共查询到20条相似文献,搜索用时 15 毫秒
1.
A greenhouse experiment was conducted to study the effects of boron (B) on growth, nutrient status, B distribution and gas exchange parameters of olive plants (Olea europaea L.). One-year-old own-rooted olive plants of the Greek cultivars Megaritiki, Chondrolia Chalkidikis, Amfissis and Kalamon were grown in a sand–perlite medium and irrigated with nutrient solutions containing: 0.27, 0.5, 1, 2.5, 5 and 10 mg L−1 B (0.27 and 10 mg L−1 were considered as control and excess B treatment, respectively). After culturing for 185 days, leaves and stems (from basal and apical part of the shoots) and roots were separately sampled. Our results showed that the final number of leaves per plant was negatively correlated with B concentration in the nutrient solution. Furthermore, in B10.0 treatment, ‘Megaritiki’ had decreased length and number of lateral stems, ‘Chondrolia Chalkidikis’ and ‘Amfissis’ showed decreased length of lateral stems and ‘Kalamon’ decreased length of lateral stems and plant height. In general, dry weight of stems and leaves was not significantly correlated with B concentration in the nutrient solution. B concentration in leaves and stems was linearly correlated with B supply. A linear correlation existed between B concentration of the nutrient solution and that of leaves and stems. At the end of the experiment, B levels in the leaves and stems of B0.27 and B0.5 treatments did not differ significantly. In general, the increase of B concentration in the nutrient solution, negatively affected the nitrogen (N) concentration of leaves and stems while phosphorus (P) and iron (Fe) concentrations were not affected. Furthermore, potassium (K) and calcium (Ca) concentration in stems of plants supplied with 10 mg L−1 B was decreased. In addition, high B supply resulted in increased magnesium (Mg) and manganese (Mn) concentrations in ‘Chondrolia Chalkidikis’ and ‘Amfissis’ and in the decrease of zinc (Zn) concentrations, in all plants. A significant decline in photosynthetic rate at the end of the experiment was observed in the B5.0 treatment regardless of cultivar. 相似文献
2.
A certified organic apple (Malus × domestica Borkh.) orchard was established to study the interaction of ground cover management systems (GMS) and nutrient sources (NS) on nitrogen (N) use efficiency and N surplus in the Southern U.S. for three years. Trees treated with green compost (GC) and wood chips (WC), regardless of the NS, had greater N accumulation and leaf N use efficiency compared to the shredded paper or mow-and-blow treated trees. The WC-treated trees had comparably low N surplus relative to the GC trees that induced more [NO3−] in soil or soil solution in the rooting zone in September in year 3. GC trees had the highest [NO3−] mineralization in the soil during winter. GMS had greater overall effects on the tree response variables than did the NS. 相似文献
3.
It has been studied the time course of seven leaf nutrients’ (Mn, Fe, Zn, Ca, Mg, K and P) concentrations when plants of the olive cultivar ‘Koroneiki’ were grown for about 5 months (from the 30th of May till the 17th of October) in three soils from different parent materials (Marl, Gneiss schist and Peridotite), located in the region of Central Macedonia, Northern Greece. 相似文献
4.
Rootstocks differentially influence tree physiology and these differences may be due to varying responses to root zone temperature (RZT). To determine if this is the case, the physiology, leaf development and nitrogen relationships of five different Prunus rootstocks with chill requirements between 100 and 1100 h were examined during and after growth at RZTs of 5, 12 and 19 °C for 6 weeks. RZT correlated positively with leaf numbers, expansion rates and final leaf area, and significant differences existed among the rootstocks in the magnitude of these parameters at different RZTs. In particular, leaf expansion and area were less affected at low RZT in the low chill varieties. Net assimilation (An), leaf nitrogen (N%) and photosynthetic nitrogen use efficiency (An/N) also correlated positively with RZT: again, there were differences in the magnitude of these parameters among the rootstocks. No associations amongst An, N% or An/N could be found for the rootstocks; hence, they all differed in their physiological responses to RZT. Low RZT alone was sufficient to reduce An and decreased both leaf area and photosynthetic activity. Leaf expansion was related to N%, as the varieties with the lowest N% also had the lowest expansion rates. Infrared thermography of the cv. Golden Queen showed a negative correlation between RZT and leaf temperature with leaves of plants at the lowest RZT being 2 °C warmer than ambient whilst those at the highest RZT were 2 °C cooler than ambient. These differences were due to transpiration, as transpiration for the variety used decreased with reducing RZT. Transpiration from the other rootstock varieties was lowest at the 5 °C RZT but, depending on variety, at 12 °C was either higher, lower or the same as that from plants whose roots were at 19 °C. Together, the results of this study explain some of the rootstock-induced changes in tree growth and suggest the need to incorporate seasonal changes in RZT into development models for peaches. 相似文献
5.
The aim of this work was to assess the relation between carbohydrate levels and flower and fruit production, as well as the role of carbohydrates on CO2 fixation activity, by analysis of leaves, twigs and roots from the alternate bearing ‘Salustiana’ cultivar of sweet orange (Citrus sinensis [L.] Osbeck). A heavy crop load (on year) did not affect photosynthesis activity when compared to non-fruiting trees (off year). Fruiting trees accumulated most of the fixed carbon in mature fruits, whilst no accumulation was observed in roots before harvest. Non-fruiting trees transported part of the fixed carbon to the roots and mobilize it for growth processes and, at the end of the season (December), store it as reserves. Reserve carbohydrates accumulation in leaves started by early December for both tree types, showing the same levels in on and off trees until spring bud sprouting. A heavy flowering after an off year caused the rapid mobilization of the stored reserves, which were exhausted at full bloom. We found no evidence on carbon fixation regulation by either fruit demand or carbohydrate levels in leaves. Carbohydrate reserves played little or no role over fruit set, which actually relied on current photosynthesis. 相似文献
6.
Mokhtar Guerfel Olfa Baccouri Dalenda Boujnah Wided Chaïbi Mokhtar Zarrouk 《Scientia Horticulturae》2009
Leaf structural adaptations for the reduction of water loss were examined in two olive (Olea europaea L.) cultivars (Chemlali and Chétoui) growing under water stress conditions. Leaf measurements included leaf tissue thickness, stomatal density, trichome density, specific leaf area, leaf density, water relations, and gas exchange. We found considerable genotypic differences between the two cultivars. Chemlali exhibited more tolerance to water stress, with a thicker palisade parenchyma, and a higher stomatal and trichome density. Chemlali leaves also revealed lower specific leaf area and had higher density of foliar tissue and lower reduction in net CO2 assimilation rate. The mechanisms employed by these two cultivars to cope with water deficit are discussed at the morpho-structural level. The morphological and structural characteristics of the leaves are in accordance with physiological observations and contribute to the interpretation of why the olive cv. Chemlali is more drought-tolerant than cv. Chetoui. Furthermore, from the behaviour of Chemlali plants we consider this cultivar very promising for cultivation in semi-arid areas. 相似文献
7.
8.
9.
A partial defoliation study was carried out on ‘Hayward’ kiwifruit vines with the aim of evaluating effects on fruit yield, changes in concentration of carbohydrates, and return bloom. At full bloom, ‘Hayward’ kiwifruit vines trained to the pergola system were submitted to 0% (control), 50% and 75% defoliation in the 2.0 m wide central horizontal area of the canopy. This area represents the vine ‘replacement cane zone’ (RCZ), whereas the remaining external area represents the ‘fruiting zone’ (FZ). Removing 50% of the leaves resulted in a small (−9 g in the RCZ and −3.3 g in the FZ), but significant, reduction in fruit weight compared to the control vines. More severe defoliation (75%) reduced fruit weight by 13 g in the RCZ and 7 g in the FZ. The defoliation treatment reduced the concentrations of starch and total soluble carbohydrates (glucose + fructose + sucrose) in the shoots and starch in trunk bark compared to those in control vines. The treatments caused a large reduction in return bloom, expressed as number of flowers per winter bud, by about 25% and 53% in vines with 50% and 75% defoliation, respectively. 相似文献
10.
Effect of different drip irrigation methods and fertilization on growth,physiology and water use of young apple tree 总被引:3,自引:0,他引:3
A pot experiment was conducted to investigate the effect of three drip irrigation methods (i.e. conventional drip irrigation (CDI), both sides of the root-zone irrigated with full watering, alternate drip irrigation (ADI), both sides of the root-zone irrigated alternatively with half of the full watering, and fixed drip irrigation (FDI), only one side of the root-zone irrigated with half of the full watering) on growth, physiology, root hydraulic conductance and water use of young apple tree under different nitrogen (N) or phosphorus (P) fertilization (i.e. CK (no fertilization), N1 (0.2 g N/kg), N2 (0.4 g N/kg), P1 (0.2 g P2O5/kg) and P2 (0.4 g P2O5/kg)). Results show that compared to CDI, ADI and FDI reduced mean root dry mass, daily transpiration, root hydraulic conductance (Kr), leaf photosynthesis rate, transpiration rate and stomatal conductance of young apple tree by 6.9 and 27.7, 29.3 and 45.0, 6.8 and 37.9, 2.5 and 4.8, 32.6 and 33.0, 22.1 and 22.3%, but increased leaf water use efficiency (WUE) by 31.3 and 29.8%, respectively when they saved irrigation water by 50%. Compared to the CK, N or P fertilization significantly increased Kr, and Kr was increased with the increased N or P fertilization level. There were parabolic correlations between Kr and root dry mass, daily transpiration and stomatal conductance. Our results indicate that ADI reduced transpiration rate significantly, but it did not reduce photosynthesis rate and Kr significantly, thus alternate drip irrigation improved WUE and the regulation ability of water balance in plants. 相似文献
11.
Proteaceae are adapted to low-nutrient soils in the various regions where they occur. However, harvesting of flowering stems for the cut-flower industry must eventually cause soil nutrient depletion sufficient to reduce yields. Different N forms, and N and P concentrations were supplied to two Proteaceae cultivars (Leucadendron ‘Safari Sunset’ and Leucospermum ‘Succession’) in a controlled fertigation experiment, and appropriate concentrations for maximum growth with minimum nutrient accumulation or loss were determined. Small additions of N (0.025–0.1 mM) significantly improved growth of both cultivars growing on Strandveld sandy soil. Larger additions of N (up to 2 mM N) resulted in poor growth (both cultivars) and N accumulation in the soil (Safari Sunset). Small additions of P (<10 μM) significantly improved growth of both cultivars and resulted in no accumulation or loss of P in the soil. Larger additions of P (up to 500 μM) resulted in poor growth, P toxicity symptoms and P leaching from the upper soil layers. Best N forms in descending order of both plant visual appearance and vegetative yield were: urea ≥ ammonium nitrate > ammonium sulphate > calcium nitrate. Phosphorus toxicity symptoms were associated with increased concentrations of leaf P, Ca and Fe. Under conditions of maximum growth (10 μM P and 0.1 mM N) Safari Sunset removed 18 ± 0.6 g N, 1.5 ± 0.1 g P, 5.3 ± 0.6 g K and Succession removed 5.5 ± 0.2 g N, 0.3 ± 0.02 g P, 3.1 ± 0.5 g K over 6 months. At maximum growth, plants acquired more N and P amounts than were supplied, but supplying higher N and P concentrations adversely affected growth. Thus, a more complex or slow-release form of N and P than urea and soluble phosphate, respectively, may provide enough N and P to replace losses from the farm soil at the low concentrations required for proteas. 相似文献
12.
不同栽植期对野生大百合开花期性状及成花过程碳氮代谢的影响 总被引:1,自引:0,他引:1
研究了不同栽植期的野生大百合在成花过程中叶片主要营养物质、碳氮比的变化,以及对其生育进程、开花期性状的影响.结果表明:叶片碳水化合物含量与碳氮比在成花过程中呈先上升后下降的趋势,花期结束时有所上升,11月12日栽植的大百合的碳水化合物含量与碳氮比最先达到最高值;各处理含氮量在现蕾期达到最低值,后处于平稳状态;同时11月12日栽植的大百合开花期最长,达到24天;开花率为29.33%,单株花朵数达18朵,且平均每朵花的花穗长11 cm.2月17日后栽植的大百合不能正常生长. 相似文献
13.
In conservation tillage systems based on legume mulches it is important to optimize N management strategies. The present study evaluated the effect of some winter legume cover crops converted into mulches on the following no-tillage tomato (Solanum Lycopersicum L.) yield, tomato nitrogen uptake, tomato use efficiency (NUE), soil nitrate and the apparent N remaining in the soil (ARNS) in a Mediterranean environment. Field experiments were carried out from 2002 to 2004 in a tomato crop transplanted into: four different types of mulches coming from winter cover crops [hairy vetch (Vicia villosa Roth.), subclover (Trifolium subterranem L.), snail medic (Medicago scutellata L. Miller), and Italian ryegrass (Lolium multiflorum Lam.)]; a conventional tilled soil (CT); and a no-tilled bare soil (NT). All treatments were fertilized with three different levels of nitrogen (N) fertilizer (0, 75, and 150 kg N ha−1). Cover crop above-ground biomass at cover crop suppression ranged from 4.0 to 6.7 t ha−1 of DM and accumulated from 54 to 189 kg N ha−1, hairy vetch showed the highest values followed by subclover, snail medic and ryegrass. The marketable tomato yield was higher in no-tilled legume mulched soil compared to no-tilled ryegrass mulched soil, CT, and NT (on average 84.8 vs 68.7 t ha−1 of FM, respectively) and it tended to rise with the increase of the N fertilization level. A similar trend was observed on tomato N uptake. Hairy vetch mulch released the highest amount of N during tomato cultivation followed by subclover, snail medic, and ryegrass (on average 141, 96, 90 and 33 kg N ha−1). The tomato NUE tended to decrease with the increase of the N fertilization rates, it ranged from 39 to 60% in no-tilled legume mulched soil and from −59 to 30% in no-tilled ryegrass mulched soil when compared to the CT. The soil NO3-N content and the ARNS was always higher in the soil mulched with legumes compared to the soil mulched with ryegrass and in NT and CT. This study shows that direct transplanting into mulches coming from winter legume cover crops could be useful for improving the yield and the N-uptake in a no-tillage tomato crop. Furthermore, considering the high N content in the upper soil layer and the remaining N content in the organic mulch residues after tomato harvesting, there is a large amount of N potentially available which could be immediately used by an autumn–winter cash crop. 相似文献
14.
过量施用有机肥会导致土壤养分流失、病虫害多发,甚至出现农作物根系吸水困难,发生烧根、僵苗等现象。为研究有机肥的合理用量、降低有机肥使用对环境的负面影响,本试验以北京郊区设施西瓜为研究对象,共设置了5个鸡粪用量处理(0、37500、75000、112500、150000 kg/hm^2),分析了不同鸡粪用量对西瓜产量和土壤硝态氮累积量及有机氮利用效率的影响。结果表明,随着有机肥施用量的增加,西瓜产量呈先增加后下降的趋势,当鸡粪用量为75000 kg/hm^2时,西瓜单产及总产量均最高,其吸氮总量、水分利用效率和有机氮利用率也最高,而土壤硝态氮累积量最低。各处理不同土层硝态氮含量和累积量均随土壤深度的增加呈现递减趋势。因此,鸡粪施用量为75000 kg/hm^2相对合理,可以在该地区及周边推广应用。 相似文献
15.
The effect of 50% shading and NO3:NH4 ratio (0:100, 75:25, 50:50, and 25:75) in the nutrient solution on growth, yield, quality and N metabolism in hydroponically grown strawberry (Fragaria × ananassa var Camarosa) was evaluated. Both fresh and dry weights of leaves were significantly lower when a high concentration of either NO3 (100%) or NH4 (75%) was the sole N source in the nutrient solution. In unshaded plants, increasing of both NH4 and NO3 ratio in the nutrient solution reduced photosynthetic (Pn) rate, however in shaded plants the reduction of Pn became more pronounced at a higher ratio of NH4 in the nutrient solution. The yield in terms of fresh and dry weight of fruit per plant was significantly increased at the 75:25 and 50:50 (NO3:NH4) treatments. Fruit size was significantly affected by the treatments, so that the biggest fruits in both shaded and unshaded plants were obtained under the 75:25 and 50:50 (NO3:NH4) treatments. Total soluble solid (TSS) in unshaded plants was increased with increasing NH4 ratio in the nutrient solution, however in shaded plants it was reduced at high NH4 ratio in the nutrient solution. In both shaded and unshaded plants, higher concentration of NH4 significantly reduced the post-harvest life of the fruits. The increase of tissue N concentration was nearly proportional to the NH4 concentration in the nutrient solution. The activity of nitrate reductase (NR) was increased by increasing NH4 from 0 to 50% and then reduced at a higher ratio of NH4 in the solution. Shading increased NH4 concentration so that the shaded plant had nearly twice as high NH4 concentration in the leaves. The increase of NH4 concentration induced by shading could be partially the reduction of NH4 assimilate because of the shortage of carbohydrate. 相似文献
16.
The effects of the NH4:NO3 ratio in replenishment solution on Rosa L. flower yield and the impact of NH4 substitution by urea on plant performance and on solution EC and pH have not been studied previously in closed (no leaching) hydroponic systems. A greenhouse experiment with six NH4:NO3:urea ratios (0:100:0, 12:88:0, 25:75:0, 50:50:0, 100:0:0 and 0:50:50) and two harvest cycles (winter and spring) was carried out to investigate these relationships. In winter, total and >40 cm cut flower yields were maximal in treatment 25:75:0. At lower NH4 percentages (12.5:87.5:0 and 0:100:0), growth container solution pH varied between 7.8 and 8.5, reducing P, Ca and Mn concentration in leaves and increasing dry matter allocated to them. At higher NH4 percentages, Ca uptake was inhibited, solution pH reached 3, and %P in leaves increased. Consequently, reducing sugars concentration in leaves increased and sucrose and starch concentrations decreased. A stepwise regression analysis indicated that the optimal NH4:NO3 ratio in feed solution is 40:60, with resulting solution pH of 5.9 in the growth container. In spring the maximum yield was obtained in treatment 0:50:50 and it exceeded the winter yield despite a higher solution EC (4.3 dS m−1 vs. 3.5 dS m−1 at harvest). The beneficial effect of urea (0:50:50 vs. 50:50:0) stemmed from the relatively lower NH4 concentration in solution, that alleviated the NH4–Ca uptake competition, and higher pH. The slope of the straight line relating [H+ efflux rate] to [NH4+ uptake rate] in treatments 25:75:0, 50:50:0 and 100:0:0 was 0.44 mol H+/mol NH4. In all other treatments the proton efflux was negligible. 相似文献
17.
Berry weight (BW) and sugar concentration (SC) are relevant indices in viticulture since they can be easily measured and, when considered together, give a relatively fair estimation of grape quality. This work aims to evaluate the influence of water availability, leaf area and fruit load on BW and SC, estimating the relative importance of these factors. Leaf area (LA), berry number (BN), yield (YLD), water potential in summer (ψpd-s), BW and SC were measured in 16 and 17 ‘Tempranillo’ vineyards in 1999 and 2000, respectively. In all the vineyards, according to local practices, the irrigation amount decreased as summer progressed. The study vineyards comprised a broad range of situations concerning leaf area, fruit load and water status in summer. Average leaf water potential in summer and LA/BN ratio, when considered together, estimated properly BW (R2 = 0.91; P < 0.001) and, in a similar way, ψpd-s and LA/YLD ratio estimated SC (R2 = 0.74; P < 0.001). The relative weight of ψpd-s in both relationships was much higher than that of any of the LA:fruit ratios, showing that, under semiarid conditions, water availability plays the main role in regulation of berry growth and sugar accumulation and, therefore, the highest attention should be paid in these areas to irrigation management, seeking the degree of stress that allows optimizing the combination of yield and berry quality in each situation. 相似文献
18.
Processing tomato is a high water demanding crop, thus requiring irrigation throughout growing season in arid and semiarid areas. The application of deficit irrigation (DI) strategies to this crop may greatly contribute to save irrigation water. A two-year study was carried out in order to assess the effects of DI upon water productivity, final biomass, fruit yield and some quality traits of open-field processing tomato cv. Brigade in a typical semi-arid Mediterranean environment of South Italy. Four irrigation treatments were studied: no irrigation following plant establishment (V0); 100% (V100) or 50% (V50) evapotranspiration (ETc) restoration up to fruit maturity, 100% ETc restoration up to flowering, then 50% ETc restoration (V100-50). Total dry biomass accumulation was significantly depressed by early soil water deficit in V0; irrigation at a reduced rate (50% ETc) from initial stages (V50) or from flowering onwards (V100-50) did not induce any losses in final dry biomass. The marketable yield did not significantly differ among plots irrigated, but an averaged irrigation water saving of 30.4% in V100-50 and 46.2% in V50 was allowed as compared to V100. Marketable yield was negatively affected by the early water shortage in V0, due to the high fruit losses (>44%). The effects of DI on fruit quality were generally the converse of those on fruit yield. DI improved total soluble solids content, titratable acidity and vitamin C content. Water use efficiency was positively affected by DI, suggesting that the crop does not benefits from the water when this last is supplied to fulfil total crop requirements for the whole season. Yield response factor, which indicates the level of tolerance of a crop to water stress, was 0.49 for total dry biomass (Kss) and 0.76 for marketable yield (Ky), indicating that in both cases the reduction in crop productivity is proportionally less than the relative ET deficit. In conclusion, the adoption of DI strategies where a 50% reduction of ETc restored is applied for the whole growing season or part of it could be suggested in processing tomato, to save water improving its use efficiency, minimizing fruit losses and maintaining high fruit quality levels. This aspect is quite important in semi-arid environments, where water scarcity is an increasing concern and water costs are continuously rising. 相似文献
19.
Martina Šturm Nina Kacjan-Maršić Vesna Zupanc Branka Bračič-Železnik Sonja Lojen Marina Pintar 《Scientia Horticulturae》2010
The effect of different fertilisation (i.e. broadcast application and fertigation) and irrigation practices (tank sprinkler and drip irrigation) on yield, yield quality (nitrate content), nitrogen uptake of white cabbage (Brassica oleracea var. capitata L.) and the potential for N losses was assessed on sandy-loam agricultural soil. 15N-labelled fertiliser was used as a tracer. It was found that different practices significantly affected yield, nitrate content in plants, N uptake, as well as fertiliser use efficiency. The highest yield (93 t ha−1), plant N uptake (246 kg ha−1), and fertiliser use efficiency (42%) were obtained under treatment with broadcast fertilisation with farmer's practice of irrigation (tank sprinkler). The N surplus after harvest was −41 kg N ha−1, indicating the lowest potential for N losses. Treatment by fertigation and drip irrigation covering 100% of the crop's water requirements did not result in the highest yield as expected (72 t ha−1), the N surplus after harvest was about +38 kg ha−1. The lowest yield (58 t ha−1), fertiliser use efficiency (30%) and hence the highest potential for N losses (N surplus after harvest +68 kg ha−1) were found in treatment with broadcast fertilisation and drip irrigation covering 50% of the crop's water requirements. 相似文献
20.
The effects of low boron (B) on plant growth, photosynthesis, B concentration and distribution of ‘Newhall’ orange (Citrus sinensis Osb.) plants grafted on either Trifoliate orange (Poncirus trifoliata (L.) Raf.) or Carrizo citrange [C. sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf.] rootstocks were investigated. One-year-old plants of the two scion-rootstock combinations were grown for 183 days in sand:perlite (1:1, v/v) medium under greenhouse conditions. The plants were irrigated with half-strength Hoagland's nutrient solutions containing four B concentrations (0.01, 0.05, 0.10 and 0.25 mg l−1). The growth of root, stem of scion and leaves was less affected by low B treatments when ‘Newhall’ scion was grafted on Carrizo citrange than on Trifoliate orange. Thus, the growth of scions under low B conditions was mainly depended on the rootstock used, i.e., Carrizo citrange-grafted plants were more tolerant to low B compared to the plants grafted on Trifoliate orange. Boron concentrations in all plant parts decreased significantly by decreasing the B supply in the nutrient solution. Leaves were the dominant sites of B accumulation and showed the greatest reduction in B concentration compared to the other plant parts, as B concentration in the nutrient solution decreased. Irrespective of the rootstock, B levels in the upper–younger leaves were substantially higher than in basal-older leaves when plants were exposed to low B concentrations (≤0.05 mg l−1), suggesting that under such conditions B was preferentially translocated to upper–younger leaves to support their growth. Furthermore, B distribution in different plant parts indicated that there was a restriction in translocation of B from root to scion tissues (stems and leaves of scion) under conditions of limited B availability. In addition, low B treatments decreased leaf photosynthetic rate, stomatal conductance and transpiration rate but increased intercellular CO2 concentration in the leaves of ‘Newhall’ plants, irrespective of the rootstock used. 相似文献