首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
:随着计算机技术和光谱技术的发展,高光谱成像技术逐渐成为农产品检测的重要手段之一。高光 谱成像技术将图像分析和光谱分析有机结合起来,而图像信息可以表现出农产品的外部品质和特征,光谱信 息则可以用来检测农产品的内部品质,农产品的内外部品质信息可以完全反映出来,实现对农产品内外品质 的快速、无损检测。介绍了高光谱成像的基本原理,总结了国内外高光谱成像技术在果蔬、肉类、谷物等农产 品无损检测中的应用。  相似文献   

2.
优质水果的生产和销售离不开水果品质检测,传统的水果品质检测手段精度低、成本高、时效性差、破坏性强。近年来,随着科学技术的不断进步,低成本、高效率的水果品质无损检测技术得到飞速发展。其中,高光谱成像技术逐渐成为研究热点。综述了该技术在水果品质无损检测方面的技术原理、应用和发展现状,探讨其在水果品质无损检测领域的应用潜力、存在问题、发展趋势以及应用前景。整体来看,高光谱成像技术能够实现不同水果种类、多个水果品质指标的无损、高效检测,如成熟度、糖度、酸度、红色指数等;受硬件技术限制,其发展侧重于数据挖掘方向,即在硬件发展有限的情况下,通过不断更新和优化的针对性算法获得精准的解析结果;另一方面,设备昂贵、数据处理复杂、模型普适性较差是该技术需要进一步优化和改进的主要问题;其未来发展将基于云计算和人工智能的高效数据处理、适用范围更广的水果品质高光谱检测设备研发、多源综合无损检测等研究方向。随着技术的不断发展,高光谱成像技术在水果品质无损检测方面的应用前景广阔,未来将成为水果品质检测的重要手段之一。  相似文献   

3.
高光谱成像技术结合成像技术和光谱技术,可以从样本中获取其空间和光谱信息。因此,高光谱成像技术能够识别和检测水果的各种化学成分及其空间分布,在水果品质的检测中备受关注。本文首先综述了高光谱成像原理及系统装置,并展开讨论了高光谱图像的校正方法、多种光谱预处理、数据降维和样本集划分方法,从定量和定性角度对模型的构建方法和性能评估进行了分析。其次,总结了高光谱成像技术在水果内部品质(可溶性固形物含量、酸度、硬度、水分含量)和外部品质(损伤、缺陷和纹理)检测和分级中的最新研究进展。最后,对高光谱成像技术在水果品质检测与分级中的应用前景提出展望,以期为优化水果品质的检测方法提供理论依据。同时,也指出了当前可能存在的挑战和局限性。  相似文献   

4.
【目的】研究应用高光谱成像技术无损检测生长发育后期苹果糖度的可行性。【方法】以生长发育后期的"富士"苹果为对象,基于采集到的波长900~1 700nm高光谱数据,建立预测苹果糖度的偏最小二乘(PLS)、支持向量机(SVM)和极限学习机(ELM)模型,并比较主成分分析(PCA)和连续投影算法(SPA)2种数据压缩或特征波提取方法对预测模型精度的影响。【结果】采用PCA方法可将全光谱压缩至9个主成分,采用SPA从全光谱的230个波长中提取出了13个特征波长,两者相比,SPA能更有效地提高模型预测能力。预测生长发育后期苹果糖度的最佳模型为基于SPA的PLS模型,其预测集相关系数为0.945,均方根误差为0.628°Brix。【结论】高光谱图像技术可以用于生长发育后期苹果糖度的无损检测,该技术的应用将有助于指导苹果的种植和适时采收。  相似文献   

5.
高光谱技术作为新一代的光电无损检测技术,广泛应用于农产品快速无损品质检测.高光谱技术在苹果品质检测方面主要有2个方向,结合化学计量学方法进行苹果内部品质检测以及结合机器视觉进行苹果损伤、病害等外部指标的外部品质检测.该文介绍了高光谱技术在苹果品质检测中的应用,提出了高光谱技术在苹果品质检测中存在的问题.  相似文献   

6.
黄海 《乡村科技》2022,(14):79-81
水稻作为我国主要农产品之一,是我国农业经济发展的“主力军”。因此,研究水稻种子快速无损分类检测技术,对推动农业生产具有重要意义。利用高光谱仪获取450~720 nm波长范围的3类水稻种子高光谱数据,通过对比全波长的KNN模型和数据降维后的LDA-KNN算法模型,发现LDA-KNN算法模型能克服KNN模型对不相关特征的信息敏感问题,采用高光谱成像技术进行水稻种子无损分类检测具有可行性。  相似文献   

7.
基于光谱技术的禽蛋内部品质无损检测研究进展   总被引:1,自引:1,他引:1  
禽蛋品质检测是食品安全和消费者权益的重要保障措施,传统禽蛋品质检测主要依赖人工进行,存在工作强度大、效率低且准确率波动大等弊端。光谱检测技术具有快速、安全、无损等优点,近些年来在禽蛋内部品质检测领域发展迅速。本文基于禽蛋的新鲜度、蛋白含量、脂肪含量、血斑肉斑、受精信息、种蛋性别、胚蛋活性等内部品质指标检测的有关研究,概述了近红外光谱、可见-近红外光谱、高光谱成像及拉曼光谱等光谱检测技术在禽蛋内部品质无损检测中的研究进展,分析总结了光谱检测技术在禽蛋无损检测中的应用特点与难点,并展望了其未来发展趋势,以期为我国蛋品无损检测研究及行业质量安全监管提供参考。  相似文献   

8.
基于LabVIEW和多光谱成像技术的苹果品质无损检测装置   总被引:1,自引:0,他引:1  
杨甜军  张箭  朱哲  周竹  曾松伟 《湖北农业科学》2014,53(19):4720-4722,4726
基于Lab VIEW和多光谱成像技术设计了一套苹果品质检测装置,包括硬件设计和软件设计。硬件部分主要由单片机控制模块、光源模块、电机模块以及图像采集模块等组成;软件部分采用基于LabVIEW的G语言进行编写,包括通信模块、图像采集与保存模块以及图像处理与显示模块等。检测装置经调试后,对每个苹果的图像采集与处理时间为8 s,能够对大小、形状、损伤以及糖度等指标进行检测,具有无损、快速的特点。  相似文献   

9.
农作物病害无损检测是保证作物产量和质量的关键环节,起到及时发现病害、指导农药的使用、减少经济损失等作用.本文介绍了高光谱成像技术用于农作物病害检测的原理;从支持向量机、偏最小二乘回归、深度学习识别算法方面综述了2017—2021年高光谱成像技术在农作物病害检测中的国内外研究进展;分析了作物病害高光谱图像识别算法的原理和...  相似文献   

10.
提出一种基于近红外高光谱图像技术的板栗果实品质快速无损检测方法。分别选取3个不同品种栗果、1个品种的霉变栗果和1个品种的虫害栗果各30个样品,采集供试样品的近红外高光谱数据;采用偏最小二乘法(PLS)建立栗果中总糖和淀粉含量预测模型,预测值与实际值的相关系数为0.9313~0.9587,均方根误差为0.062 4~0.225 0;结合主成分分析法(PCA),建立不同品种栗果鉴别以及识别霉变、虫害、正常栗果的判别分析(DA)模型,模型的识别率分别为96.7%和98.6%。结果表明,近红外高光谱图像技术可用于栗果总糖和淀粉的定量预测,以及不同品种栗果和霉变、虫害果的快速定性识别。  相似文献   

11.
叶绿素是植物生长发育必不可少的色素,可用来衡量植物生长状况,为实现番茄叶片叶绿素含量快速、无损检测,以番茄为试验材料,通过高光谱无损检测方法,对番茄叶片叶绿素含量进行监测。提取出82个叶片样本的平均光谱反射率数据(400~1 000 nm),对原始光谱数据分别进行7种预处理(平均平滑、高斯滤波、中值滤波、卷积平滑、归一化、基线校准(baseline)、标准正态化(standard normal variation, SNV),建立PLSR模型,建模结果显示:SNV预处理光谱的建模效果最优。用β权重系数、无信息变量消除变换法(uninformation variable elimination, UVE)、竞争自适应重加权法(compet-itive adaptive weighted sampling, CARS)及连续投影算法(successive project-ion algorithm, SPA)等提取特征波长,并建立了PLSR模型,建模结果表明:CARS法提取特征波长所建立的模型最优,CARS法提取了8个特征波长(732、796、946、953、957、968、983、994...  相似文献   

12.
光谱技术是依据物体内部原子、分子等特定结构对电磁波有不同吸收特性的原理,对物体特定成分进行定性、定量的分析技术。对红外光谱技术和高光谱技术应用于肉类检测的检测原理、技术手段等进行归纳,从肉类溯源及品种检测、肉品品质(嫩度、新鲜度、持水率、大理石花纹等)检测、肉类安全、有毒物检测等方面综述了近红外光谱技术和高光谱技术在肉类检测中的研究现状,分析了光谱技术的存在问题,并对肉类检测的发展趋势进行展望。  相似文献   

13.
近红外光谱分析技术在果品品质无损检测中的应用   总被引:1,自引:0,他引:1  
刘垚  万辉  朱焕庭 《广东农业科学》2009,(3):157-158,163
近红外光谱分析技术以其速度快、效率高、成本低、测试重现性好,测量方便、且可同时测定多个不同组分的特点.正在形成一个新的热点研究领域.概述了近红外光谱分析技术的原理和优点,分析了国内外近红外光谱分析技术在果品品质无损检测中的研究进展.指出了目前该技术在研究应用过程中的存在问题,最后对该技术的应用前景进行了展单.  相似文献   

14.
利用荧光高光谱图像技术无损检测猕猴桃糖度   总被引:1,自引:0,他引:1  
将405nm激光照射到猕猴桃样品上,当激光透过样品内部时,部分单色光被样品内部成分吸收,释放出荧光,再用高光谱成像系统采集诱导出的荧光散射图像.在荧光散射图像上选取感兴趣荧光区域(ROIs),提取感兴趣区域在波长400~1000nm范围内的特征变量.当提取12个特征变量时,建立的猕猴桃糖度多元线性回归(MLR)模型的校正集相关系数Rc为0.932,预测均方根误差(RMSEC)为0.4764°Brix,预测集相关系数Rp为0.8227,预测均方根误差(RMSEP)为0.5645°Brix.研究结果表明,采用激光诱导荧光成像技术无损检测猕猴桃糖度是可行的.  相似文献   

15.
南果梨是一种重要的水果品种,其酸度是评估果品质量的重要指标之一。然而,传统的南果梨酸度检测方法通常需要破坏性采样和化学分析,不仅耗时费力,而且容易导致样品污染和浪费。因此,旨在探索一种基于高光谱成像技术的无损检测方法,以实现对南果梨酸度的快速、准确、无损检测。首先,采集室温20℃下不同贮藏天数南果梨的高光谱数据,其光谱波长范围为400~1 000 nm,并且通过理化实验测量南果梨样本的可滴定酸;其次,采用多元散射校正(multipli-cative scatter correction,MSC)、标准正态变换(standard normal variate,SNV)、Savitzky-Golay平滑滤波等多种方法对光谱数据进行预处理,建立偏最小二乘回归模型(partial least squares regression,PLSR),选择出建模效果最佳的预处理方法,结果显示MSC方法效果最优;然后结合连续投影算法(successie projection algorithm,SPA)提取特征波段,在700~900 nm范围内确定9个特征光谱变量;最后,以提取出的9个特征光谱变量作为输入...  相似文献   

16.
基于高光谱成像的猕猴桃表面疤痕无损识别   总被引:1,自引:0,他引:1  
为实现猕猴桃表面疤痕的快速无损识别,以贵长猕猴桃为研究对象,采用高光谱图像采集系统(400~1 000 nm)采集完好无损猕猴桃和表面有疤痕猕猴桃的高光谱图像。对采集到的高光谱图像进行了最小噪声分离变换,结合阈值分割及数学形态学处理方法提出了猕猴桃表面疤痕的识别方法。结果表明:采用最小噪声分离变换可有效地消除高光谱图像中的噪声;完好无损和表面有疤痕的猕猴桃样本在700~810 nm以及810~1 000 nm的光谱反射率值具有明显的差异,选取785.98 nm处的光谱反射率值为0.30~0.56以及982.59 nm处的光谱反射率值为0.54~0.73作为区分猕猴桃正常区域和表面疤痕区域的阈值条件,进一步利用阈值分割方法对60个完好无损的和60个表面有疤痕的猕猴桃进行识别,正确识别率分别为98.3%和95.0%,说明高光谱成像技术可用于猕猴桃表面疤痕的快速无损识别。  相似文献   

17.
本文采用阈值分割和主成分分析方法对高光谱图像进行处理,以得到虫害区域分割结果。然后选取2个特征波长作为光谱特征,提取4个纹理参数作为纹理特征,并将其优化组合成4组特征向量。利用BP神经网络进行鲜桃虫害检测。结果表明,667nm和746nm波段的光谱反射值的光谱特征和270°方向的能量、对比度、熵、相关性的纹理特征的组合为鲜桃虫害检测的最优特征向量,果实识别正确率为100%。  相似文献   

18.
[目的]本文旨在建立基于高光谱成像技术检测猕猴桃冷害的方法,实现猕猴桃冷害的无损甄别.[方法]以'红阳'猕猴桃为材料,通过分析其400~1000 nm和1000~2000 nm波段下的光谱,比较不同预处理下的偏最小二乘判别分析(PLS-DA)和支持向量机(SVM)模型,选出正确率较高的模型,对该方法构建全波段和特征波段...  相似文献   

19.
金涛  刘伟  刘长虹 《安徽农业科学》2021,49(2):204-205,220
基于多光谱成像技术对牛肉干中水分含量的快速无损检测方法进行研究,通过对比最小二乘回归(PLS)、最小二乘支持向量机(LS-SVM)和误差反向传播神经网络(BPNN)所建预测模型的性能,发现BPNN模型对牛肉干水分含量预测效果最佳,其确定系数(Rp2)、预测集均方根误差(RMSEP)和剩余预测偏差(RPD)分别为0.941、3.602%和4.142.结果表明,光谱吸收度是检测牛肉干水分含量的重要特征,BPNN结合多光谱建立的预测模型精度较高,鲁棒性较好,在牛肉干水分的实时无损检测中具有良好的应用前景.  相似文献   

20.
种子是农业实际生产中最根本的生产资料,种子活力的高低将直接影响农业生产和发展。种子活力的检测方法可分为无损和有损检测两大类。种子活力无损检测方法具备不损伤种子样本、检测效率高、可在线化检测、实验可重复性好以及实验污染少等优点,有近红外光谱检测技术、高光谱检测技术、电子鼻检测技术、机器视觉检测技术等多种无损检测法。基于国内外种子活力无损检测技术的发展现状,本研究综合评述了种子活力无损检测方法、技术以及检测结果,归纳了不同活力检测的特点、应用现状、研究进展以及在实际应用中优势和缺点,同时对种子活动检测技术发展趋势进行展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号