首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
SUMMARY The reproductive findings from a group of nonpregnant mares were studied. Oestrous cycle length averaged 20.6 days (range 13–34) excluding anoestrous periods, or 25 days (31–141) if included. Average oestrus length was 5.7 days (range 1–24) but from February to May it averaged 7.6 days (range 2–24) and from May to November 4.8 days (range 1–10). Seventy-eight per cent of the mares ovulated within 48 hours prior to the end of oestrus, 10% were out of oestrus before ovulation occurred, while 76% of the ovulations occurred between 4 p.m. and 8 a.m. Follicles averaged 45 mm in size the day of ovulation and multiple ovulations occurred 25.5% of the time. Oestrus without associated ovulation was very uncommon in this group of mares, whereas ovulation without oestrus occurred in 6 of the 11 mares, including one mare who ovulated 32 of 34 times without oestrus. The CL were palpable for an average period of 8.9 days (range 1–18). On occasions, a hematoma formed within the ovulation site, reached a size of 10–12 cm in length and persisted beyond the next ovulation without affecting cycle length. Dioestrus averaged 15.4 days (range 6–25) excluding anoestrus, or 19.5 days (range 6–121) if anoestrus was included. Dioestrous ovulations unaccompanied by signs of oestrus and with the cervix pale, tight, dry and sticky occurred in 10 of the 11 mares. The CL formed following dioestrous ovuations were normal, but did not affect cycle length. A syndrome of spontaneous prolongation of the corpus luteum for 2 to 3 months was observed in 6 of the 11 mares. Oestrus was not manifested during this time, but considerable follicular activity and, in some instances, ovulation was observed. Hysterectomised mares and some mares with pyometra had prolonged CL and follicular activity with a few ovulating similar to mares with spontaneously-prolonged CL. Other mares with pyometra had normal cyclic ovarian activity. Evidence suggests that the endometrium had been destroyed by the infection in the anoestrus mares with pyometra and, thus, was incapable of forming and/or releasing luteolytic factors. Experimental intrauterine inoculation of Streptococcus zooepidemicus during dioestrus reduced oestrous cycle length in 5 of 7 inoculations, whereas inoculations during oestrus failed to alter cycle length.  相似文献   

2.
The present study compared the occurrence of oestrus behaviour and ovulation in response to the insertion of CIDR devices plus a classical treatment with equine chorionic gonadotrophin (eCG; single dose at CIDR removal) or alternative treatments with gonadotrophin-releasing hormone (GnRH, either in a single dose at 56 hr after CIDR removal, or in one dose at CIDR insertion and another dose at 56 hr after CIDR removal). The appearance of oestrus behaviour during reproductive season ranged between 84% and 95% and all females showing oestrus signs had subsequent ovulations. The response, during seasonal anoestrus, was similar in the group treated with eCG, but less than half of the females in the groups treated with GnRH showed oestrus signs in response to the treatment, although more than 80% of them showed resumption of ovulatory activity after the treatment. In conclusion, protocols based on GnRH administration offer similar yields to eCG-based protocols during the reproductive season but occurrence of oestrus in response to GnRH-based treatments is highly compromised during seasonal anoestrus.  相似文献   

3.
Over four years, four investigators in the Northern Hemisphere treated 413 privately owned transition phase mares between late February and early April, for the purpose of breeding such mares early in the season. Mares received an intravaginal device (CIDR-B) carrying 1.9 g progesterone, for about 12 days. Thereafter mares forming preovulatory follicles >30 mm were either treated with a short acting implant releasing the GnRH analog deslorelin (Ovuplant™) or with 1,500—2,500 IU hCG, or not. Follicle sizes were determined with ultrasonography at admission to the study (i.e. day of CIDR-B insertion), at intervals during treatment, at device removal and in 24 (to 48) hour intervals thereafter to determine the time for treatment to induce and accelerate ovulation and to ovulation, respectively. Pregnancies were determined by ultra-sonography between Days 14 to 18 after breeding, mostly 12 to 14 days after ovulation. Based on the size of the largest follicle at admission, mares were grouped into Classes with a ollicle diameter of 10 mm or less in Class I, and mares with follicles 11-20 mm, 21-30 mm and >30 mm in Classes II, III and IV, respectively. Overall, 80.2% of all mares responded to treatment with estrus and 80.7% ovulated. For mares in Classes I to IV, the rate of mares bred and becoming pregnant was 53.4% and 66.7%, 65.6% and 58.7%, 87.5% and 52.3%, and 75.0% and 52.0%, respectively. The overall pregnancy rate was 55.6% for the first breeding in response to treatment. Mares not assisted with Ovuplant or hCG were bred at a significantly lower rate (<0.0001) and the pregnancy rate was lower, 44.4% vs. 54.2% and 60.5%, respectively. Treatments with Ovuplant or hCG ensured ovulation rates of 96.0 and 84.9% versus 53.3% in unassisted mares overall. Follicle diameters increased significantly with CIDR-B in situ, and progressed after device removal to >30 mm within 4.0 days and to ovulation 5.3 days. Those mares in Class I responding to treatment (ca 60%) did not differ from Class II to IV mares in almost all the parameter evaluated. Significant differences were seen in the UK in response to treatment between years for the percentage of mares showing heat, ovulated, were bred and became pregnant.  相似文献   

4.
This study investigated the efficacy of two dosage regimens of a potent GnRH analogue (GnRHa), deslorelin acetate, in inducing ovulation in seasonally anestrous mares. Forty-five seasonally anestrous mares were randomly assigned according to follicular size to one of three treatment groups: control, increasing GnRHa dose, and constant GnRHa dose. Treatment began on February 28 and continued until ovulation or for a maximum of seven treatments. Mares were palpated every other day until a 35 mm follicle was detected, then every day until ovulation or regression of the follicle occurred. Blood samples were taken from five randomly chosen mares in each treatment group and analyzed for LH levels.Twenty percent of mares in both deslorelin treatment groups ovulated, while no control mares ovulated during the treatment period. There was no difference in the number of mares that ovulated between treatment groups. Four of the six mares that ovulated were in transitional anestrus at the initiation of treatment, while only two were in deep anestrus.Concentrations of LH were greater (p=0.0008) in both GnRH-treated groups than in the control mares. Concentrations of LH did not differ between the two GnRH-treated groups until day 12 of treatment, when mares treated with a constant dosage had higher (p=0.0358) levels of LH than those treated with an increasing dosage. It is possible that administration of larger amounts of the GnRH agonist lowered the sensitivity of the pituitary to stimulation by GnRH.Deslorelin acetate did stimulate follicular growth and ovulation in a limited number of anestrous mares. Further investigation into the potential of this short-term implant to shorten the onsent of the breeding season is recommended.  相似文献   

5.
The occurrence of fertile oestrus early in the breeding season is of paramount importance to the Thoroughbred industry to facilitate early conception. This paper compares 2 techniques for inducing fertile oestrus in anoestrous mares using either an extended photoperiod alone or together with gonadotrophin-releasing hormone (GnRH) infusions. Eleven mares were placed under conditions of 16 h light and 8 h darkness and 5 of these were implanted with osmotic minipumps delivering approximately 100 ng GnRH/kg/h for 28 days (treated mares). The treated mares ovulated 27.7 days earlier than and conceived 32 days earlier than the 6 mares not given GnRH. GnRH-induced ovulations were followed by a competent luteal phase. The combination of GnRH pumps implanted 2 weeks before commencement of service together with extended photoperiod from July 1 has promise in assisting the stud breeder to improve reproductive efficiency on commercial stud farms.  相似文献   

6.
In seasonally calving dairy herds in the Macalister Irrigation Area of Gippsland, Victoria, cows that had not been observed in oestrus by the start of the mating season and which had inactive ovaries based on rectal palpation and progesterone assay were treated with a hormonal treatment (n = 49). Mature cows had calved at least 40 days previously and 2-year-olds had been calved at least 60 days. The treatment consisted of a norgestomet implant and a norgestomet and oestradiol injection on day 1; prostaglandin analogue Prosolvin) on day 8; withdrawal of implant on day 10 and an injection of PMSG; and fixed time artificial insemination 54 to 56 h after implant withdrawal. This treatment was called the Syncro-mate regimen. Control cows (n = 46) were injected with water on days 1, 8 and 10 and artificially inseminated or served by a bull when seen on heat. Forty seven percent of the treated cows became pregnant within 14 days from the start of treatment compared with 20% of control cows (P less than 0.01). There was an effect of age group on the response to treatment. A greater proportion of 2-year-old cows than mature cows became pregnant within 14 days of treatment (79% of 19 v. 27% of 20; Chi square interaction, treatment by age, 6.4, P less than 0.05). In the younger cows there was also a gain of 22 days in the treatment to conception interval over the control cows (P less than 0.001). It was concluded that the Syncro-mate regimen can be an effective treatment for post partum anoestrus in dairy cows under certain conditions.  相似文献   

7.
AIM: To determine whether conception rates of anoestrous dairy cows treated with progesterone and oestradiol benzoate (ODB) could be increased by treating them with additional progesterone following insemination at the induced oestrus. METHODS: Cows which had not been detected in oestrus for at least 21 days after calving in 18 herds were confirmed anovulatory anoestrus (AA) by veterinary examination, due to the absence of a detectable corpus luteum in the ovaries. All cows were treated with intra-vaginal progesterone (CIDR insert) for 6 days and injected with 1 mg ODB 24 h after insert removal (Day 0). Only cows which were seen in oestrus on Days 0, 1 or 2 were enrolled in the trial. These cows were either treated with a second CIDR insert on Day 8, for 7 days (P4+; n=422), or remained untreated (Control; n=756). Milk progesterone concentrations were measured in a subset of enrolled cows (n=669) on Day 8 to determine the proportion of cows that ovulated following the induced oestrus. RESULTS: Conception rates to first insemination were similar in P4+ and Control cows (40.3% and 37.2%, p=0.59). Of cows which had milk progesterone concentrations measured on Day 8, 78.6% displayed oestrus and ovulated, (range: 53.8% to 94.6% among herds). Of the cows that ovulated, conception rate to first insemination was 46.8% and 43.5% in P4+ and Control cows, respectively (p=0.86). CONCLUSION: Conception rates to first insemination in AA cows treated with progesterone and ODB were not increased by progesterone supplementation using CIDR inserts following insemination. KEY WORDS: dairy cattle, postpartum anoestrus, reproduction, progesterone treatment, CIDR insert.  相似文献   

8.
In the autumn oestrus season, 20 Slovak Merino ewes were exposed to synchronization of oestrus, treated with the PGF2alfa at doses 125 micrograms (Oestrophan, inj. Spofa). followed by an injection of PMSG at doses 1000 IU (Antex Leo Denmark) and 50,000 IU of Vitamin A (Axerophtol Spofa). 23 anoestrus ewes were synchronized with an intravaginal sponges containing 20 mg of chlorsuperlutine (Agelin, Spofa) for 12 days and after sponge withdrawal, the ewes were injected with 750 and 1000 IU of PMSG (Antex Leo Denmark). Ovulatory response was observed and the possibility of ova recovered from the genital organs in ewes after synchronization of oestrus and superovulation in oestrus season. Higher values of the total follicular response (CFO), and the average number of ovulation (PO) after administering equal doses of PMSG were found out both in anoestrus ewes (CFO 6.62 +/- 4.24; PO 4.25 +/- 4.52) and in oestrus ewes (CFO 2.70 +/- 2.10; PO 2.60 +/- 1.74; resp. CFO 2.80 +/- 1.83; PO 3.4 +/- 3.0), if the ewes were treated with PMSG together with vitamin A. The average number of ova flushed was higher in anoestrus ewes (3.0-0.5) than in oestrus ewes (1.67-3.75). In both trials the equal ratio in the number of released ova was gained from ewes of experimental groups (83-88% of the total number). After ova flushing from the genital organs in ewes of the experimental groups most ovas were found in the isthmatal part of the uterine tube (36-60%). On the basis of gained results it was concluded, that synchronized oestrus ewes on receiving PMSG in anoestrus season the ovarial response was more significant than in autumn breeding season.  相似文献   

9.
This study sought to improve the reproductive performance of anoestrous high-producing dairy cows by including equine chorionic gonadotrophin (eCG) after progesterone-releasing intravaginal device (PRID) removal. In Experiment I, 806 cows at 51-57 days post-partum were randomly assigned to a PRID (treated with PRID), PRID-500 (treated with PRID plus 500 IU of eCG) or PRID-750 (treated with PRID plus 750 IU of eCG) group. In Experiment II, 422 cows showing a long anoestrus period (animals with no oestrus signs nor luteal tissue 35 days before treatment) were randomly assigned to the PRID, PRID-500 or PRID-750 groups. The dependent variables considered in binary logistic regression analyses for both experiments were the rates of oestrus, ovulation and conception after treatment, the cumulative conception rate on Day 120 post-partum and pregnancy loss. In Experiment I, interaction between treatment and season showed a significant effect on the oestrous response. Thus, during the warm season, PRID group cows were 8.9 times more likely to express oestrus than the remaining cows. Moreover, inseminated cows with two or more corpora lutea 8-14 days after treatment were more likely to become pregnant (by a factor of 2.4) than cows with a single corpus luteum. Finally, cows without luteal structures treated with PRID were 0.4 less likely to be pregnant on Day 120 post-partum, compared with the remaining cows. In Experiment II, cows in the PRID group treated during the warm or cool season were less likely to exhibit oestrus (by a factor of 0.06 or 0.2, respectively) or ovulate (by a factor of 0.004 or 0.14, respectively) than the remaining cows. In conclusion, in anoestrous cows in both experiments, the addition of eCG to the use of an intravaginal progesterone device to induce oestrus was beneficial. The recommended dose of eCG is 500 IU.  相似文献   

10.
Sheep were medicated with progestogen sponges, pregnant mare's serum gonadotrophin, naloxone or nalbuphine during April, May, June or September 1986. It was observed that when suckling ewes were treated three or five weeks post partum with 45 mg medroxyprogesterone acetate (incorporated on an intravaginal sponge) for 12 days followed by 500 iu of pregnant mare's serum gonadotrophin and 0.4 mg naloxone administered intramuscularly after the withdrawal of the sponge, oestrus became evident 24 to 48 hours after the sponges were withdrawn. However, when the naloxone was replaced by 10 mg nalbuphine administered intramuscularly, oestrus was not shown. When the ewes were medicated with the same combination of drugs during anoestrus, the result was similar to that observed during lactation and oestrus was displayed only in the ewes that received naloxone. Thus the opioid antagonist naloxone facilitates the expression of oestrus in the ewe during anoestrus and lactation.  相似文献   

11.
This paper reviews the equine granulosa cell tumour (GCT) and describes the clinicopathological features, treatment and outcome in seven cases of GCT in mares. Mares were presented with unilateral ovarian enlargement during the 2007 to 2010 breeding seasons. The mean (sd) age of the mares was 11.7 (5.96) years. Three mares were multiparous barren, three were nulliparous and one was primigravida. Behaviour at presentation was 57 per cent anoestrus, 28 per cent with stallion-like behaviour and 14 per cent with persistent oestrus. All mares had unilateral ovarian enlargement. Six non-pregnant mares had a small and inactive contralateral ovary; the pregnant mare had a single small corpus luteum on the contralateral ovary and was at three-and-a-half months' gestation. Enlarged ovaries measured 7 cm to an estimated 30 cm in diameter. 28 per cent had a multicystic ultrasound appearance, 57 per cent were dense structures and 14 per cent were of mixed appearance. Mean concentrations of progesterone were <1 ng/ml, oestrone sulphate 3.06 (2.32) ng/ml and testosterone 0.58 (0.64) nmol/l in non-pregnant mares. Inhibin was elevated in all non-pregnant cases at 7.6 (12.45) ng/ml. The pregnant mare had concentrations of progesterone 2.5 ng/ml, oestrone sulphate 81.0 ng/ml, testosterone 1.9 nmol/l and inhibin 1.31 ng/ml. Mares demonstrating stallion-like behaviour had a significantly higher (P<0.001) testosterone concentration (1.85 [0.07] nmol/l) than those that did not (0.34 [0.26] nmol/l). Three mares underwent unilateral ovariectomy and resumed cyclic ovarian activity within nine months of surgery.  相似文献   

12.
To minimize the number of matings/inseminations, controlled ovulation has been practised since a long time ago. A potent short-term implant, releasing the GnRH analogue deslorelin (Ovuplant((R))) has been used in Australia and North America for several years for hastening the ovulation time in mares, but the product is not registered on the European market. This study was aimed to investigate: (1) ovulation time in mares implanted with Ovuplant when the largest follicle was 42 mm or more in size, (2) repeatability of ovulation time in successive oestruses when treated with Ovuplant, (3) pregnancy rate after single insemination with frozen-thawed semen near ovulation. This study included 11 mares, and altogether 17 timed ovulations. Follicular growth and ovulation were determined by palpation per rectum and by ultrasonography in the morning (at 7:00 hours) every second day until observation of a follicle of at least 42 mm in diameter. Then the mares were re-examined in the afternoon (at 19:00 hours), and an Ovuplant was inserted in the mucosa of the vulva. For detection of ovulation, the mares were palpated and ultrasounded repeatedly from 36-42 h after the insert. The mares were inseminated with frozen-thawed semen once at ovulation. All mares ovulated at 36-48 h after treatment and 94% at 38-42 h after treatment. The six mares that were treated at two oestruses ovulated at 39.9 and 39.7 h, respectively. Five of 11 mares (45.4%), inseminated with frozen-thawed semen at the first oestrous cycle were pregnant day 14-16 after ovulation. Using this protocol, there is no need of palpation/ultrasonography during night hours, and examination at 36 and 41 h after implantation might be enough for estimation of ovulation time.  相似文献   

13.
The objective of this study was to compare the efficacy of purified equine‐ and porcine‐FSH treatment regimes in mares in early vernal transition. Mares (n = 22) kept under ambient light were examined ultrasonographically per‐rectum, starting January 30th. They were assigned to one of two treatment groups using a sequential alternating treatment design when a follicle ≥ 25 mm was detected. In the eFSH group, mares were treated twice daily with equine‐FSH, and in the pFSH group mares were treated twice daily with porcine‐FSH; treatments were continued until follicle(s) ≥ 35 mm, and 24 h later hCG was administered. Oestrous mares were inseminated with fresh semen and examined for pregnancy on days 11–20 post‐ovulation. In the eFSH group, 11/11 (100%) mares developed follicle(s) ≥ 35 mm, 8/11 (73%) ovulated and 6/8 (75%) conceived. In the pFSH group, 5/11 (45%) developed follicle(s) ≥ 35 mm, 4/11 (36%) ovulated and 3/4 (75%) conceived. Treatment with eFSH resulted in a greater ovarian stimulation; higher number of pre‐ovulatory‐sized follicles, higher number of ovulations and higher number of embryos (p < 0.05). Following ovulation, serum progesterone concentrations were correlated with the number of CLs and supported early embryonic development; maternal recognition of pregnancy occurred in all pregnant mares. We concluded that eFSH can be used to effectively induce follicular growth and ovulation in vernal transitional mares; however, if bred, diagnosis and management of twins’ pregnancies would be required prior to day 16 because of the increased risk of multiple embryos per pregnancy. Conversely, the current pFSH treatment regime cannot be recommended.  相似文献   

14.
Our aim was to compare Corpus luteum (CL) development and blood plasma concentration of progesterone ([P4]) in thoroughbred mares after spontaneous (Control: C) or human chorionic gonadotrophin (hCG)‐induced ovulation. Lactating mares (C = 12; hCG = 21) were daily teased and mated during second oestrus post‐partum. Treated mares received 2500 IU hCG i.v. at first day of behavioural oestrus when dominant follicular size was >35, ≤42 mm and mated 12–24 h after. Control mares in oestrus were mated with dominant follicular size ≥45 mm. Dominant follicle before ovulation, CL and gestational sac were measured by ultrasound and [P4] by radioimmunoassay (RIA). Blood sampling and ultrasound CL exams were done at days 1, 2, 3, 4, 8, 12, 16, 20, 25, 30, 35, 40, 45, 60 and 90 after ovulation and gestational sac from day 12 after ovulation in pregnant (P) mares; non‐pregnant (NP) were followed until oestrus returned. Data analyses considered four subgroups: hCG‐P, hCG‐NP, C‐P and C‐NP. Preovulatory follicular size was smaller in hCG mares than in C: 39.2 ± 2.7 mm vs 51.0 ± 1.8 mm (p < 0.0001). All hCG mares ovulated 24–48 h after treatment and presented similar oestrus duration as controls. C. luteum size in P mares showed the same pattern of development through days 4–35, presenting erratic differences during initial establishment. Thus, on days 1 and 3, CL was smaller in hCG‐P (p < 0.05); while in hCG‐NP, CL size was greater than in C‐NP on day three (p = 0.03). Corpus luteum size remained stable until day 90 in hCG‐P mares, while in C‐P a transient and apparently not functional increase was detected on days 40 and 45 (p < 0.05) and the decrease from day 60 onwards, made this difference to disappear. No differences were observed in [P4] pattern between P, or between NP subgroups, respectively. So, hCG‐induced ovulation does not affect CL development, neither [P4] during early pregnancy. One cycle pregnancy rate tended to be lower in hCG mares while season pregnancy rates were similar to controls.  相似文献   

15.
Mares are seasonally polyoestrous breeders. Therefore, the first ovulation of the season, following winter anoestrus, is the only cycle in which mares ovulate without the presence of an old CL from the previous cycle. The objective of this study was to compare the length of oestrous behaviour, and plasma progesterone concentrations during the early post-ovulatory period between mares after the first and second ovulation of the breeding season. Overall, 38 mares and 167 oestrous periods were used in the study. From those, 11 mares were used during the first and subsequent oestrous period to measure and compare the post-ovulatory rise in progesterone concentration, whereas all the mares were used to compare the length of the post-ovulatory oestrous behaviour between the first and subsequent cycles of the breeding season. The persistence of the post-ovulatory oestrus was longer (p < .001) following the first ovulation of the year (median of 52 h) compared with the subsequent ovulations (median of 36 h for second and later ovulations groups; n = 38 mares). The progesterone concentration at any of the four 8 h-intervals analysed (28, 36, 76 and 84 h post-ovulation) was lower (p < .01) following the first versus the second ovulation of the year. By 36 h post-ovulation the progesterone concentration of mares at the second ovulation of the year had passed the threshold of 2 ng/ml (2.1 ± 0.33 ng/ml), whereas in the first cycle it was 1.2 ± 0.13 ng/ml. In conclusion, mares had lower progesterone concentrations in their peripheral circulation and longer persistence of oestrous behaviour following the first ovulation of the year compared with the second and subsequent ovulatory periods of the breeding season.  相似文献   

16.
A study was carried out to determine the luteolytic effect of fenprostalene, a prostaglandin F2α analogue, in mares Ten mares, that included seven cyclic mares, lactating mares and a pregnant mare were used in two experiments. In the first experiment, seven mares were treated subcutaneously with 250 μg fenprostalene and in the second experiment ten mares, including the seven mares used in the first experiment, were treated with fenprostalene and artificially inseminated during the induced estrus. Fenprostalene caused luteolysis in the normal cycling mares and the pregnant mare. Mares showed estrus within one to five days after treatment. Six of the ten mares conceived during the induced estrus and a further two conceived during the next estrus. The compound produced a side effect consisting of a small, raised, sometimes painful skin swelling at the injection site, which lasted for one to two days.  相似文献   

17.
Sixtyfour mares were examined 3 and 6 weeks after mating. Progesterone was measured in 22 mares 3 weeks after mating in order to see if this could be of any help in the oestrous diagnosis. None of the pregnant mares had plasma progesterone below 2 ng/ml. Pregnant mares that did not show oestrus had higher levels of plasma progesterone than pregnant mares showing signs of oestrus 3 weeks after mating. Clinical findings in pregnant and nonpregnant mares 3 weeks after mating is compared, and oestrus in pregnant mares is discussed.  相似文献   

18.
Ovarian tumours in mares represent 2.5% to 6% of the most frequent neoplasms found in the equine species, with a higher chance of benignity. This study aims to describe a case of two different tumours found in the same ovary of a mare that presented clinical signs of suppressed oestrous cycle during 5 years. After unilateral ovariectomy, the ovary was sent to the histopathology examination which determined a mixed tumour of granulosa cell and leiomyosarcoma. After treatment, the mare returned to oestrus and got pregnant in the next season.  相似文献   

19.
The GnRH antagonist antarelix (Teverelix™) was administered to mares (0.01 mg/kg, i.v., twice a day) during the periovulatory period. In Experiment 1, 20 mares were divided into a treated (A3d−) and a control (Control−) group. A3d− mares received antarelix for 3 days from the day when the dominant follicle (F1) reached 32 mm (D0). In Experiment 2, 10 mares were divided into a treated (A6d+) and a control (Control+) group. A6d+ mares received antarelix for 6 days from D0 and hCG was injected in all animals (1600 IU, i.v.) on D1. Pregnancies were determined 13 days after ovulation. In both experiments, antarelix interrupted or totally abolished the LH surge. In Experiment 1, 5/10 of the A3d− mares (with maximum LH concentrations of 11.6 ng/ml at the beginning of treatment) ovulated at the same time as the Control− mares; the other five mares (with LH concentrations under 5.4 ng/ml) ovulated 13.4±0.6 days later. In Experiment 2, all the A6d+ mares ovulated at the same time as the Control+ mares. In treated mares which ovulated during the treatment, progesterone concentrations and fertility did not differ from control mares. These results demonstrate that in mares: (1) a small elevation of endogenous LH can induce ovulation, (2) ovulation can be postponed approximately 13 days after a 3-day antarelix treatment if initiated just before the preovulatory LH surge, (3) ovulation can be induced by hCG on depressed levels of endogenous LH, (4) the inhibition of the post ovulatory LH surge has no effect either on the corpus luteum or on fertility.  相似文献   

20.
Groups of maiden heifers (105 dairy and 119 beef) were treated twice with an 11-day-interval between injections of Cloprostenol (0.5 mg/i.m.), and were then inseminated at 72 h and 96 h after the second injection. The pregnancy rate (PR) was 39% in both types of heifers. Significant PR differences between groups of heifers were largely due to differences in the proportion of non-cycling (anoestrus) animals within each group. Excluding these animals from the analyses increased PR's to the set-time inseminations by over 11%.

An alternative treatment regime was used in a second series of trials. Entire bulls fitted with chin-ball mating harnesses were run with groups of heifers. Those heifers served in the first 11-day-period were subsequently injected with 0.5 mg of Cloprostenol 6 days later and inseminated 72 h and 96 h after treatment. The second sub-group of heifers served in the second 11-day-period received the same injection-insemination sequence. Unmated heifers were examined at the same time as the second sub-group was injected. The PR among the 90 treated dairy heifers (from a total of 102 animals) was 69%, and 58% in 163 treated beef heifers. Almost all of the heifers not served by bulls in the pretreatment period were subsequently found to be anoestrus, pregnant to a previous (unrecorded) mating, or abnormal (freemartin).

The use of oestrus synchronisation in maiden heifers can facilitate the use of AB with associated advantages through genetic improvement. The additional advantages in aspects of herd management, particularly in the reduction in the time-span of conventional AB programmes, may be its greatest use. In either case, the pretreatment identification, and the exclusion of heifers which cannot be successfully synchronised, will be important in obtaining satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号