首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of electrode configuration and click polarity on brainstem auditory evoked potentials (BAEP) in dogs were investigated to clarify the inconsistent nomenclature for each peak. Four positive peaks (waves 1, 2, 3 and 4) before a deep negative trough and a fifth positive peak (wave 5) following the trough were the basic components of BAEP in dogs, which were easily identified regardless of recording conditions such as electrode configuration and click polarity. Additional peaks tended to be present when a noncephalic reference electrode and/or single-polarity (rarefaction or condensation) click stimuli were used. The Roman nomenclature for the individual positive peaks of BAEP in dogs is confused owing to variations in the observed waveforms among researchers, but click polarity and/or reference electrode position can explain all the previously reported variations in BAEP waveforms in dogs. When the criteria concerning wave V in the guidelines of BAEP in human beings are applied to avoid further confusion of Roman nomenclature in dogs, it is recommended that the basic five positive peaks (waves 1, 2, 3, 4 and 5 as identified easily with Ai-Vertex configuration and alternating clicks) are designated as waves I, II, III, V and VI, respectively. Wave IV (wave 3b) occurs occasionally before wave V in dogs.Abbreviations BAEP brainstem auditory evoked potentials - dBHL dB hearing level - IPL interpeak latency - Ai the caudodorsal end of the zygomatic arch ipsilateral to the stimulated ear - Nape the neck over the spinous process of the fourth cervical vertebra  相似文献   

2.
Brain stem auditory-evoked potentials (BAEP) were recorded in 4 dogs to analyze the relationship between acoustic stimulus intensities and peak latencies of each wave, and to investigate the relative effects of xylazine-atropine, xylazine-atropine-ketamine, and xylazine-atropine-pentobarbital combinations and the time-course effects of the latter 2 drug combinations on BAEP. Click stimulations fixed at a stimulus rate of 10/s and a frequency of 4 kHz were delivered at intensities ranging from 10- to 110-dB sound pressure level (SPL) in 10-dB steps for analyzing the relationship between the acoustic stimulus intensities and the peak latencies and at an intensity of 110-dB SPL for investigating the effects of the sedative and anesthetic drug combinations and their time-course effects on BAEP. Waves I to VI were identified with stimulus intensity of greater than or equal to 50-dB SPL. Wave VII was observed in some records, but was excluded from statistical analysis. As stimulus intensity was increased from 50- to 110-dB SPL, the latency decreased for all waves during xylazine-atropine-ketamine anesthesia. There were no statistically significant differences in the peak latencies of each wave in BAEP among xylazine-atropine, xylazine-atropine-ketamine, and xylazine-atropine-pentobarbital combinations 20 minutes after drug administration, except that the latency of wave VI during xylazine-atropine sedation was significantly (P less than 0.01) shorter than that detected during xylazine-atropine-ketamine or xylazine-atropine-pentobarbital anesthesia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Effects of analog filter frequency on brain stem auditory-evoked potentials (BAEP) were investigated in 7 non-sedated dogs. The BAEP were recorded successively at various low-pass (LP) and high-pass (HP) filter frequency settings. The analog filters had a rolloff of 6 dB/octave. Decrease of LP filter frequency from 30 kHz to 100 Hz caused prolongation of the peak latency and reduction of the peak-to-peak (from a positive peak to the following trough) and absolute (from a positive peak to the baseline) amplitudes for all peaks, except the peak latency for P5 and the absolute amplitude for P4. Changes in these variables were statistically significant (P less than 0.05) at different cutoff frequencies specific for the individual peaks. The interpeak latency between P1 and P4, and P4/P1 peak-to-peak amplitude ratio were not changed significantly. At the lowest LP filter frequency of 100 Hz, positive peaks (fast waves) seemed to be superimposed on a slow positive wave (slow wave). In contrast, increase of HP filter frequency from 0.53 to 160 Hz did not result in significant changes for any peaks, except for reduction in the absolute amplitude of P4. The various effects of LP filter frequency and negligible effects of HP filter frequency on individual peaks may be attributable to their frequency composition and/or elimination of the slow wave at higher HP filter frequency settings. On the basis of our results, LP filter setting of 3 kHz and HP filter setting of less than or equal to 53 Hz are recommended for recording of BAEP in dogs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Brainstem Auditory-Evoked Potentials in Holstein Cows   总被引:2,自引:0,他引:2  
Brainstem auditory-evoked potentials (BAEP) were recorded from 29 Holstein cows in a typical clinical setting. The latencies of five positive peaks in the BAEP were measured, and latency-intensity functions were determined. The BAEP was similar to that reported in humans, dogs, horses, and other species. The responses were reproducible for each cow, with low variability between cows. Four peaks (I, II, III, V) were present in all recordings, and a fifth (IV) was present infrequently. All peak latencies decreased as click-stimulus intensity increased. The threshold for detection of the BAEP was higher than expected for the cow compared with the horse.  相似文献   

5.
Summary

Cranium and brainstem dimensions were measured in 32 postmortem dog heads. Positive correlations were found between cranium length (CL) and brainstem length (BL) (r=0.87), between cranium width (CW) and brainstem width (BW) (r=0.83), and between cranium distance (CD = CL CW/2) and brainstem distance (BD = BL+BW/2) (r=0.91). Positive correlation coefficients were also found between CL and CW (r=0.90), and between BL and BW (r=0.85). It was concluded that head size accurately reflected brainstem size. A least squares estimation of the brainstem distance (BD) from CL and CW values was BD = 10.9 + 0.16 (CL CW/2) (BD, CL and CW in mm).

Brainstem auditory evoked potentials (BAEPs) and cranium dimensions were measured in 43 dogs (86 ears) with different head size, body size, sex and age. Wave form, absolute and interpeak latencies and correlation coefficients, relating latencies to cranium dimensions and body weight, were analysed CL, CW, and CD were positively correlated with body weight (r=0.93, 0.70 and 0.93, respectively), and CL, CW, and CD were correlated with age (r=0.33, 0.52 and 0.40, respectively). BAEPs consisted of five distinct positive peaks (I to V). Secondary positive peaks following peaks I and II were seen in 60% (I') and 90% (II') of the recordings. Late waves were recorded in 90% (VI), 50% (VII), and 25% (VIII) of the recordings. Latencies increased with decreasing stimulus intensity level (from 90 dB to 10 dB hearing level, HL),especially for peaks I, II, V, and the I‐V interpeak interval Absolute and interpeak latencies were positively correlated with cranium distance and body weight. Correlation coefficients increased as wave latencies increased At 90 dB HL, the highest correlation coefficients, relating cranium distance to peak V and the I‐V interpeak latency, were 0.55 and 0.53 (P < 0.00001), respectively. Regression analysis showed that each 1 cm increase in cranium distance was accompanied by an increase of 0.006 ms in the latency of wave I, 0.03 ms for wave III, 0.05 ms for wave V, and 0.05 ms for the I‐V interpeak interval Regression analysis showed that an increase of 1 kg in body weight was accompanied by an increase of 0.001 ms in the latency of wave I, 0.005 ms for wave III, 0.011 ms for wave V, and 0.01 ms for the I‐V interpeak interval. It is concluded that head size, which accurately reflects brain size, is a relevant source (25%) of intersubject variance of BAEP latencies in the dog.  相似文献   

6.
This study was carried out to evaluate the features of neurological dysfunction in experimentally-induced bovine spongiform encephalopathy (BSE)-infected cattle using brainstem auditory evoked potentials (BAEP). The progressive prolongation of peak latency of waves III and V was observed right-and-left bilaterally at the onset of neurological symptoms. The peak latency of wave V and the I-V interpeak latency (IPL) in BSE cattle 22 and 24 months after intracerebral inoculation were significantly (P < 0.05) prolonged compared with the control cattle. In addition, the amplitude of the BAEP waves of the BSE cattle were low compared with the control cattle. Hearing loss occurred in the BSE cattle that showed advanced neurological symptoms such as tremor. It is thought that this BAEP data reflects a functional disorder in the central auditory nerve pathways characteristic of experimentally-induced BSE.  相似文献   

7.
This study was performed to examine normal brainstem auditory evoked potential (BAEP) data for adult Japanese Black cattle and to evaluate whether differences exist in the peak latencies, interpeak latencies (IPL) and waveforms of BAEP between Japanese Black and Holstein cattle. The peaks were detected as major waves I, II, III and V in each group. The threshold of the BAEP waves in the Holstein cattle was 65-75 dB nHL, but the threshold in the Japanese Black cattle was 75-85 dB nHL. The I-III and I-V IPLs were significantly shorter in the Japanese Black compared with the Holstein cattle at an intensity of 105 dB nHL. The present findings suggest that the IPL and wave threshold of BAEP are influenced by bovine breed.  相似文献   

8.
The brainstem auditory evoked response (BAER) was recorded from 7 unanesthetized and 27 methoxyflurane anesthetized dogs. A 0.1 msec, 70 dB stimulus delivered at 10 Hz evoked the expected seven wave BAER. Mean peak wave latencies and standard deviations were calculated. Differences were not found between neither right and left ears, nor male and female dogs. The anesthetized dogs had a significantly longer latency for all waves, except wave I, than the unanesthetized dogs. Use of the BAER as a diagnostic technique for brainstem lesions is recommended.  相似文献   

9.
The brainstem auditory evoked response (BAER) was recorded from 7 unanesthetized and 27 methoxyflurane anesthetized dogs. A 0.1 msec, 70 dB stimulus delivered at 10 Hz evoked the expected seven wave BAER. Mean peak wave latencies and standard deviations were calculated. Differences were not found between neither right and left ears, nor male and female dogs. The anesthetized dogs had a significantly longer latency for all waves, except wave I, than the unanesthetized dogs. Use of the BAER as a diagnostic technique for brainstem lesions is recommended.Publication No. 1702, School of Veterinary Medicine, Auburn University, AL 36849, USA  相似文献   

10.
Auditory brain stem response testing in anesthetized horses   总被引:1,自引:0,他引:1  
Auditory brain stem response testing, using insert earphones, was performed in 10 healthy horses given general anesthesia. The procedure involved clicks of alternating polarity delivered at a rate of 25 clicks/s. Wave forms, including five peaks, were commonly identified. Latencies were measured in milliseconds for waves I through V for all intensities. Latencies of all waves decreased as stimulus intensity increased. For waves I through V, a least-squares regression line was determined for each horse, using all responses between 87-dB sound pressure level (SPL) and 136-dB SPL, inclusive. Slopes were significantly (P less than 0.05) less than zero for waves I through IV, but not for wave V. Peak latencies of each wave averaged at 87-dB SPL for waves I through V were 1.73, 2.6, 3.82, 4.80, and 5.71 ms, respectively; latencies of these five waves at 136-dB SPL were 1.36, 2.2, 3.06, 3.92, and 4.71 ms, respectively. The decrease in latency among the five waves ranged from 0.13 to 0.004 ms/dB. When peak values were below 87-dB SPL, waves became essentially unrecognizable.  相似文献   

11.

Aims

Auditory plasticity in response to unilateral deafness has been reported in various animal species. Subcortical changes occurring in unilaterally deaf young dogs using the brainstem auditory evoked response have not been evaluated yet. The aim of this study was to assess the brainstem auditory evoked response findings in dogs with unilateral hearing loss, and compare them with recordings obtained from healthy dogs.

Methods

Brainstem auditory evoked responses (amplitudes and latencies of waves I, II, III, V, the V/I wave amplitude ratio, wave I-V, I-III and III-V interpeak intervals) were studied retrospectively in forty-six privately owned dogs, which were either unilaterally deaf or had bilateral hearing. The data obtained from the hearing ears in unilaterally deaf dogs were compared to values obtained from their healthy littermates.

Results

Statistically significant differences in the amplitude of wave III and the V/I wave amplitude ratio at 75 dB nHL were found between the group of unilaterally deaf puppies and the control group. The recordings of dogs with single-sided deafness were compared, and the results showed no statistically significant differences in the latencies and amplitudes of the waves between left- (AL) and right-sided (AR) deafness.

Conclusions

The recordings of the brainstem auditory evoked response in canines with unilateral inborn deafness in this study varied compared to recordings from healthy dogs. Future studies looking into electrophysiological assessment of hearing in conjunction with imaging modalities to determine subcortical auditory plasticity and auditory lateralization in unilaterally deaf dogs are warranted.
  相似文献   

12.
Brain stem auditory-evoked responses were recorded in 9 male and 11 female clinically normal mature dogs, weighing between 2 and 36 kg. Mean wave latency for the entire group of dogs, using 60-dB hearing level click stimuli at 11/s for waves I to VII was: 1.41, 2.21, 2.85, 3.31, 3.71, 5.12, and 6.46 ms, respectively. The mean interpeak latency for waves I and V (IPLIV) was 2.32 ms. Neither gender nor ear effect was detectable. Positive correlation was observed between cranium length, cranium width, nasion-external auditory meatus interval, and body weight for wave-V latency and IPLIV. Such correlation was not documented for wave I. The regression equations for their effects on IPLIV were: cranium length, y = 0.05x + 1.85; cranium width, y = 0.07x + 1.32; nasion-external auditory meatus interval, y = 0.05x + 1.79; and body weight, y = 0.01x + 2.15. On the basis of any of the 3 variables of cranium size or body weight, the study population could be classified into groups of large and small dogs, with the large group having significantly (P less than 0.05) longer latency for wave V and IPLIV. It is recommended that the effect of size variation in dogs on brain stem auditory-evoked responses should be compensated for by use of the regression equation based on cranium length.  相似文献   

13.
This study evaluates the effects of a high-frequency hearing loss simulated by the high-pass-noise masking method, on the click-evoked brain stem-evoked potentials (BAEP) characteristics in dogs. BAEP were obtained in response to rarefaction and condensation click stimuli from 60 dB normal hearing level (NHL, corresponding to 89 dB sound pressure level) to wave V threshold, using steps of 5 dB in eleven 58 to 80-day-old Beagle puppies. Responses were added, providing an equivalent to alternate polarity clicks, and subtracted, providing the rarefaction-condensation potential (RCDP). The procedure was repeated while constant level, high-pass filtered (HPF) noise was superposed to the click. Cut-off frequencies of the successively used filters were 8, 4, 2 and 1 kHz. For each condition, wave V and RCDP thresholds, and slope of the wave V latency-intensity curve (LIC) were collected. The intensity range at which RCDP could not be recorded (pre-RCDP range) was calculated. Compared with the no noise condition, the pre-RCDP range significantly diminished and the wave V threshold significantly increased when the superposed HPF noise reached the 4 kHz area. Wave V LIC slope became significantly steeper with the 2 kHz HPF noise. In this non-invasive model of high-frequency hearing loss, impaired hearing of frequencies from 8 kHz and above escaped detection through click BAEP study in dogs. Frequencies above 13 kHz were however not specifically addressed in this study.  相似文献   

14.
Brainstem auditory evoked potential (BAEP) waveforms were recorded as a means of objectively evaluating auditory and brainstem function in horses. BAEP recordings were readily and repeatably recorded from horses, under minimal restraint, using signal averaging equipment. Clearly identified BAEP waveforms were obtained with compression clicks of 30-100 dB (HHL) at 10 Hz applied in the external auditory meatus of one ear and masking white noise (10 dB lower) in the other ear. Vertex positive (upwards) waveforms I through V were obtained with an active, subdermal electrode over the ipsilateral and contralateral zygomatic processes of the temporal bones and the reference electrode over the vertex. Recording sweep duration was 10 ms, amplifier sensitivity 10 microV/division, display gain x 10 and low and high amplifier filters set at 200 Hz to 2 kHz. Such recordings can be useful in evaluation of all clinical cases suspected of showing degrees of deafness, vestibular disease or brainstem disease, and in monitoring the progress of such cases.  相似文献   

15.
Brain stem auditory-evoked responses in the dog   总被引:1,自引:0,他引:1  
Brain stem auditory-evoked responses (BAER) were recorded from 58 dogs that did not have a known history of hearing problems. The BAER wave forms had an overall mean amplitude approximately 3.0 microV and typically consisted of a series of 4 to 5 vertex-positive peaks (peaks I through V). When acoustic clicks having intensities of 60-dB hearing level (decibels relative to the subjective hearing threshold) were used as stimuli, peak I had a latency of 1.49 +/- 0.13 ms; peak II, 2.32 +/- 0.14 ms; peak III, 3.01 +/- 0.25 ms; peak IV, 4.22 +/- 0.27 ms; and peak V, 5.55 +/- 0.37 ms. Latency values were influenced by a number of nonpathologic factors, including stimulus intensity and the body temperature of the dog. As stimulus intensity was decreased, there was a lengthening of the latency of each peak coupled with a decrease in the overall amplitude of BAER. Decreases in rectal temperature caused a similar lengthening of peak latencies. Age may have an influence on BAER, but under the conditions of the present study, the effect was not significant.  相似文献   

16.
Brainstem auditory—evoked potentials (BAEPs) were recorded from 26 dogs with intracranial neoplasia. The tumors were grouped according to their neuroanatomic location. Normal BAEPs were recorded from 12 dogs with cerebral (6/7), diencephalic (4/4), cerebellar (1/1), and multifocal tumors (1/5). Abnormal BAEPs were recorded from 14 dogs with cerebral (1/7), cerebellar/brainstem (4/ 4), brainstem (5/5), and multifocal tumors (4/5). Analysis of the multifocal neoplasms showed that alterations of BAEPs correlated with the degree of brainstem involvement. Overall, 13 of the 14 dogs with abnormal BAEPs had tumors involving the brainstem. The changes of the BAEP correlated with the extrinsic or intrinsic location of the tumor relative to the brainstem. The BAEP reflected the right, left, or median location of the tumor in 7 of the 14 abnormal recordings. In 1 dog, the BAEP was abnormal contralateral to the tumor side. A peripheral hearing disorder was excluded in most dogs based on the presence of peak 1.  相似文献   

17.
The voltage and duration of electrical rectangular pulsed stimuli needed to produce an F wave and a monosynaptic reflex (H wave) and the characteristics of these responses were recorded in clinically normal dogs. Optimal stimulus to produce H waves was 0.1 to 0.2 ms and less than 80 volts. F waves were variable in appearance and were most evident following 0.5 ms and 125 to 150 volt stimulation. F waves had shorter latency than comparable H waves.  相似文献   

18.
Postnatal development of the brain stem auditory-evoked potential in dogs   总被引:1,自引:0,他引:1  
Recordings of averaged brain stem auditory-evoked potentials were obtained from 13 Beagle pups of both genders to document the postnatal development of the response from age 1 to 76 days. Responses were recorded between needle electrodes placed on the vertex and the ipsilateral ear, with ground at the interorbital line. Recordings were performed without sedation. Low-amplitude responses to high-intensity stimuli could be recorded from animals prior to opening of the ear canals. Peak latencies did not change after day 20 for peak I, day 30 for peaks II and III, and day 40 for peak V. As a result, the interpeak latencies between peaks I and III did not change after day 30, but continued to decrease until day 40 for peaks III-V and I-V. Peak amplitudes reached plateau values by day 20 (peak I) or day 30 (peaks II, III, and V). All of the measured latency and amplitude values had significant (P less than 0.001) linear regression lines of latency vs age and amplitude vs age. The brain stem auditory-evoked potential thresholds were mature by day 20.  相似文献   

19.
Summary

The latencies of the peaks in brainstem responses and the threshold response were determined in 18 healthy beagles.

In the first series of measurements the dogs were sedated and the stimulus was delivered via an in‐the‐ear transducer. The latencies, the threshold levels, and the influence of the stimulus repetition rate on the latencies were measured. Using a miniature electret microphone in the outer ear canal near the tympanic membrane, it was found that at a level setting corresponding to 0 dB human level (HL) the major peak in damped oscillation during condensation reached a sound pressure level (SPL) of about 27 dB and the secondary rarefaction peak reached 24 dB SPL.

In the second series of measurements the dogs were not sedated and the stimulus was delivered via a headphone.

The wave forms, the mean latencies for peaks I to V as a function of the stimulus level, and the threshold of each wave are presented from both series. In the first series the latency values at 80 dB HL (107 dB SPL) were 1.21, 1.97, 2.67, 3.12 and 3.61 ms for peaks I, II, III, IV and V, respectively. The thresholds for peaks I to V were 47.5 ± 9.5, 47.5 ± 11.5, 41.3 ± 13.0, 63.3 ± 17.4 and 28.0 ± 9.7 dB HL, respectively. The difference in peak latency between the first and the second series was 0.065 ms. This difference corresponded to the difference in length of the acoustic pathways.

Analysis of variance was used to determine whether the successive peaks in the response followed at a constant time interval, i.e., whether a shift in the first peak with a change in the stimulus level was followed by the same shift in subsequent peaks. The analysis showed a significant (P < 0.001) interaction between the inter‐peak latency differences and the effect of stimulus level. This inter‐peak latency depended on stimulus level, although the effect was small.

The use of the in‐the‐ear transducer and sedation resulted in a far more efficient procedure than the use of the headphone without sedation.  相似文献   

20.
The Brainstem Auditory Evoked Potential (BAEP) is a recording of the electrical activity of the brainstem following an acoustic stimulation. Up to seven peaks may be identified within 10 ms, and are labelled I to VII. The first five of these peaks are of most clinical importance, and in normal horses, peaks I, III and V are always present at stimulus intensities of 70-100 dB. Repeated sampling of clinically normal subjects at different stimulus intensities has enabled mean latency values to be determined for the ipsilateral and contralateral peaks I, III and V, and also for the interpeak latencies (IPLs) at each intensity. The maximum, normal, absolute latency for ipsilateral peak I was 1.86 ms, for peak III, 3.53 ms and for peak V, 5.52 ms. The equivalent contralateral values were 2.50 ms, 4.44 ms and 5.59 ms. The maximum, normal, contralateral IPL for I-III was 1.78 ms, that for III-V was 2.26 ms and for I-V was 3.76 ms. The maximum, normal, contralateral IPLs were 2.17 ms for I-III, 1.41 ms for III-V and 3.32 ms for I-V. If a peak or peaks are absent or delayed, or the IPL is greater than expected, the patient can be determined to have abnormal brainstem or auditory nerve conduction. The amplitudes of peaks I and V were measured, and the ratio of amplitudes was determined, to find the normal V:I values. At a stimulus intensity of 100 dB, the ipsilateral ratio was 0.49 +/- 0.19, and the contralateral value 1.49 +/- 0.48. Dispersal values were also calculated, by dividing the height of the III-V complex by its duration. For a stimulus intensity of 100 dB, the ipsilateral dispersal value was 0.416 +/- 0.104 microV/ms, and the contralateral value of 0.473 +/- 0.074 microV/ms. A range of normal values for both V:I ratio and dispersal were calculated. Height, weight and inter-aural distance were measured, and the relationship of the various peaks and IPLs to these variables was ascertained by statistical analysis. For the ipsilateral values, the correlation between the latency of wave V, and III-V and I-V IPLs and weight were significant (P less than 0.01). Significant correlations were found between weight and the latency of contralateral waves III (P less than 0.05) and V (P less than 0.05) and the I-III (P less than 0.01) and I-V (P less than 0.001) IPLs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号