首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Shoot tips obtained from in vitro grown plantlets of guava (Psidium guajava L.) were encapsulated in calcium alginate beads for short-term storage and germplasm exchange. A gelling matrix of 3% sodium alginate and 100 mM calcium chloride was found most suitable for formation of ideal calcium alginate beads. Maximum percent response for conversion of encapsulated shoot tips into plantlets was obtained on growth regulator free full strength liquid MS medium. The regrowth ability of encapsulated shoot tips was affected by medium strength and sucrose concentrations in the medium. Encapsulated shoot tips could be stored at low temperature (4 °C) up to 30 days with a survival frequency of 25%. After 60 days of storage under minimal growth conditions (sucrose lacking medium), about 75% encapsulated shoot tips were converted into plantlets when subcultured on 3% sucrose containing medium. Plantlets regenerated from encapsulated shoot tips were acclimatized successfully.  相似文献   

2.
The present paper demonstrates the potential of nutrient-alginate encapsulation of axenic nodal segments of pomegranate for synthetic seed technology, which could be useful in germplasm distribution and exchange. Nodal segments from in vitro shoot cultures derived from mature nodal explants (source A) or axenic cotyledonary nodes (source B) were encapsulated in calcium alginate hydrogel containing Murashige and Skoog's [Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15, 473–497] medium (MS) supplemented with 4.44 μM benzyladenine (BA) and 0.54 μM naphthalene acetic acid (NAA). Of various concentrations of sodium alginate (1–6%) and the complexation solution of calcium chloride (50–125 mM), a combination of 3% sodium alginate and 100 mM calcium chloride was most suitable for formation of ideal synthetic seeds. Morphogenic response of encapsulated nodal segments to seven different planting media was evaluated. Encapsulated nodal segments of both the sources exhibited shoot development only in four selected media. Of the planting media evaluated, % sprouting (shoot development) was the highest in MS medium augmented with 4.44 μM BA and 0.54 μM NAA and lowest in (1/2) MSS medium. One step germination i.e. both shoot and root formation was possible only with encapsulated nodal segments of source B in MS, (1/2) MSS and natural soil + (1/2) MSS, with MS being most effective. Encapsulated nodal segments stored up to 30 days at 4 °C were capable of sprouting. Plants regenerated from the encapsulated nodal segments were hardened off and transferred to soil.  相似文献   

3.
Protocols for the in vitro proliferation and storage of fraser photinia were developed by comparing 6-benzyladenine (BA) concentrations (0.5–4 mg/L) together with different media formulations [Murashige and Skoog (MS) media and Quoirin and Lepoivre (QL) media], sugar combinations (sucrose and mannitol), culture vessels (baby food jars and vitrovents) and methods (synthetic seed technology and slow growth storage). The best responses in terms of both proliferation percentage and multiple shoot formation were obtained in QL medium containing 1 mg/L BA. Synthetic seed production was optimized by encapsulating shoot apices in 3% sodium alginate. Encapsulated shoot apices could be maintained up to 6 months at 4 °C in dark with 91.6% sprouting in MS medium. Microshoots were stored at 4 °C up to 15 months on sucrose and mannitol containing QL medium in both baby food jars and vitrovents without subculture. The stored material could be recovered and multiplied normally in 1 mg/L BA supplemented QL medium. Both in vitro propagated and conserved microshoots were rooted (∼75%) on QL medium with 1 mg/L indole butyric acid (IBA). Optimized synthetic seed and slow growth storage system can be used for short and medium-term storage of fraser photinia germplasm.  相似文献   

4.
Dönmez  Dicle 《Erwerbs-Obstbau》2022,64(2):307-314

Myrtle growing naturally in the Mediterranean Region in Turkey, is among the economically important plant species. The present study emphasized on in vitro conservation of M. communis by encapsulating regenerated shoot tips. In this research we reported synthetic seed production and subsequent conversion of encapsulated shoot tips into plantlets comparing with nonencapsulated shoot tips for myrtle. Two different myrtle genotypes were used for synthetic seed production. Sodium alginate solution at the rate of 3.0% and 100?mM calcium chloride solution were prepared for encapsulation. Encapsulation was accomplished by mixing shoot tips into sodium alginate solution and dropping these in calcium chloride solution for 25–30?min. Encapsulated and nonencapsulated shoot tips were cultured in MS (Murashige and Skoog) media supplemented with different BAP (6-Benzylaminopurine) concentrations (0, 0.5, 1, 2?mg L?1). After six weeks, all shoots were transferred to MS media containing 1?mg L?1 IBA for in vitro rooting. As a result, the highest germination rate was obtained on the BAP-free MS media. The best BAP concentrations were detected as 0.5 and 1?mg L?1 for micropropagation. Genetic stability of plants coming from encapsulated and nonencapsulated shoot tips was tested by ISSR markers. Based on the results, there were no genetic differences among the samples.

  相似文献   

5.
Efficient protocols were established for in vitro seed germination, neo-formation of secondary (2°) protocorms from primary (1°) protocorms and multiple shoot buds and protocorm-like body (PLB) induction from pseudo-stem segments of in vitro-raised seedlings of Cymbidium giganteum. Four nutrient media, namely Murashige and Skoog (MS), Phytamax (PM), Mitra et al. (M), and Knudson ‘C’ (KC) were evaluated for seed germination and early protocorm development. In addition, the effects of peptone, activated charcoal (AC) and two plant growth regulators [6-benzylaminopurine (BAP) and 2,4-dichlorophenoxyacetic acid (2,4-D)] were also studied. Both M and PM supplemented with 2.0 g l−1 peptone or 1.0 mg l−1 BAP resulted in ∼100% seed germination. Media supplemented with 2.0 g l−1 AC could effectively induce large protocorms (1.6 ± 0.1 mm in diameter). Neo-formation of 2° protocorms from 1° protocorms was achieved in liquid and agar-solidified PM medium fortified with different concentrations and combinations of auxins (α-naphthalene acetic acid (NAA) and 2,4-D) and cytokinins [BAP and kinetin (KN)]. The highest number of 2° protocorms was obtained in liquid medium (10.7 ± 0.9/1° protocorm) supplemented with 2.0 mg l−1 BAP + 1.0 mg l−1 NAA. Although protocorms proliferated profusely in liquid medium, these did not develop further unless transferred to agar-solidified medium within 6–8 weeks. Multiple shoot buds and PLBs were induced from pseudo-stem segments on agar-solidified PM medium fortified with different concentrations and combinations of BAP and NAA and the maximum number of PLBs (6.00 ± 0.20) was recorded when BAP and NAA were applied at 2.0 mg l−1 each. A solid root system was induced from PLBs and shoot buds when these were transferred to half-strength PM or M media fortified with 0.5 mg l−1 indole-3-acetic acid. Well-rooted plants were transferred to the greenhouse with 95% survival.  相似文献   

6.
The regenerability of three ornamental species—Lysimachia christinae, Lysimachia rubinervis and Lysimachia nummularia ‘Aurea’, were investigated using in vitro leaves and shoot tips. 6-Benzylaminopurine (BAP) and α-naphthalene acetic acid (NAA) added to Murashige and Skoog (MS) medium were tested for their effect on organogenesis. On the medium, shoot regeneration occurred directly without callus formation. In these species, L. christinae developed the highest regeneration rate and numbers of shoots/explant from shoot tips (100%, 12.25) and leaf bases (100%, 13.01) on the MS medium containing 3.0 mg l−1 BAP and 0.1 mg l−1 NAA. For L. rubinervis, the highest shoot induction rate and number of shoots/explant were obtained from shoot tip (100%, 16.87–17.20) on the MS medium with 0.1 mg l−1 NAA and 3.0–5.0 mg l−1 BAP. L. nummularia ‘Aurea’, however, showed the highest regeneration rate and number of shoots/explant (100%, 12.73) from leaf bases on MS medium supplemented with 1.0 mg l−1 BAP and 0.1 mg l−1 NAA. All in vitro shoots rooted well on half macronutrient MS medium containing 0.1 mg l−1 NAA. After acclimatization, transplanted plantlets grew normally and flowered in the field.  相似文献   

7.
High-frequency somatic embryogenesis and shoot regeneration of broccoli (Brassica oleracea var. italica) were achieved. Cotyledon and hypocotyl explants from four varieties of broccoli were cultured on MS and modified MS media (mMS, supplemented with PG-96 organic components) with different combinations of growth regulator. The effects of genotypes, different explants, growth regulator combinations, organic components and AgNO3 on induction of calli and shoots were evaluated. The optimal media for inducting calli/shoots and roots were mMS medium containing 3% (w/v) sucrose and 0.8% (w/v) agar supplemented with NAA at 0.5 mg l−1, 6-BA at 3.0 mg l−1, AgNO3 at 4.0 mg l−1 and MS medium containing 3% sucrose and 0.8% (w/v) agar supplemented with NAA at 0.2 mg l−1, respectively. The callus induction percentages were over 90% in all four varieties; shoot induction percentage was 92.5% and the average number of shoot per explant was 4.1 from cotyledon explant in variety Bishan. In this study, we established high-efficient embryogenesis and shoot regeneration system of broccoli and analyzed genetic stability of regenerants at DNA level using RAPD molecular marker. Out of 62 arbitrary primers screened using PCR amplification, 79 polymorphic bands were amplified from 20 primers. The results demonstrated the genetic stability of regenerants from the same variety.  相似文献   

8.
The communication describes standardization of an efficient in vitro propagation and hardening procedure for obtaining plantlets from field grown culms of Bambusa tulda. Administration for 10 min of 0.05 and 0.1% mercuric chloride to explants collected in winter and summer seasons, respectively facilitated optimum culture establishment and bud break. 0.1–0.2% mercuric chloride in rainy season enhanced aseptic culture establishment but inhibited bud break due to toxicity to explants. MS liquid medium enriched with 100 μM glutamine, 0.1 μM indole-3-acetic acid and 12 μM 6-benzylaminopurine supported maximum in vitro shoot multiplication rate of two-fold. The proliferated shoots were successfully rooted on MS liquid medium supplemented with 40 μM coumarin resulting in a maximum of 98% rooting. The procedure requires 45 days cycle for the in vitro clonal propagation (15 days for shoot multiplication and 30 days for root induction) and 80 days for acclimatized plantlet production.  相似文献   

9.
This study evaluated the survival and recovery of non-encapsulated and encapsulated shoots of Sequoia sempervirens after storage at 4 °C in the dark for up to 15 months on four different culture media. Survival and regrowth of encapsulated shoots declined within 3 months, regardless of the storage medium composition. By contrast, no significant decrease in survival and regrowth was noted with non-encapsulated shoots after 12 months of storage on Quoirin and Lepoivre medium supplemented, or not, with 1 mg l−1 benzyladenine. Regrowth dropped to 60–61% after 15 months of storage on the same media. Medium-term conservation of S. sempervirens germplasm is therefore possible using in vitro storage of non-encapsulated shoot cultures.  相似文献   

10.
Shoot tips excised from in vitro cultured plants of Dianthus caryophyllus L. (cv. Pallas, cv. Pink Candy and cv. Wanessa) were successfully cryopreserved using an encapsulation-vitrification method. Shoot tips (2–3 mm in length) were encapsulated in sodium alginate, precultured on liquid Murashige and Skoog (1962) medium supplemented with various sucrose concentrations (0.25, 0.5, 0.75, 1.0 M) for 24 h or 48 h and dehydrated with the vitrification solution PVS2 (up to 4 h) at 24 °C or 0 °C prior to direct immersion in liquid nitrogen (−196 °C). A maximum of shoot regeneration from cryopreserved shoot tips was obtained with the following combinations: preculture in 0.5 M sucrose and 180 min dehydration treatment at 0 °C for cv. Pallas (60% shoot formation), or preculture in 0.75 M and 200 min dehydration at the same temperature for cv. Pink Candy (66.6% shoot formation) and cv. Wanessa (73% shoot formation).  相似文献   

11.
Protocols are outlined for the regeneration of Curcuma soloensis, an attractive tropical ornamental plant, from young vegetative bud explants. We used both direct and callus-mediated regeneration techniques to produce material suitable for mass propagation and the development of transgenic plants. During direct plantlet propagation, the presence of thidiazuron (TDZ) in the growing medium induced more than three times as many shoots as 6-benzylaminopurine (BA), with a mean of 18.7 shoots per explant on MS medium containing 2.5 μM TDZ compared to 5.0 shoots with 40 μM BA. Subsequently, the shoots rooted readily on MS basal medium that was free of plant growth regulators. During indirect plantlet regeneration, TDZ combined with BA and 2,4-dichlorophenoxyacetic acid (2,4-D) had significant effects on embryogenic callus induction and multiplication. The frequency of callus formation was 91.1% for explants cultured on MS basal medium supplemented with 2.5 μM TDZ, 2.0 μM BA and 1.2 μM 2,4-D. On average 7.1 shoots were produced per callus mass cultured on MS medium supplemented with 2.5 μM TDZ, 9.0 μM BA and 1.2 μM naphthaleneacetic acid (NAA). Regenerated shoots were transferred to MS medium supplemented with 2.5 μM TDZ, to produce multiple shoots. In vitro cultured plantlets readily acclimatized to greenhouse conditions, showing 100% survival rates in a sphagnum, perlite and sand (1:1:1) medium. These plants were transplanted into pots or planted in the field. The ex vitro acclimated plants grew vigorously and produced showy inflorescences 5–6 months after planting. The high-frequency of shoot multiplication and rapid flowering of tissue-cultured plants indicate that C. soloensis has great potential in the floricultural market.  相似文献   

12.
The present study was carried out to assess the effect of explant preparation and sizing for in vitro micropropagation of Aloe vera L. The stem nodal explants and shoot tips were cultured on modified Murashige and Skoog's medium (1962) supplemented with different concentrations of 6-benzylaminopurine (BA), kinetin (KIN), indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) and α-naphthaleneacetic acid (NAA) either singly or in combination. The best media composition was found to be MS medium supplemented with IAA (11.42 μM), IBA (9.8 μM) and BA (8.88 μM). The explants were divided into 2 sets, with and without ensheathing leaf base. Explant sizing, pruning and retention of mother tissue was highly significant in induction of multiple shoots and roots. The stem nodal explants with leaf base performed much better than those without such covering. A very high number of shoots and roots grew from these explants. The rooted plantlets were successfully acclimatized and transferred to the green house conditions and finally to field conditions.  相似文献   

13.
In this study, an efficient protocol for the regeneration of encapsulated explants of oleander (Nerium oleander L.) has been developed. Shoot tips and 1st nodal segments below the shoot tip, from in vitro-derived oleander microshoots, were encapsulated in 2.5% sodium alginate prepared in liquid MS sucrose-free nutrient medium and hardened in 50 mM of calcium chloride producing solid beads, uniform in shape. These artificial seeds, irrespective of their maintenance under light or in darkness, germinated at frequencies of 38.8–42.2%, producing 3.0–3.3 microshoots per bead. In the case of using 100 mM of calcium chloride for hardening, the beads were firm, of uniform globular shape and suitable for handling, exhibiting a germination response of 68.9%. Encapsulated shoot tip explants, following storage at 4°C for 8 weeks, exhibited a higher regeneration response (60.0%) than non-encapsulated similar explants stored under the same conditions (11.1%). Microshoots, excised from cold-stored encapsulated explants after germination, rooted easily in agar-solidified MS medium with 2 μΜ IBA and after their transplantation into a peat-perlite substrate (3:1, v/v), were acclimatised successfully and established in the greenhouse with minimal losses. The present encapsulation procedure could be applied as an alternative method of micropropagation of desirable elite clones of oleander.  相似文献   

14.
The objective of this study was to establish a cryopreservation protocol for hawthorn shoot apices (Crataegus pinnatifida Bge.). Cryopreservation was carried out via encapsulation–dehydration, vitrification, and encapsulation–vitrification on shoot apices excised from in vitro cultures. We began by showing that cold-acclimation enhanced the regrowth of cryopreserved apices from 10.0 to 65.5% in encapsulation–dehydration. We then decided that the encapsulation–dehydration method was an optimal cryopreservation method for hawthorn shoot apices in terms of its high recovery after cryopreservation as well as its ease of use compared with vitrification and encapsulation–vitrification. In encapsulation–dehydration, the protocol leading to optimal regrowth was as follows: after cold-acclimation at 5 °C in the dark for 2 weeks, excised shoot tips were pretreated for 24 h at 25 °C on hormone-free Murashige and Skoog [Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15, 473–497] (MS) basal medium with 0.4 mol/L sucrose, then encapsulated and precultured in liquid MS medium with 0.8 mol/L sucrose for 16 h at 25 °C. Precultured beads were dehydrated for 6 h at 25 °C in the dessicator containing 50 g silica gel to a moisture content of 15.3% (fresh-weight basis) before cryostorage for 1 h. In addition, we examined the effect of adding glycerol to both the alginate beads and loading solution to enhance regrowth after cryopreservation in encapsulation–dehydration. In the present study, it was shown that adding 0.5 mol/L glycerol resulted in high regrowth percentages (82.5–90.0%) in four Crataegus species.  相似文献   

15.
Present study demonstrates the effect of sucrose and ABA on germination of encapsulated somatic embryos of guava (Psidium guajava L.). Sucrose and ABA at different concentrations were also evaluated for their effects on maturation and germination of somatic embryos. Mature somatic embryos developed on MS medium containing high concentration of sucrose (10%) or ABA (1.0 mg l−1) showed inhibition in germination if they continued to be in same medium for 4 weeks. With increasing concentrations of sucrose (3–9%) or ABA (0.01–1.0 mg l−1) in medium, percent germination of encapsulated somatic embryos decreased significantly. Encapsulated somatic embryos after storage on MS medium supplemented with 9% sucrose or 1 mg l−1 ABA for different duration (0–60 days) germinated when they were transferred to medium containing 3% sucrose. About 20.8% and 37.5% encapsulated somatic embryos germinated after storage on ABA (1 mg l−1) or sucrose (9%) for 60 days, respectively. Temporarily suppression in germination of encapsulated somatic embryos by high concentration of sucrose or ABA may be important for short-term conservation of elite genotype of guava.  相似文献   

16.
In vitro seeds germination and plantlet establishment of Labisia pumila were studied in this report. The seeds obtained from the mature fruits of L. pumila were sterilized and cultured on Murashige and Skoog (MS) solid media supplemented with 1–3 μM of 6-benzylaminopurine (BAP) and 3% (w/v) sucrose. The presence of BAP in the medium significantly affects seeds germination. High percentage of seeds germination (up to 90%) was successfully achieved after 2 weeks of culture on medium supplemented with 2 μM BAP. Up to 70% of explants produced shoots through direct regeneration from newly emerged epicotyls after 5 weeks of culture. The average of 8.1 ± 1.0 shoots per explant obtained on media treated with 2 μM BAP. Seedlings were further transferred to growth media fortified with different types of cytokinin. Result observed after 12 weeks showed that medium supplemented with 1 μM zeatin (ZEA) promote the highest growth with an average of 2.9 ± 1.0 cm shoot length and 7.7 ± 3.2 leaves per explant after 12 weeks. In addition, medium added with 2 μM BAP and supplemented with 3–4% (w/v) of sucrose promote the best growth i.e., 3.0 ± 0.6 shoots per explant, 2.27 ± 0.2 cm length and 4.3 ± 0.5 leaves per explant.  相似文献   

17.
High frequency and direct (without callus) plant regeneration was achieved from whole leaf explants of thornless blackberry (Rubus hybrid) cv. Black Satin (EC No. 381258; PI No. 553272) in vitro. Leaf blade explants from 1-, 3- and 5-month-old mother cultures were cultured on Murashige and Skoog (MS) medium with thidiazuron (TDZ), N6-benzylaminopurine (BAP), indol-3-butyric acid (IBA) and α-naphthalene acetic acid (NAA), alone or in combination. Three-month explants cultured on 0.02 mg l−1 TDZ produced a high regeneration frequency (91.7%) and the most shoots/leaf explant (17.3). The shoot primordia developed within 3 weeks from the point of detachment of the petiole from the leaf blade. The age of the explant source significantly affected the shoot regeneration potential of the leaf explants. Leaves excised from 3-month-old in vitro-cultured shoots performed better than those from 1- and 5-month-old shoots. Shoots rooted best on half-strength MS basal medium with 0.5 mg l−1 IBA and 90% of the plantlets survived acclimatization. The regenerated plantlets were morphologically similar to the mother plants.  相似文献   

18.
In this study in vitro shoot tips of a Sicilian genotype of Limonium serotinum were successfully cryopreserved using the droplet-vitrification technique. Growth recovery of cryopreserved shoot tips was possible only when samples were pretreated for 16 h in liquid medium with 0.3 M sucrose, then for 5 h in liquid medium with 0.7 M sucrose before performing the cryopreservation protocol. Optimal conditions included treatment for 20 min in a loading solution containing 1.9 M glycerol + 0.5 M sucrose, treatment with vitrification solution B5 (glycerol 40.0%, sucrose 40.0%, w/v) for 60 and 90 min or vitrification solution A9 (glycerol 30.0%, dimethylsulfoxide 20.0%, ethylene glycol 20.0%, sucrose 15.0%) for 20 min, rapid cooling in minute droplets of vitrification solution, rapid rewarming by immersion for 20 min in unloading solution containing 1.2 M sucrose. Under these conditions, 37% recovery of cryopreserved shoot tips was achieved. Regrowth of cryopreserved samples was slow but always direct, without callus formation.  相似文献   

19.
Vanilla (Vanilla planifolia) is a crop of great commercial importance as the source of natural vanillin, a major component of flavor industry. The primary gene pool of V. planifolia is narrow and is evidently threatened due to destruction of its natural habitats making the secondary gene pool important as a source of desirable traits especially for resistance to diseases. Many species of vanilla are considered rare and endangered hence an urgent need to conserve them, arises. Effective procedures for micropropagation and in vitro conservation by slow growth in selected species of vanilla, are described. Synthetic seed technology was standardized by encapsulating 3–5 mm in vitro regenerated shoot buds and protocorms in 4% sodium alginate, which could be stored up to 10 months with 80% germination in sterile water at 22 ± 2 °C. In vitro conservation technology of Vanilla was standardized and shoot cultures could be maintained for more than 1 year without subculture, on slow growth medium, i.e. Murashige and Skoog medium supplemented with 15 g l−1 each of sucrose and mannitol in sealed culture vessels at 22 ± 2 °C. These cultures were maintained in vitro for more than 7 years with yearly subculture. The conserved material could be retrieved and multiplied normally in MS medium with 1.0 mg l−1 BA and 0.5 mgl −1 IBA. The in vitro conserved plants showed good growth and developed into normal plants. This synseed and in vitro conservation system can be utilized for conservation and exchange of vanilla genetic resources.  相似文献   

20.
Some of the factors influencing the propagation of caper (Capparis spinosa L.) plants in vitro and germination of the seed were studied. The number of adventitious shoots emerging from caper stems cultured in vitro increased from 2.2 shoots per explant when the growth medium contained 2 mg/L of gibberellic acid (GA3) to 5.5 when the growth medium contained 2 mg/L zeatin riboside (ZR) and 1 mg/L naphthalene acetic acid (NAA). The best medium for callus formation from leaf and stem parts contained the growth regulators 1 mg/L 6-benzylaminopurine (BAP) and 0.1 mg/L NAA and the best medium for plant regeneration contained 1 mg/L kinetin and 0.1 mg/L indole-3-acetic acid (IAA). The effect of gamma irradiation on the growth of caper shoots in vitro was also studied. A 10 Gy dose of gamma irradiation stimulated growth of shoots up to 200% and increased shoot rooting percentage from 75 to 100%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号