首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
施氮量对冬小麦产量的影响及土壤硝态氮运转特性   总被引:15,自引:2,他引:15  
以冬小麦“西农9814”为材料进行大田试验,研究施氮量对小麦产量构成因素、土壤中硝态氮变化的影响。结果表明,适宜施氮量(N 276 kg/hm2)可以显著提高小麦的穗重、穗粒数、千粒重等产量构成因素,比对照增产24.6%。产量构成因素中以穗粒数与产量的相关性最强,达极显著水平,千粒重次之。土壤耕层硝态氮主要集中在0—40 cm土层,且含量随着施氮量的增加而增加。随着小麦生育期的推移,耕层中硝态氮呈下降趋势,0—40 cm耕层变化显著,到成熟期各土层硝态氮含量基本趋于一致。施氮量在N 0~207 kg/hm2范围内,硝态氮积累的增加量变化不显著,但当施氮量高于N 207 kg/hm2时,土壤中硝态氮的积累量随施氮量增加而显著增加,增加了硝态氮的冗余和向下淋溶的可能。  相似文献   

2.
王晖  赫崇岩 《核农学报》1995,9(A00):30-32
5种不同施N量的土壤中,硝态氮的积累变化为一指数曲线,随着施N量的增加,硝成氮积累增加,但T1/2相同。  相似文献   

3.
施氮对潮土土壤及地下水硝态氮含量的影响   总被引:22,自引:1,他引:22  
黄绍敏  宝德俊 《农业环境保护》2000,19(4):228-229,241
采用3年田间小区肥料定位试验,研究了氮量对1m土体硝态氮含量的影响;结果表明,每汞施氮量小于225kg/hm^2时,1m土层中各测定时期硝态氮含量变化不大,在11.4~41.3kg/hm^@之间,当施氮量增加到375kg/hm^2时,1m土层的硝态氮含量增加1.5~7.4掊;0~20cm、80~100cm土层硝态氮在每季施氮量大于225kg/hm^2时急剧啬地地下水产生污染。  相似文献   

4.
施氮量对间作玉米土壤硝态氮累积量及氮肥利用率的影响   总被引:1,自引:0,他引:1  
马忠明  孙景玲 《核农学报》2012,26(9):1305-1310
通过田间定位试验,监测了不施氮和不同施氮水平(分别为210、420和630kg.hm-2)下间作玉米各关键生育时期0~200cm土层硝态氮累积量的动态变化、玉米产量及其构成,计算分析了间作玉米的氮肥利用率。研究结果表明,间作玉米0~200cm土层土壤硝态氮累积量总体表现为0~60cm土层>60~200cm土层。0~60cm土层土壤硝态氮累积量呈"M"形变化,即玉米播种前和玉米大喇叭口期出现高峰,小麦播种前、玉米拔节期和玉米收获后出现低谷。60~120cm和120~200cm土层土壤硝态氮累积量呈倒"V"形变化,总体在玉米大喇叭口期前后出现高峰值,210~630kg.hm-2施氮处理下120~200cm土层的硝态氮累积量较不施氮处理分别高出149.1%、115.6%和126.3%。随着施氮量的增加,间作玉米穗长、穗粒数、穗重呈增大趋势,秃顶呈降低趋势,增产幅度依次减小,氮肥利用率依次降低。  相似文献   

5.
为探讨地下水位不同尺度波动幅度中氮素运移规律,室内通过土柱I、Ⅱ和Ⅲ模拟地下水位的不同尺度上下波动进行对比试验。试验中柱I水位保持静止、柱Ⅱ波动幅度为15em、柱Ⅲ波动幅度为30cm,在实验装置相同情况下,得出三柱各土层中DO、NO3^- —N和NH4^+ -N浓度变化。结果表明:柱I中DO、NO3^- -N和NH4+^ —N变化较小,而柱Ⅱ、Ⅲ中DO、NO3^- —N和NH4^+ —N均变化较显著,且柱Ⅲ的变化幅度要大于柱Ⅱ。对比水位静止的柱I,当水位上升和下降后,柱Ⅱ、Ⅲ各土层中DO和N0i—N浓度均减小和增大,增减趋势相同,但DO和NO3^- —N的变化幅度均为柱III〉柱II;NH4^+ —N浓度相应地增大和减小,增减趋势相同,但幅度柱Ⅲ〉柱Ⅱ。柱Ⅱ、Ⅲ进行两次循环波动后,两土柱各土层中NH4^+ -N均减小,且减小幅度柱Ⅲ〉柱Ⅱ;NO3^- -N无明显规律。可知,水位波动对土层中硝酸盐运移影响显著,且水位波动尺度与该影响程度相关,故在地下水硝酸盐污染风险评价时,不可忽视水位波动对氮素运移的影响。  相似文献   

6.
灌施连续与间歇入渗硝态氮运移与土壤含水量的关系   总被引:3,自引:3,他引:3  
通过室内土壤灌施间歇入渗试验,研究了灌施条件下波涌灌溉土壤间歇入渗硝态氮的运移与分布特性,分析了硝态氮分布与土壤含水量的关系,并与灌施条件下土壤连续入渗进行了对比,为进一步研究施肥条件下波涌灌溉土壤间歇入渗溶质运移规律奠定了基础。  相似文献   

7.
在田间条件下研究了施氮量对春玉米产量、氮肥利用率和土壤硝态氮时空分布的影响,旨在为冀西北春玉米氮肥优化管理提供理论依据。研究结果表明,春玉米产量随施氮量的增加而提高,当施氮量高于225 kg/hm2时,春玉米产量和氮肥利用率显著降低。从春玉米播种前到收获后,不施氮处理0-90 cm各土层硝态氮含量不断降低,施氮处理0-30 cm和30-60 cm土层硝态氮含量呈先上升后迅速下降并保持稳定的趋势,而60-90 cm土层硝态氮在春玉米生长后期有增加的趋势;春玉米收获后随着土层深度的增加,硝态氮呈波浪式下降,施氮量300,375 kg/hm2处理60-90,120-150,150-180 cm土层硝态氮含量显著高于其它处理。随着施氮量的增加,春玉米0-90,90-180,0-180 cm土层硝态氮累积量均呈增加趋势,高施氮量土层累积的硝态氮存在着更大的淋溶风险。因此,综合分析氮肥用量对春玉米产量、氮肥利用率的影响,并考虑土壤硝态氮时空分布下的环境风险,合理的施氮量应控制在195~225 kg/hm2之间。  相似文献   

8.
不同施氮情况下小麦玉米间作土壤硝态氮的动态变化   总被引:6,自引:2,他引:6  
本文主要研究了0、210、420和630kg/hm2(NO、N1、N2和N3)4种不同施氮量对小麦玉米间作土壤硝态氮(NO-3-N)含量动态变化的影响。结果表明,0~200cm土层硝态氮的含量整体表现为N3>N2>N1>N0。各生育时期低氮水平下0~60cm土层,中、高氮水平下的0~80cm土层土壤硝态氮含量变化显著。0~60cm土层土壤硝态氮累积量随作物生育时期的变化呈“双峰”曲线,峰值分别出现在小麦挑旗期和玉米大喇叭口期,而60~200cm土层土壤硝态氮累积量的变化呈“单峰”曲线,峰值出现在玉米大喇叭口期。N0处理硝态氮累积量各生育时期变化差异较小。小麦与玉米共生期内0~200cm土层硝态氮含量表现为玉米带>小麦带,差异最大的时期为小麦灌浆期和玉米大喇叭口期。土壤硝态氮向深层的运移量随施氮量增加而增加,与N0相比,施氮后100~200cm土层硝态氮累积量小麦带增加了1053~6253kg/hm2,玉米带增加了1791~7039kg/hm2。优化氮肥施用比例,适当降低小麦播前施氮量可减小土壤硝态氮深层淋溶的风险。  相似文献   

9.
农田硝态氮淋溶规律对不同水氮运筹模式的响应   总被引:4,自引:1,他引:3  
为探明不同水氮运筹对淋溶水中NO_3~--N时空分布特征以及施氮量和灌水定额对NO_3~--N淋失量的影响,进而制定安全有效的水氮运筹模式。试验采用裂区设计,主区为灌水定额,设置3个水平,分别为525(W1),750(W2),975(W3)m~3/hm~2。副区为施氮量,设置5个水平,分别为0(N0),80(N1),160(N2),240(N3),320(N4)kg/hm~2。每个灌水定额下有5种施氮量处理,共15个处理。并于2014—2015年连续2年进行田间试验。采用多孔PVC法和土钻法采集水样和土样,测定淋溶水中NO_3~--N浓度并计算NO_3~--N淋失量。结果表明,0—40cm埋深内,对比第1次灌水前后NO_3~--N浓度发现,随着施氮量的增加,W1水平下NO_3~--N浓度2年的平均增幅远低于W2和W3水平下NO_3~--N浓度2年的平均增幅。随着灌水定额的增加,N1、N2水平下的NO_3~--N浓度平均增幅远低于N3、N4水平下的NO_3~--N浓度平均增幅。NO_3~--N浓度平均增幅最大的为52.5%的W3N3。NO_3~--N浓度平均值最高的为8.29mg/L的W3N4。与0—40cm埋深内的各处理相比,40—80cm埋深的各处理NO_3~--N浓度整体下降,但整个生育期内淋溶水中NO_3~--N浓度的变化趋势与0—40cm埋深内相一致。80—120cm埋深内,施氮量、灌水定额以及两者的交互作用对NO_3~--N淋失量的影响呈极显著。当灌水定额一定时,2014年、2015年2年的NO_3~--N淋失量随着施氮量增加而递增,淋失率随着施氮量的增加而减少;当施氮量一定时,NO_3~--N淋失量及淋失率均随着灌水定额的增加而递增。鉴于根层内需要充足的NO_3~--N以被作物吸收,并保证NO_3~--N淋失量对地下水的污染在可控安全范围内,故推荐W2N3为适用于当地的水氮运筹模式。  相似文献   

10.
在地处沙漠绿洲的甜瓜种植区,研究不同水、 氮输入量对土壤氮素平衡和运移的影响,为当地甜瓜生产的水肥管理提供科学依据。通过2009、 2010连续两年田间裂区试验,研究了不同灌水量(1500、 2100、 2700、 3300 m3/hm2,以W1500、 W2100、 W2700和W3300表示)和施氮量(N 0、 120、 240、 360 kg/hm2,以N0、 N120、 N240和N360表示)对土壤硝态氮分布、 累积和甜瓜的水、 氮吸收以及产量的影响。结果表明,甜瓜收获后各处理土壤硝态氮含量在040 cm土层最高, 0200 cm土层呈现先减少后增加再减少的变化趋势,且施氮量越大,硝态氮在80120 cm土层大量累积的趋势越明显。土壤硝态氮累积量随施氮量的增加而增加,随灌水量的增加而减少,灌水量超过2700 m3/hm2 时,仅有不到53%的硝态氮留存在0100 cm土层。甜瓜产量和果实氮素吸收量随灌水量和施氮量的增加而提高,但在W3300N360处理略有下降。氮素回收率随施氮量的增加持续降低,氮收获指数以处理W2700N240最大,水分利用效率以W1500N240处理最大。W2700N240处理能够兼顾甜瓜产量,平衡氮素吸收运移与土壤中硝态氮的留存空间3个方面,是绿洲灌区甜瓜种植的高产高效的水氮输入模式。  相似文献   

11.
施用铵态氮对森林土壤硝态氮和铵态氮的影响   总被引:2,自引:0,他引:2  
马红亮  王杰  高人  尹云锋  孙杰 《土壤》2011,43(6):910-916
对取自武夷山的红壤、黄壤、黄壤性草甸土分别在对照(CK,N 0 mg/kg)、低氮(LN,N 50 mg/kg)、高氮(HN,N 100 mg/kg)3种氮(N)水平处理下开展培养实验,研究施加NH4+-N对森林土壤N转化的短期影响.结果表明,添加NH4+-N可显著(p<0.05)降低土壤NO3--N含量4.5%~25.7%,但LN与HN处理差异不显著,NO3--N降低可能与NO3--N反硝化和异氧还原有关;然而,黄壤性草甸土NO3--N没有降低.与培养前比较,在第56天红壤NO3--N含量显著增加5倍左右;桐木关黄壤增加40%左右,而黄冈山25 km黄壤仅在CK处理下增加16%,但是黄壤性草甸土显著降低;结果显示LN与HN处理土壤NO3--N含量变化幅度小于CK.与CK相比,LN和HN处理红壤NH4+-N分别显著(p<0.05)升高24.1% ~ 96.5%和68.7%~114.1%,且随培养进行没有累积,可能与微生物固N有关;桐木关NH4+-N分别升高17.6% ~ 39.6%和37.6%~95.8% (p<0.05),LN处理黄冈山25 km黄壤NH4+-N只有第7天升高17.8% (p<0.05),HN处理第7、14、28、42天显著升高17.5%~48.6%(p<0.05).LN处理黄壤性草甸土的NH4+-N在前3周显著降低11.6%~28.5% (p<0.01); HN处理在第7天和14天分别降低10.8%(p<0.01)和7.5%,但是在第28~56天显著增加17.6%~20.4%(p=0.002).随着培养进行,CK处理红壤NH4+-N逐渐降低,桐木关黄壤、黄冈山25 km黄壤和黄壤性草甸土升高;LN和HN处理黄壤和黄壤性草甸土NH4+-N逐渐升高.可见,不同海拔土壤类型对NH4+-N添加响应存在差异.  相似文献   

12.
施氮量对潮土区冬小麦-夏玉米轮作农田氮磷淋溶的影响   总被引:1,自引:0,他引:1  
潮土是我国华北地区主要土壤类型之一,潮土区是我国冬小麦-夏玉米作物的主要产区,研究不同施氮量潮土氮磷淋溶特征对于指导区域农田面源污染防控具有重要意义。本研究设置3个施肥处理,即传统施氮(CON)、优化施氮(OPT)和优化再减氮(OPTJ),利用田间渗漏池法,研究潮土冬小麦-夏玉米轮作农田硝态氮及总磷淋溶特征。结果表明:2016—2018年,冬小麦-夏玉米轮作周年不同施肥处理90cm土层年淋溶水量79.0~102.5 mm,不同淋溶事件间土壤淋溶液硝态氮浓度波动较大, CON、OPT和OPTJ处理单次淋溶事件硝态氮浓度分别为18.9~208.7(平均为72.7) mg·L~(-1)、9.0~99.2 (平均为33.8) mg·L~(-1)、4.7~55.5 (平均为15.4) mg·L~(-1)。本研究区域冬小麦-夏玉米轮作模式的氮素淋溶风险较高,磷素淋溶风险较低。传统施氮处理(CON)下农田硝态氮的平均淋溶量和表观淋失系数分别为66.4 kg·hm~(-2)和10.3%,而总磷(TP)为0.06 kg·hm~(-2)和0.04%。氮肥减施会显著降低氮素淋失,OPT和OPTJ处理的氮素淋溶减排率可达56.3%和78.9%。两个年度CON、OPT和OPTJ处理硝态氮平均表观淋失系数分别为10.3%、6.2%和4.9%,随着施氮量的增加,硝态氮淋失系数动态增加。氮淋溶具有较大的年际变化,降雨量高的2018年比降雨少的2017年硝态氮淋溶量多57.0%。两个年度CON、OPT和OPTJ处理总磷平均淋溶量分别为0.06 kg·hm~(-2)、0.06 kg·hm~(-2)和0.08 kg·hm~(-2)。适量减施氮肥会增加作物产量, OPT处理的作物产量是CON处理的1.08倍。然而,过量减施则会带来减产风险, OPTJ处理氮肥减施56%,作物产量比CON处理降低2.0%~8.1%。总之,潮土区农田硝态氮淋溶风险较大,适量减施氮肥能够在保证作物产量的基础上显著降低氮素淋失损失。  相似文献   

13.
高产农田土壤硝态氮淋失与地下水污染动态研究   总被引:25,自引:5,他引:25       下载免费PDF全文
对桓台县区域农田监测研究表明,水肥管理不同的2个监测区域郭家区、李家区高产农田土体内NO_3~--N淋失迁移动态有差异,地下水污染亦不同。春天始土体内NO_3~--N含量趋于持续降低,浅层地下水NO_3~--N含量则持续升高,雨季后地下水中NO_3~--N含量尤剧烈升高,并达年内最高值,表现出农田N肥对地下水的直接污染,这可能与李家区灌溉次数多、土壤质地较轻和地下水位较浅有关。  相似文献   

14.
不同施肥措施对旱地玉米土壤硝态氮累积的影响   总被引:5,自引:4,他引:5       下载免费PDF全文
长期定位试验研究不同施肥措施对旱地玉米土壤(NO3--N)累积的影响结果表明,不同施肥和秸秆还田措施可不同程度造成0~500cm土层NO3--N的累积,且对0~300cm土层NO3--N的累积影响较大。秋施肥秸秆覆盖还田处理产量最高,且土壤NO3--N累积量较低,所造成的环境风险也小,为我国北方半湿润偏旱区适宜施肥措施。  相似文献   

15.
河北山前平原夏玉米高产区施肥不合理现象普遍存在,农业面源污染严重。研究华北山前平原水肥一体化条件下夏玉米适宜的氮肥运筹,可为该区氮素优化施用技术及提高氮肥利用效率提供依据。本研究以‘郑单958’玉米品种为材料,于2014—2015年2个玉米生长季,在滴灌条件下设置4个施氮水平(N0:不施氮;N1:120 kg·hm~(-2);N2:240 kg·hm~(-2);N3:360 kg·hm~(-2)),研究滴灌水肥一体化下施氮量对玉米氮素吸收利用和土壤硝态氮含量的影响。结果表明:N0处理的玉米干物质重及产量较其他处理显著降低,N1、N2和N3处理间无显著差异;N1处理的玉米氮含量和氮累积量较N0处理显著增加,施氮量在N1~N3范围内,不同年份间玉米植株氮含量和氮累积量存在一定差异,总体表现为随施氮量的增加而上升的趋势,但随施氮量的增加,植株氮含量和氮累积量上升幅度逐渐降低。N2处理的氮肥收获指数最高。随施氮量增加,氮肥当季回收利用率、氮肥农学效率、氮肥生产效率和氮肥利用效率显著降低;2014年,在0~100 cm土层范围内,4种施氮处理的土壤硝态氮含量均表现为随土层加深逐渐降低;2015年N2和N3处理的土壤硝态氮在80~100 cm土层达到累积峰,经过2年种植后,年施氮量超过240 kg·hm~(-2)的处理,土壤硝态氮淋洗加剧。利用一元二次方程拟合产量与施氮量之间的关系,明确了玉米最高产量的施氮量为199~209 kg·hm~(-2),经济施氮量为174~187 kg·hm~(-2)。综合考虑经济效益和生态效益,该条件下夏玉米滴灌水肥一体化的适宜施氮量为174~187 kg·hm~(-2)。  相似文献   

16.
为提高辽西地区花生产量和水氮利用率,本文以‘白沙1016’为对象,采取裂区试验,主区为雨养(W0)和测墒补灌(W1)两种灌溉模式,子区为0 kg·hm~(-2)(N0)、40 kg·hm~(-2)(N1)、60 kg·hm~(-2)(N2)和80 kg·hm~(-2)(N3)4个施氮水平,研究施氮对测墒补灌条件下花生干物质积累和氮素积累及分配的影响。试验结果表明:在雨养和测墒补灌条件下,花生成熟期的单株干物质量分别为64.66~74.92 g和71.65~92.81 g,以W1N3处理最高,W0N0最低,且随施氮量呈现二次曲线变化趋势。花生植株氮积累量随施氮量变化趋势与干物质量一致,W1N2较其他处理显著提高了氮素积累量、产量和水分利用效率。测墒补灌优化了花生植株中氮素的分配,延长了叶片氮素积累时长,同时提高了叶片氮素向荚果的转移量,继而相对雨养处理显著增加了花生荚果氮积累量所占植株氮积累总量的比重(氮收获系数)2.13%、氮肥农学利用率78.57%、氮肥表观回收率25.90%。花生收获后,土壤硝态氮主要分布在0~40 cm土层内,占0~60 cm土层的77.75%,且累积量随着施氮量的增高而增加,但补灌会使土壤硝态氮下移造成硝态氮淋失。因此,综合考虑水氮利用效率,在辽西半干旱地区推荐W1N2为适宜花生生产水氮管理,其产量、水分利用效率和灌溉水利用效率最高,分别为6 485.03 kg·hm~(-2)、2.02 kg·m~(-3)和10.21kg·m~(-3)。  相似文献   

17.
施氮和秸秆还田对小麦-玉米轮作农田硝态氮淋溶的影响   总被引:12,自引:0,他引:12  
连续4 a采用渗漏计测定法研究了陕西关中小麦-玉米轮作区施氮和秸秆还田对土壤剖面90 em处NO3--N淋溶的影响.结果表明,NO3--N淋洗主要发生在7、8、9月份或灌溉后,年际间变异较大.监测期内各处理渗漏液NO3--N浓度和淋失量的变幅为0~103.5 mg L-1和0~21.8 kg hm-2,二者均随施氮量的增加呈增加趋势.小麦施氮150 kg hm-2、玉米施氮180 kg hm-2时,连续4a作物均能获得高产.施氮量继续增加,产量不再增加,0 ~100 cm土层NO3--N累积量和90 cm处NO3--N淋失量却相应增加.秸秆还田2 a后作物显著增产,2010年和2011年分别增产15.1%和14.2%,但对NO3--N累积和淋溶的影响不显著.回归分析显示,NO3--N年淋失量和0~ 100 cm土层累积量均随年施氮量的增加呈指数形式增加,说明施氮量越高,NO3--N年淋失量和累积量越高,二者占施氮量的比例也越高.  相似文献   

18.
麦秆还田氮肥运筹对水稻产量及土壤氮素供应的影响   总被引:14,自引:2,他引:14  
通过田间对比试验,研究了小麦秸秆全量还田后不同N肥运筹模式对水稻生长及土壤N素供应的影响。结果表明,小麦秸秆全量还田使水稻增产5.3%,且N肥运筹模式由传统模式A(基蘖肥:穗肥=5:5,基肥:分蘖肥=6:4)优化为B(基蘖肥:穗肥=6.5:3.5,基肥:分蘖肥=8:2)时,增产幅度更大,达9.3%。秸秆全量还田主要通过提高水稻结实率和成穗率,增加有效穗数,实现水稻增产。秸秆还田影响了水稻生长进程,表现为抑制水稻前期(孕穗期)生长和N素累积,而促进后期生物量增加和N素累积。同一时期,N肥模式B水稻生物量、N素累积量均高于模式A。秸秆全量还田后,土壤矿质N发生变化,水稻生育前期较不还田处理(CK)低,而后期较CK高,且N肥运筹模式B较A高。秸秆还田提高了N肥利用率,RNA、RNB分别比CK增加4.1和8.6个百分点,且土壤N素表观盈余量表现为:RNBRNACK。因而,小麦秸秆全量还田,并采用N肥运筹模式B,是实现水稻高产,维持土壤N素平衡的有效措施。  相似文献   

19.
春玉米产量、氮素利用及矿质氮平衡对施氮的响应   总被引:17,自引:0,他引:17  
通过在辽宁省昌图县的田间试验,研究了不同施氮水平(0、60、120、180、240和300 kg hm-2)对春玉米产量、氮素利用及农田矿质氮平衡的影响。结果表明:春玉米产量随施氮量增加而显著提高,当施氮量高于N 240 kg hm-2时,产量有减少趋势;氮素当季利用率随施氮量增加先增加后降低,在施氮量180 kg hm-2时达到最大,为27.95%。随着施氮量增加,氮肥农学利用率、氮素吸收效率和氮素偏生产力均显著降低,而氮肥生理利用率和氮肥表观残留率均先增加后降低,这与氮肥表观损失率的变化正好相反。作物吸氮量随施氮量增加而显著增加,氮盈余主要以土壤残留为主,表观损失在氮盈余中的比例虽小,但随着施氮量增加而明显增加。低量施氮(<180 kg hm-2)主要引起土壤矿质氮残留量的显著增加,而高量施氮(240 kg hm-2和300 kg hm-2)主要引起土壤氮素表观损失量的显著增加。在本试验条件下,合理施氮量应控制在180~209 kg hm-2左右。  相似文献   

20.
通过田间裂区试验研究了不同施氮量(N 0、150、210和270 kg/hm2)和灌水量(900、1200、和1500 m3/hm2)对夏玉米土壤硝态氮分布累积、氮素平衡以及氮肥利用率的影响。结果表明,夏玉米收获期各处理土壤硝态氮在表层(0—20 cm)含量最高,在0—200 cm剖面均呈现先减少后增加再减少的变化趋势;土壤剖面NO3--N累积量随施氮量的增加而增加,且施氮处理硝态氮积累量显著高于不施氮处理。作物吸氮量、氮素表观损失量均与施氮量和总氮输入量呈显著相关,氮素输入量每增加1 kg,作物吸氮量仅增加0.301 kg,而表观损失量增加0.546 kg,是作物吸氮量的1.8倍左右。随施氮量的增加土壤剖面中NO3--N的损失量逐渐减少。夏玉米子粒吸氮量和收获指数随施氮量的增加有增加的趋势;氮肥回收效率和氮肥农学效率均以处理W1500N150最高,分别为46.15%和12.98kg/kg;氮肥生理效率以处理W1200N150最大,为34.49 kg/kg。本试验条件下,以水氮处理W1500N150的土壤硝态氮残留量、表观损失量较低,夏玉米氮肥回收效率和农学效率较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号