveries of fenbendazole (FBZ), oxfendazole (OFZ), and thiabendazole (TBZ) from milk fortified at the 10 ppb level were 80% or greater with an intralaboratory coefficient of variation of 11% or less. Recovery of 5-hydroxythiabendazole (5-OH-TBZ) at the 30 ppb level averaged 56% with an intralaboratory coefficient of variation of 5%. Limited data on the depletion of FBZ, OFZ, TBZ, and 5-OH-TBZ in milk were also generated.  相似文献   

12.
13.
This review presents an analysis of the results of mycological investigations of peat obtained by the authors and other Russian and foreign scientists. High-moor peat, unlike low-moor peat, is shown to contain great reserves of fungal biomass mainly represented by mycelium. The viability of the mycelium and spores is high in the upper peat horizons and does not exceed 50% in the lower ones. In high-moor peat, fungi that are capable of destroying the complex structural polymers composing up to 50% of the peat rarely occur. The analysis of the factors limiting the activity of fungi in the high-moor peatbogs showed that, in the upper layers, the main factor was the strength of the sphagnum cellular walls. In the lower layers, the significant oxygen deficit and the accumulation of sphagnans, sphagnols, phenol-containing compounds, and antioxidants that block the activity of hydrolytic and oxidizing enzymes are of great importance.  相似文献   

14.
Distribution coefficients of Cd, Co, Ni, and Zn in soils   总被引:17,自引:0,他引:17  
Batch adsorption experiments were conducted with a mixture of solutes at low equilibrium concentrations of Cd (0.7-12.6 μg1−1), Co (18-118μg1−1, Ni (22-330 μg 1−1), and Zn (40-1480 μg1−1) in 38 different soils. Statistical correlations indicated that metal sorption onto the soils was influenced by the presence of clays and hydrous oxides of Fe and Mn. Based on calculated distribution coefficients for these metals, Co will generally exhibit the highest mobility in soils, but the mobility of Zn will increase faster with decreasing pH. Two types of empirical relationships are developed from these data to estimate values for the distribution coefficients.  相似文献   

15.
16.
Ten different topsoils from three soil chronosequences were pretreated with 0.1 m HCl and 0.1 m HCl: 0.3 m HF, then extracted with neutral 0.1 m Na4P207, followed by 0.5 m NaOH. Pretreatments and extracts were purified and fractionated into two nominal molecular weight (MW) fractions (> 50000 and < 50000) using gel filtration. The distribution between the two MW fractions of total carbon (C), nitrogen (N), phosphorus (P), sulphur (S), total acidity, and carboxyl (COOH) acidity and their ratios relative to C were determined. Organic matter in the > 50000 MW fraction contained lower N, P, S and acidity ratios relative to C than those of the < 50000 MW fraction. The chemical nature ofthe > 50000 MW fraction remained unaffected by soil development or vegetation, whereas that of the < 50000 MW fraction changed with soil age and appeared to be influenced by vegetation. The results strongly suggest that two chemically different extractable fractions of organic matter can be isolated from most soils, represented by the active fraction (< 50000 MW) and the relatively large (> 50000 MW) and less active (passive) fraction. A three-phase system of organic matter is proposed comprising the two extractable fractions and the non-extractable component.  相似文献   

17.
18.
19.
Absorption, distribution, excretion, and metabolism of clothianidin [(E)-1-(2-chloro-1,3-thiazol-5-ylmethyl)-3-methyl-2-nitroguanidine] were investigated after a single oral administration of [nitroimino-(14)C]- or [thiazolyl-2-(14)C]clothianidin to male and female rats at a dose of 5 mg/kg of body weight (bw) (low dose) or 250 mg/kg of bw (high dose). The maximum concentration of carbon-14 in blood occurred 2 h after administration of the low oral dose for both labeled clothianidins, and then the concentration of carbon-14 in blood decreased with a half-life of 2.9-4.0 h. The orally administered carbon-14 was rapidly and extensively distributed to all tissues and organs within 2 h after administration, especially to the kidney and liver, but was rapidly and almost completely eliminated from all tissues and organs with no evidence of accumulation. The orally administered carbon-14 was almost completely excreted into urine and feces within 2 days after administration, and approximately 90% of the administered dose was excreted via urine. The major compound in excreta was clothianidin, accounting for >60% of the administered dose. The major metabolic reactions of clothianidin in rats were oxidative demethylation to form N-(2-chlorothiazol-5-ylmethyl)-N'-nitroguanidine and the cleavage of the carbon-nitrogen bond between the thiazolylmethyl moiety and the nitroguanidine moiety. The part of the molecule containing the nitroguanidine moiety was transformed mainly to N-methyl-N'-nitroguanidine, whereas the thiazol moiety was further metabolized to 2-(methylthio)thiazole-5-carboxylic acid. With the exception of the transiently delayed excretion of carbon-14 at the high-dose level, the rates of biokinetics, excretion, distribution, and metabolism of clothianidin were not markedly influenced by dose level and sex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号