首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two commercial shrimp farms in south Texas were evaluated for influent and effluent water quality from June to October 1994. The intensive farm, Taiwan Shrimp Village Association (TSV) had an average annual yield of 4630 kg ha?1 while the semi‐intensive farm, Harlingen Shrimp Farm (HSF), had a yield of 1777 kg ha?1. The study had three objectives: (1) to compare influent and effluent water from the intensive and semi‐intensive shrimp farms, (2) to show which effluent water‐quality indicators exceeded allowable limits, (3) to indicate inherent problems in farms operated with water exchange and summarize how findings from this study led to changes in farms' management that limited potential negative impact on receiving streams. Water samples were collected and analysed twice a week for the TSV farm and once a week for the HSF farm. Samples were analysed for dissolved oxygen (DO), salinity, pH, ammonia‐nitrogen (NH3‐N), nitrite‐nitrogen (NO2‐N), nitrate‐nitrogen (NO3‐N), total phosphorus (TP), total reactive phosphorus (TRP), five‐day carbonaceous biochemical oxygen demand (cBOD5), total suspended solids (TSS) and settleable solids (SettSols). Most of the effluent constituents showed fluctuations throughout the sampling period often related to harvest activity. Effluent pH at TSV was lower than influent values but within the regulatory requirements set by Texas Commission of Environmental Quality (TCEQ), formerly known as Texas Natural Resource Conservation Commission (TNRCC). HSF effluent pH values were higher than its influent, but still within TCEQ limits. Effluent DO mean levels were generally below the regulatory daily mean requirement, with values at TSV often below those for influent. Effluent nutrient concentrations and net loads were generally higher at the intensive shrimp farm, with NH3‐N mean concentrations above the daily mean set by the TCEQ on several occasions. Effluent TSS concentrations were higher than influent for both farms, with daily mean values above the TCEQ limit. The two farms presented similar TSS concentrations despite their different stocking densities. However, TSS total net load and net load per hectare were higher at the intensive farm. The semi‐intensive farm presented higher cBOD5 concentrations and net loads despite its lower stocking density, with daily mean values above the TCEQ limit. The cBOD5 net load at TSV presented negative values indicating higher load at the influent than at the effluent. Analyses showed no evidence of self‐pollution between influent and effluent at the two farms. The high feed conversion ratio (FCR) values (2.3 and 2.7 for the intensive and the semi‐intensive farm respectively) suggest that better feed management is needed to reduce nutrient and solid net loads release from the two farms. The data obtained from this study resulted in several modifications in design and management of the two farms that reduced the potential negative impact on receiving streams. A brief summary of the improvement in selected effluent water‐quality indicators at the intensive shrimp farm is provided.  相似文献   

2.
A bioeconomic approach was used to evaluate random variation of growth and mortality parameters and feed conversion ratio (FCR) for intensive production of the blue shrimp Litopenaeus stylirostris (Stimpson). Severe mortality problems caused by high impact diseases were not considered in this analysis. For a 50‐ha farm, the maximum values of the internal rate of return (IRR=44%) and net revenue above operation costs (NR=US$1 211 000) were obtained for a stocking density of 67 postlarvae (PL) m?2 during winter–spring (cycle 1) and 65 PL m?2 during summer–autumn (cycle 2). Regardless of the density used for cycle 1, stocking at 50 and 65 PL m–2 for cycle 2 sufficed to obtain, respectively, IRRs greater than the minimum attractive IRRs of 15% and 30%. A frequency distribution of IRR, projected for densities of 67 and 65 PL m?2, showed high confidence in obtaining IRR values above 15% and 30% (i.e. confidence >99% and 92% respectively). The frequency distribution of NR showed that the farm could operate without economic losses. Stocking a minimum of 53% of the capacity of the farm would guarantee positive NR. Sensitivity analysis indicated that the IRR and NR were mainly influenced by mortality rate, selling price, density, final weight and FCR.  相似文献   

3.
ABSTRACT

The control and management of production factors have been of great economic interest for the aquaculture industry. In this study, the optimal harvesting time that maximizes the net benefits of shrimp cultured in freshwater was determined using a bioeconomic model fitted to six stocking density strategies (90, 130, 180, 230, 280 and 330 shrimp m?2). A model was constructed which included the size heterogeneity of the culture and the results obtained were compared with the traditional model which assumes size homogeneity for all individuals. The results from both models indicated that the stocking density of 90 shrimp m?2 was the best management strategy for optimizing net benefits. The economic importance of taking into account size heterogeneity in the culture of the white shrimp in freshwater is discussed.  相似文献   

4.
In this study, we have tested the effect of seaweed stocking density in an experimental seaweed biofilter using the economically important red seaweed Hydropuntia cornea integrated with the cultivation of the pink shrimp Farfantepenaeus brasiliensis. Nutrient removal efficiency was evaluated in relation to seaweed stocking density (2.5, 4, 6 and 8 g fw L?1). Total ammonia nitrogen (TAN) was the main nitrogen source excreted by F. brasiliensis, with concentrations ranging from 41.6 to 65 μM of NH4+‐N. H. cornea specific growth rates ranged from 0.8 ± 0.2 to 1.4 ± 0.5% day?1 with lowest growth rates at higher seaweed stocking density (8 g fw L?1). Nutrient removal was positively correlated with the cultivation densities in the system. TAN removal efficiency increased from 61 to 88.5% with increasing seaweed stocking density. Changes in the chemical composition of the seaweed were analysed and correlated with nutrient enrichment from shrimp effluent. The red seaweed H. cornea can be cultured and used to remove nutrients from shrimp effluents in an integrated multi‐trophic aquaculture system applied to a closed recirculation system. Recirculation through seaweed biofilters in land‐based intensive aquaculture farms can also be a tool to increase recirculation practices and establish full recirculation aquaculture systems (RAS) with all their known associated benefits.  相似文献   

5.
The effects of stocking density [range: 2.0-5.5 postlarvae (PL) m?2] and water quality on the production of a traditional tambak tiger shrimp, Penaeus monodon Fabricius, culture system on one farm in Probolinggo, East Java, were studied during one culture period of 126 days using eight ponds. Production characteristics were recorded and water quality parameters monitored. Production was quadratically influenced by stocking density. The optimum density was 4.8 PL m?2, which corresponds with a production per crop of around 300 kg ha?1. Production was also quadratically related to mean shrimp body weight at harvest, while there was an inverse relationship between production and bottom organic matter, indicating that shrimp biomass diminishes the amount of organic matter accumulating at bottom of the tambak.  相似文献   

6.
7.
Abstract

Reducing water exchange in shrimp aquaculture to minimize discharge of pollutants is a search for sustainability. In desert regions, like most of northwest Mexico, low water exchange must be complemented with artificial aeration to compensate for low levels of oxygen in warm and highly saline water. The economic yield of a low‐water‐exchange production system is compared against yield from a typical water‐exchange‐without‐aeration system for Penaeus vannamei culture. The difference between two systems is centered on pumping and aeration rates for a 100 ha semi‐intensive farm in northwest Mexico.

A bioeconomic model was built to compare the systems. Risk analysis is adopted to account for uncertainty of seed price, shrimp growth rate, survival rate, and shrimp prices.

The typical system was slightly more profitable than the low‐water‐exchange, aerated system. The latter used less electricity than the former in all of the three mortality‐rate scenarios. However, the difference in profitability is so small that for practical purposes both production systems provide similar economic yield. For a typical system, the probability of reaching a positive net present value (NPV) is high, therefore under the assumed risks, a 100 ha semi‐intensive shrimp farm in northwest Mexico is a good investment choice.  相似文献   

8.
Two trials were conducted with two sizes, grow‐out (80.0 mg b.w.) and fattening (5.0 g b.w.), of Penaeus semisulcatus to compare the production and yield of shrimp cultured at different stocking densities within an indoor running‐seawater system. In the first experiment, postlarvae were cultured at 50, 100, 150 and 200 m?3 for 68 days, while in the second experiment, juveniles were cultured at 24, 50, 74 and 100 m?3 for 126 days. The results of the two experiments showed significant decrease in weight of shrimp as the stocking density increased. During the grow‐out stage, no statistical differences were observed on survival rates among the shrimp stocked at different densities. Thus, as the primary factor to consider at this stage is the number of shrimp produced, it is recommended to use a density of 200 shrimp m?3. During the fattening stage, the survival rate at the highest density was statistically lower than the other three densities. The mean yield was 437.02, 869.16, 1217.62 and 1446.78 g m?3 for shrimp stocked at 24, 50, 74 and 100 m?3 respectively. Although the average harvest size of juveniles at the lowest stocking density was statistically higher than those stocked at the highest stocking density, both sizes (18.12 and 16.67 g) will be classified as one size group in the market, i.e. medium. As the yield significantly increases as the stocking density is increased, it is therefore recommended that the stocking density for the fattening stage be 100 shrimp m?3.  相似文献   

9.
We evaluated the effect of varying cage stocking density (60, 90 and 120 fish m?3) and feeding duration (10, 30 and 60 min) in a cage‐cum‐pond‐integrated system on growth performance, water quality and economic benefits in Labeo victorianus culture. Interactions between stocking density and feeding duration significantly (< 0.05) affected the fish growth performance and yields in the cages‐cum‐pond system. Stocking density of 60 fish m?3 resulted in the highest growth in cages and in ponds regardless of the feeding duration, but produced lower yields than at stocking density 90 fish m?3. The lowest Apparent Food Conversion Ratio (AFCR) in cages occurred at stocking density of 60 fish m?3 and feeding duration of 30 min. Growth performance in the open ponds declined with increased feeding duration of the caged fish. Survival in cages and in the open ponds decreased with increased cage density, but was not affected by feeding duration. Low dissolved oxygen were recorded, at stocking density of 120 fish m?3, the lowest DO occurred when feeding of caged fish lasted 60 min. Growth performance, water quality and economic benefits in Labeo victorianus culture positively respond to interaction between stocking density and feeding durations.  相似文献   

10.

The main objective of intensive whiteleg shrimp Penaeus vannamei cultivation is to obtain high productivity to meet market needs. One of the efforts to boost production is to provide optimal feeding to increase the shrimp growth rate. This study analyzes the productivity of an intensive shrimp farm using Powersim simulations based on specific growth rates (SGR) and average daily growth (ADG) to determine the resulting production criteria. The cultivation lasted for 90 days by stocking 16 grow-out ponds with post-larvae (PL10) at a density of 80 PL per m2. Shrimp samples were weighed every 10 days after day-30 of culture until harvest. The average productivity obtained from this study was 8.86 t/ha/crop. According to our criteria, this productivity level was low, presumably, due to the low growth rate that may have resulted from low-quality larvae, sublethal nitrite concentrations, low survival rate, and high feed conversion ratio. The SGR-based and ADG-based simulations using Powersim Studio 10 Express confirm the low production, which does not meet the criteria for intensive farming. However, ADG-based simulation shows that the prolonged culture to 126 days results in higher shrimp production and productivity that fall into the lower level of the intensive system. This study also proposes production criteria and productivity ranges for whiteleg shrimp farming.

  相似文献   

11.
Redox potential represents the intensity of anaerobic condition in the pond sediment, which may affect the dominant microbial transformations of substances, the toxins production, mineral solubility, as well as the water quality in the sediment–water interface inhabited by the shrimp. This study evaluates the effect of sediment redox potential in conjunction with stocking density on shrimp production performance, immune response and resistance against white spot syndrome virus (WSSV) infection. A completely randomized two factors experimental design was applied with three different sediment redox potential, i.e. ?65, ?108 and ?06 mV, and two shrimp densities, i.e. low (60 shrimp m?2) and high (120 shrimp m?2). Shrimp juveniles with an initial mean body weight of 5.32 ± 0.22 g were maintained in semi‐outdoor fibre tanks (270 L in capacity) for 35 days of experimental periods. At the bottom of each tank, 5‐cm deep soil substrate with different redox potential was added according to the treatments. The survival and biomass production were significantly reduced at ?206 mV sediment redox potential, regardless of stocking density. Highly negative sediment redox potential (?206 mV) and higher stocking density significantly reduced total haemocyte counts and phenoloxydase activity, and shrimp resistance to WSSV infection. We recommend to maintain the redox potential of pond sediment at a level of more than ?206 mV.  相似文献   

12.
In Mexico shrimp farming is the most important aquaculture activity. However, its sustainable development has been threatened in recent years by the economic risk associated with low yields caused by outbreaks of viral diseases. A stochastic bioeconomic model was developed to analyze the economics of farm management adjustments as a response to disease risks, using pond-level data from a farm operating in the State of Sinaloa, Mexico, during the period 2001–2005. The data base analyzed included different combinations of stocking density (in the range 6–30 PL/m2) and culture time (from 12 to 31 weeks), which allows for wider application of the simulation results, even at the industry level. Results from this study indicate that operating costs would increase by 33% if the farmer would choose to market product directly. Scenarios with lower stocking densities and intermediate culture times generated the highest probabilities 6–9 PL/m2 16–19 weeks (76%/100%/70%), and 10–14 PL/m2 20–24 weeks (72%/99%) of achieving superior economic performance, as demonstrated by achieving the target reference point of 35% operating profit margin ratio. The study reinforces the value of the current trends in Sinaloa to reduce stocking density as a good management practice to decrease the impact of diseases. This study also provides important additional knowledge on the specific economic results and risks associated with the combination of these two management variables at different levels.  相似文献   

13.
This paper aims to examine the levels and determinants of technical efficiency in carp pond culture in India. The stochastic production frontier technique involving the model for technical inefficiency effects is applied separately to samples of semi‐intensive/intensive and extensive carp producers interviewed during 1994–95. The results showed significant technical inefficiencies in carp production in India, especially among extensive farms. The mean technical efficiencies for semi‐intensive/intensive and extensive sample farms were estimated to be 0.805 and 0.658 respectively. By operating at full technical efficiency levels, the semi‐intensive/intensive farms could, on average, increase their production from about 3.4 Mt ha?1 to 4.1 Mt ha?1. Likewise, the extensive farms could increase their production from 1.3 Mt ha?1 to 1.9 Mt ha?1. Much of these efficiency gains would come from improvement in the adoption of recommended fish, water and feed management and monitoring practices. Besides expanding production area, the results indicated several other possibilities for increasing carp production in India by increasing yields per hectare, such as: (1) increased intensification of carp culture (i.e. moving from extensive to semi‐intensive or intensive systems); (2) improvement in technical efficiency at the farm level; and (3) technological progress. However, the realization of these potentials will depend on continuous efforts by the government in ensuring an adequate supply of inputs, technology transfer and development and adequate provision of research, extension and credit services in aquaculture.  相似文献   

14.
The hypothesis that intraspecific competition affects survival and growth during the culture and harvest at extensive/semi-intensive Penaeus vannamei shrimp ponds was evaluated. Thus, the effect of stocking density on the biomass, shrimp average weight, survival, and economic performance during the culture (133 days) and at the harvest of the P. vannamei shrimp was investigated in 400 m2 earthen ponds. In order to reduce the likelihood of infectious diseases, shrimp received preventive health treatments (probiotics and β-1,3/1,6-glucans) during all culture phases. In this way, the effect of density on the intraspecific competition for space/food was isolated. Ponds stocked at 6, 9, and 12 shrimp m?2 showed competition-dependent growth. Ponds stocked at 12 shrimp m?2 presented a mortality (12 %) between days 76 and 99. Competition, and accordingly individual growth reduction, could have begun at day 76 at a density of 5 shrimp m?2. Survival was significantly higher at 6 shrimp m?2 (84.2 ± 6.2 %) compared with the 12 shrimp m?2 (64.8 ± 12.4 %) treatment, while no significant differences in yield were observed between both treatments. Ponds stocked at 3 and 6 shrimp m?2 presented the best benefit–cost rates. The optimal shrimp density during the experimental culture was 5 shrimp m?2. Given the experimental conditions and considering the fraction of density-independent mortality observed, the optimum stocking density was found to be 6 shrimp m?2.  相似文献   

15.
This study was conducted to compare the effects of shrimp and rabbitfish in mono‐ and polyculture stocked at high biomass on production and environmental conditions in a mesocosm system. Shrimp (14 g) and/or rabbitfish (19 g) were stocked in four treatments with different density but with the same total biomass (236 g m?2), including shrimp monoculture (SM) (17 shrimp m?2), shrimp–fish polyculture (SF) (11 shrimp and 4 rabbitfish m?2), fish–shrimp polyculture (FS) (6 shrimp and 8 rabbitfish m?2) and fish monoculture (FM) (12 rabbitfish m?2). After 10 weeks of experiment, shrimp survival and biomass were low in the treatments where shrimp were dominant (SM, SF), while rabbitfish survival and biomass were high in all the treatments. Shrimp mortality was assumed to be related to an excess of the system carrying capacity (CC). Results suggested that CC is linked to shrimp biomass/density rather than the system eutrophication level. The ecosystem became heterotrophic as daily feed supply was beyond 7 g m?2 per day. This threshold corresponded to the environmental CC of the semi‐intensive shrimp culture system. Under these conditions, the combination of high fish biomass and low shrimp biomass appeared as the most valuable in terms of system performances.  相似文献   

16.
We investigated whether the positive impacts of artificial substrates on shrimp performance are altered in any way by their format or mode of fixation in the tanks. To examine this question, substrates were fixed vertically in the water column in three different configurations: SCF treatment (Substrate Completely Fixed), SPF treatment (Substrate Partially Fixed) and SFF (Substrate in Frond Format). Another treatment received no substrate and served as control (WS = Without Substrate). The shrimp were cultured for 38 days in intensive biofloc culture tanks at a stocking density of 1,125 shrimp m?3. In general, water quality variables were similar among treatments and remained within the appropriate range for shrimp culture. The final biomass was higher (8.5 kg m?3) and the feed conversion ratio (FCR) lower (1.6) in all tanks with substrates when compared with the WS treatment tanks (final biomass = 6.3 kg m?3 and FCR = 3.1). However, only shrimp from the SCF and SPF treatments had a higher survival rate (>95.0%) compared to those in WS tanks (75.9%), which was statistically similar to the SFF treatment (88.0%). These results show that substrate format and its mode of fixation in tanks can alter shrimp performance. In well‐aerated intensive tanks, substrates in frond format are constantly pushed to the tank surface, making it difficult for shrimp to adhere to the screens. In such situation, the extra surface provided by the substrates is not always available to the shrimp, a fact that minimizes the positive effects of substrate.  相似文献   

17.
The objective of this study was to assess zootechnical and physiological performance of Litopenaeus vannamei postlarvae (PL) reared in three environments (CW, clear water; B, biofloc; BS, biofloc with artificial substrates) at three stocking densities (300, 600, 900 PL/m3) for 8 weeks. At the end of experimentation, shrimp were subjected to hypoxia, and physiological response was again assessed. During rearing, low levels of total ammonia nitrogen, nitrite (NO2?) and nitrate (NO3?) were observed in B and BS for 600 and 900 PL/m3. For 300 PL/m3, a slight accumulation of NO2? and NO3? was detected. For the same stocking density, shrimp reared in B and BS showed significantly higher weights than those grown in CW, except for final weight. No significant differences were observed in survival. The use of biofloc and artificial substrates permitted doubling density from 300 to 600 PL/m3 without affecting growth, survival, feed conversion rate and obtaining twice the biomass. Shrimp grown in B and BS stored a surplus of glycogen and carbohydrates in their hepatopancreas, which probably gave them a better physiological capacity to counteract high‐stocking densities and hypoxia. A tendency of a higher adenylate energetic charge was observed in shrimp maintained in B and BS.  相似文献   

18.
《Aquaculture Research》2017,48(6):2803-2811
The brown shrimp Farfantepenaeus californiensis and the seaweed Ulva clathrata, both native to north‐west Mexico, were co‐cultured in lined ponds during 18 weeks. The aim of this study was to evaluate different stocking densities (10, 20, 30, 40 and 50 per m2) in terms of shrimp yield to see if the co‐culture method results in shrimp yields suitable for commercial production. The presence of Ulva results in good water quality and allows culture of brown shrimp with low water exchange (10% weekly) and with low nitrogen and phosphorus content in discharged water. The final weight and specific growth rate (SGR) in shrimp between 10 and 30 per m2 were significantly higher (12.5–12.0 g and 4.56–4.53% day−1 respectively) than 40 and 50 per m2 (9.1 and 8.6 g, and 4.31% and 4.26% day−1 respectively). Total shrimp biomass generated in 30 or more shrimp per m2 was significantly higher (2.7–3.1 t ha−1) compared with 10 and 20 shrimp per m2 (1.0 and 2.0 t ha−1 respectively). The lowest feed conversion ratio (FCR) (0.97) was shown in the 10 shrimp per m2 case, and the highest FCR was seen with 50 shrimp per m2 (1.37). Shrimp survival ranged between 71% and 81%, where the highest mortality was shown in 50 shrimp per m2. The results show that the co‐culture method can result in commercially interesting yields, suggesting that 30 shrimp per m2 is the best stocking density for co‐culturing F. californiensis with U. clathrata, based on the shrimp performance.  相似文献   

19.
Hatchery‐reared juvenile spotted babylon Babylonia areolata (mean initial shell length 12.8 mm) were cultured intensively to marketable size in three 3.0 × 2.5 × 0.7 m indoor canvas rectangular tanks. The duplicate treatments of flowthrough and semi‐closed recirculating sea‐water systems were compared at an initial stocking density of 300 individuals m?2 (2250 juveniles per tank). The animals were fed ad libitum with fresh carangid fish Selaroides leptolepis once daily. During 240 culture days, average growth rates in shell length and body weight were 3.86 mm month?1 and 1.47 g month?1 for the flowthrough system and 3.21 mm month?1 and 1.10 g month?1 for those in the semi‐closed recirculating system. Survival in the flowthrough system (95.77%) was significantly higher than that in the semi‐closed recirculating system (79.28%). Feed conversion ratios were 1.68 and 1.96 for flowthrough and semi‐closed recirculating systems respectively.  相似文献   

20.
Tiger shrimp Penaeus monodon were intensively grown from PL15 for 56 d in tank systems at stocking densities of 1000 and 2000 shrimp m− 3, with and without the addition of artificial substrates (AquaMat® (buoyant and non-buoyant) and polyethylene mesh) at each density. Shrimp growth was significantly greater at the lower density and when substrates were added. Mean shrimp weight at harvest ranged from 0.64 ± 0.06 g (2000 shrimp m− 3, no added substrate) to 1.17 ± 0.01 g (1000 shrimp m− 3, added substrate). Survival was high and averaged 79.5 ± 2.7% across all treatments. The addition of substrates significantly increased survival at both stocking densities; however, survival was not significantly affected by stocking density. A maximum harvest density of 1645 shrimp m− 3 and biomass of 1.27 kg m− 3 were produced at a stocking density of 2000 m− 3 with added substrates. Both harvest density and biomass significantly increased with stocking density and addition of substrates. The feed conversion ratio (FCR) of formulated feed was significantly lower when substrates were added. The results show that growth of P. monodon juveniles was inversely related to stocking density during intensive production. However, production output was significantly increased by addition of artificial substrates, which enhanced both growth and survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号