首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To obtain optimal yields of channel catfish, Ictalurus punctatus, large quantities of feed are added to ponds. Nutrients released from feed support dense algal and bacterial populations. Although some microbes produce oxygen and remove wastes, certain taxa produce the muddy/earthy off-flavor metabolites, 2-methylisoborneol (1-R-exo-1, 2, 7, 7-tetramethyl-bicyclo-[2, 2, 1]-heptan-2-ol) (MIB) and geosmin (1α, 10β-dimethyl-9α-decalol). Currently, off-flavors are one of the biggest problems affecting the channel catfish industry. Fish exposed to water containing either geosmin or MIB rapidly concentrations of these compounds in their tissues. Conversely, fish placed in water free of off-flavor metabolites exhibited markedly reduced concentrations of MIB after 8 hours and continued to improve in flavor quality throughout 24 hours, indicating a progressive purging or clearing of off-flavor compounds from their tissues. Relatively lean (< 2.5% fat) fish lost MIB more rapidly than fish with greater fat contents (> 2.5% fat). This paper proposes that aquaculture production systems should be managed for maximum production efficiency and yields, and that fish containing off-flavors then could be purged in special facilities. Purging systems that rely on a constant flow require large amounts of water and may not be widely practical. Systems that recirculate water may be more feasible. However, biological filters and other components of recirculating systems may become sources of off-flavors. The early detection of off-flavor-producing taxa and the competitive exclusion of problematic populations may be useful in preventing off-flavor production in recirculating purging systems.  相似文献   

2.
Aquatic animals raised in recirculating aquaculture systems (RAS) can develop preharvest “off-flavors” such as “earthy” or “musty” which are caused by the bioaccumulation of the odorous compounds geosmin or 2-methylisoborneol (MIB), respectively, in their flesh. Tainted aquatic products cause large economic losses to producers due to the inability to market them. Certain species of actinomycetes, a group of filamentous bacteria, have been attributed as the main sources of geosmin and MIB in RAS. Previous studies have demonstrated that certain nutritional factors can stimulate or inhibit bacterial biomass and geosmin production by certain actinomycetes. In the current study, the effects of two nitrate-nitrogen (NO3--N) levels (20–40 mg/L and 80–100 mg/L) on geosmin and MIB levels in culture water and the flesh of rainbow trout (Oncorhynchus mykiss) raised in RAS were monitored. Water and fish tissue samples were collected over an approximately nine-week period from six RAS, three replicates each of low and high NO3--N, and analyzed for geosmin concentrations using solid phase microextraction–gas chromatography–mass spectrometry. Results indicated no significant difference in geosmin concentrations in water or fish flesh between the low and high NO3--N RAS. Therefore, higher NO3--N levels that may occur in RAS will not adversely or beneficially impact geosmin-related off-flavor problems.  相似文献   

3.
In recirculating aquaculture systems (RAS)s, off-flavors and odors, mainly caused by geosmin (GSM) and 2-methylisoborneol (MIB), can accumulate in the flesh of fish from RAS water, reducing the profitability of production. In this study, peracetic acid (PAA) was applied in three application intervals to pump sumps of rainbow trout (Oncorhynchus mykiss) reared in RAS. Using a real-time polymerase chain reaction (qPCR), the potential off-flavor producers were quantified using geoA and MIB synthase genes. Streptomyces was identified as the major GSM producer, and biofilters showed the highest number of potential off-flavor producers. Concentrations of GSM and MIB were analyzed in the circulating water and in the lateral part of the fish fillet. In water, concentrations up to 51 ng L−1 (GSM) and 60.3 ng L−1 (MIB) were found, while in the fillet, these were up to 9.8 ng g−1 (GSM) and 10.2 ng g−1 (MIB), decreasing with increasing number of PAA applications. PAA applications reduced the levels of off-flavor compounds, although this was insufficient to fully prevent the accumulation of GSM and MIB.  相似文献   

4.
The odorous compounds including geosmin and 2-methylisoborneol (MIB) were detected in intensively cultivated freshwater ponds in Beijing, China, by coupling head space solid-phase microextraction with gas chromatography mass spectrometry (GC-MS). Moreover, the biomass of phytoplankton and actinomycetes in the fishponds were determined simultaneously, and the relationship between the concentrations of these odorous compounds and the biomass of phytoplankton and actinomycetes was assessed. The results showed that among the odorous compounds detected, geosmin was the main one, and concentrations of 1.22–35.58 ng l−1 were found in all fishponds. Besides, MIB with 1.39–6.00 ng l−1 was found in parts of fishponds. Six phyla and 22 genera of algae were observed in the fishponds with a biomass of 17.33–178.34 mg l−1, among which dominant phyla were Bacillariophyta and Euglenophyta. Four genera of actinomycetes with a gross biomass of 0–76 × 104 ind l−1 were found in the fishponds, of which Streptomyces spp. was the dominant genera. This indicated that geosmin concentration in fishponds was related with the total biomass of the dominant algae. The results showed that Melosira spp. and Cyclotella spp. were the main microalgae to cause off-flavor in Beijing’s intensively cultivated freshwater ponds in summer and autumn, while Euglenophyta and other algaes played a small role in causing off-flavor.  相似文献   

5.
The use of biofloc technology production systems continues to increase in the aquaculture industry worldwide. Recent research demonstrated that outdoor biofloc systems can be used to produce high yields of channel catfish (Ictalurus punctatus). However, studies have not yet been performed to determine the development and composition of phytoplankton communities and related off-flavor problems in these biofloc production systems. In this study, water samples were collected biweekly from May to November and channel catfish samples were collected during harvest in November from nine 18.6 m2 biofloc culture tanks. Water and fillet samples were analyzed for levels of the common off-flavor compounds geosmin and 2-methylisoborneol (MIB). The development and composition of phytoplankton communities in each culture tank was also monitored. In addition, water and biofloc samples were evaluated to assess the microbial sources of geosmin and MIB within the culture tanks. Phytoplankton (including algae and cyanobacteria attached to bioflocs) biomass, as determined by concentrations of chlorophyll a in the water, gradually increased in all tanks over time. Phytoplankton communities that developed in the culture tanks were dominated by fast-growing, unicellular and small colonial types of green algae (chlorophytes) and diatoms (bacillariophytes) and slower growing, small colonial types of cyanobacteria (cyanophytes). A positive correlation (p < 0.05) between cumulative feed addition and chlorophyll a concentration was found. Although geosmin and MIB were present in the culture water of each tank during most of the study, levels were typically low and only one tank yielded catfish with geosmin and MIB in their flesh at levels high enough to be designated as off-flavor. A positive correlation (p < 0.05) between cumulative feed addition and MIB concentrations in the water of culture tanks indicates a greater potential for MIB-related off-flavor problems at high feed application rates. The microbial sources responsible for production of geosmin and MIB in the culture tanks remain unknown.  相似文献   

6.
Individuals responsible for tasting catfish in quality control settings sometimes report sensations of sensory adaptation, sensory fatigue and flavor carry-over between samples containing earthy/muddy off-flavors due to geosmin and/or 2-methylisoborneol (MIB). If these experiences are real, sensory evaluation of flavor quality may not be as straightforward as many fish processors and researchers would wish. To determine the influence of these compounds on the sensory evaluation of fish, a series of controlled experiments was conducted. These studies indicate that trained panelists were unable to recognize and evaluate, with precision, the intensity of off-flavor compounds such as geosmin and MIB. However, panelists were precise in evaluating other natural off-flavors, such as fishy. In evaluating two MIB samples in succession, the second sample was perceived as having a lower MIB intensity. The addition of off-flavor compounds to catfish caused the panelists to perceive the desirable flavor chickeny to be lower in intensity, indicating masking. Based on these experiments, a simplified off-flavor quality rating system, consistent with available data, is proposed.  相似文献   

7.
A headspace solid-phase micro-extraction (SPME) coupled with GS-MS method was used to measure volatile compounds in fillets from musty off-flavor, muddy off-flavor, and on-flavor channel catfish (Ictalurus punctatus), along with water and soil samples from the farm ponds in which the fish had been raised. Two ponds of each type of flavor were selected, and five fish, water, and soil samples were collected from each pond. Linear and multiple linear regression analyses were carried out between/among off-flavor strength and volatile compound contents to investigate their possible correlations. The combination of two strong off-flavor compounds, 2-methylisoborneol (MIB) and geosmin (GSM), was probably mainly responsible for the musty off-flavor in the catfish fillets, and an odorous alcohol, 1-hexanol, was correlated with muddy off-flavor (p =?0.015). There was a strong correlation between beta-cyclocitral and MIB in a pond that gave musty off-flavor catfish contents (p =?0.006), suggesting that these compounds might be generated by similar cyanobacteria. The contents of GSM, MIB, and beta-cyclocitral were high in the water of ponds that yielded off-flavor fish, indicating that catfish might acquire these compounds from pond water.  相似文献   

8.
Abstract Producers may capture two to three channel catfish Ictalurus punctatus L. for flavor analysis from ponds scheduled for harvest. If off-flavors are not present in several consecutive fish samples, the population may be considered acceptable for harvest. However, instrumental analysis of the muddy/earthy off-flavor metabolites 2-methylisoborneol (1-R-exo-1,2,7,7-tetramethyl-bicyclo-[2,2,1]-heptan-2-ol) (MIB) and geosmin (lα, 10β-dimethyl-9α-decalol) concentrations in approximately 80 catfish from each of three commercial ponds found both acceptable (on-flavor) and unacceptable (off-flavor) individuals within a single pond (i.e., mixed-flavor populations). Ascertaining the frequency of mixed-flavor populations by instrumentally determining the off-flavor metabolite concentration in muscle tissues from a large number of fish sampled from many ponds at several locations over time is not currently feasible. However, analysis of 12,725 commercial processor flavor assessments collected in 1994 and 1995 indicated 120 instances of individual ponds yielding off-flavor fish followed by on-flavor fish in one day or less. Reports indicate that fish require approximately four days to depurate off-flavors fully, suggesting that a proportion of these rapidly changing flavor assessments may reflect the stochastic selection of fish from mixed-flavor populations rather than a complete and rapid conversion of the flavor quality of entire populations. Factors that contribute to the occurrence of mixed-flavor-populations have not been identified fully. However, increased proportion of fat in catfish fillet tissues has been reported to be correlated with a greater retention of MIB by fish. In this investigation, fish fat contents ranged from 4.45% to 30.45%, and were positively correlated (P < 0.0001) with MIB concentrations. Additionally, the spatial distributions of algal populations within certain commercial catfish ponds were not uniform, and the sensory analysis of the flavor intensity of MIB and geosmin in catfish was more variable than the assessment of the intensity of chickeny and nutty flavors. Probability analysis indicated that in certain mixed-flavor populations there was a 10 to 25% probability of a shipment of fish being rejected due to the random collection of only on-flavor fish prior to harvest followed by the post harvest capture of at least one off-flavor fish. In addition, a chance of no off-flavor fish being sampled from a population containing a proportion of unacceptable fish was indicated. At current sample sizes, replacing sensory analysis with instrumental analysis would not completely avoid problems associated with sampling mixed-flavor-populations. Until effective means to reduce/avoid off-flavor metabolite accumulations in fish are widely available, careful attention to proper sensory evaluation protocols, an enhanced attention to pond conditions that affect flavor quality, the production of leaner more uniform populations of fish, and optimizations of sampling strategies offer the most practical near-term augmentations of current practice.  相似文献   

9.
Common off-flavor compounds, including geosmin (GSM) and 2-methylisoborneol (MIB), bioaccumulate in Atlantic salmon Salmo salar cultured in recirculating aquaculture systems (RAS) resulting in earthy and musty taints that are unacceptable to consumers. To remediate off-flavor from market-ready salmon, RAS facilities generally relocate fish to separate finishing systems where feed is withheld and makeup water with very low to nondetectable GSM and MIB levels is rapidly exchanged, a process known as depuration. Several procedural aspects that affect salmon metabolism and the associated rate of off-flavor elimination, however, have not been fully evaluated. To this end, a study was carried out to assess the effects of swimming speed and dissolved oxygen (DO) concentration on GSM levels in water and fish flesh during a 10-day depuration period. Atlantic salmon (5–8 kg) originally cultured in a semi-commercial-scale RAS (150 m3 tank) were exposed to a concentrated GSM bath before being transferred to 12 replicated partial reuse depuration systems (5.4 m3 total volume). Two swimming speeds (0.3 and 0.6 body lengths/sec) and two DO levels (90% and 100% O2 saturation) were applied using a 2 × 2 factorial design (N = 3), and each system was operated with a 5-h hydraulic retention time, creating a water flushing to biomass ratio of 151 L/kg fish biomass/day. Geosmin was assessed at Days 0, 3, 6, and 10 in system water and salmon flesh. A borderline effect (P = 0.064; 0.068) of swimming speed was measured for water and fish, respectively, at Day 3, where slightly lower GSM was associated with low swimming speed (0.3 body lengths/sec); however, differences were not detected at Days 6 or 10 when salmon are commonly removed for slaughter. Overall, this research indicates that significant improvements in GSM depuration from RAS-produced Atlantic salmon are not expected when purging with swimming speeds and DO concentrations similar to those tested during this trial.  相似文献   

10.
ABSTRACT

The synthetic herbicide diquat was applied to a catfish aquaculture pond containing a heavy bloom of the cyanobacterium Oscillatoria perornata(a major contributor to musty off-flavor in farm-raised catfish) in order to determine the effectiveness of diquat as a selective algicide to prevent musty off-flavor in cultured catfish. Levels of the musty-odor compound 2-methylisoborneol (MIB) and numbers of O. perornata were monitored. Results indicate that diquat is not useful as an algicide for controlling O. perornata in catfish aquaculture ponds, despite its usefulness in controlling other aquatic weeds.  相似文献   

11.
Common off-flavor compounds including geosmin (GSM) bioaccumulate in fish cultured in recirculating aquaculture systems (RAS) resulting in unpalatable fillets that are objectional to consumers. Most RAS facilities relocate fish from grow-out tanks to separate depuration systems with increased water flushing to remediate pre-harvest off-flavors, but certain aspects of this procedure have not been optimized including characterization of water exchange rates that effectively diminish off-flavor. To this end, a study was carried out to evaluate the effects of flushing rate and associated depuration system hydraulic retention time (HRT) on GSM removal from Atlantic salmon Salmo salar originally produced in a semi-commercial scale freshwater RAS. Twenty-six fish (5−7 kg each) were stocked into twelve replicate depuration systems operated with system HRTs of 2.4, 4.6, and 11.3-h, respectively (N = 4). Geosmin was assessed at intervals in system water and fish flesh over a 10-day feed withholding period. Waterborne GSM concentration was affected by flushing rate and associated system HRT (P < 0.05). Depuration systems operated with an 11.3-h HRT had greater waterborne GSM levels at 3, 6, and 10 days post-stocking compared to 2.4 and 4.6-h HRT. A similar trend was generally reflected in salmon flesh. Residual GSM levels were successively higher in fillets on Day 6 from depuration systems with increasingly longer HRT. Geosmin levels were greatest in salmon flesh from the 11.3-h HRT treatment on Day 10, but fillet GSM between the 2.4 and 4.6-h HRT was similar. This research indicates that lowest residual GSM is achieved in water and Atlantic salmon flesh in depuration systems with increased flushing and shorter HRT, i.e., 2.4–4.6-h under conditions of this study. Selection of optimal flushing rate to remediate off-flavor from RAS-produced Atlantic salmon may also be dictated by water and energy use metrics and site-specific water availability among other factors.  相似文献   

12.
Fisheries Science - We detected an earthy/musty off-flavor in the flesh of red sea bream Pagrus major cultured under low saline water conditions using two types of recirculating aquaculture systems...  相似文献   

13.
Aerobic biological filtration systems employing nitrifying bacteria to remediate excess ammonia and nitrite concentrations are common components of recirculating aquaculture systems (RAS). However, significant water exchange may still be necessary to reduce nitrate concentrations to acceptable levels unless denitrification systems are included in the RAS design. This study evaluated the design of a full scale denitrification reactor in a commercial culture RAS application. Four carbon sources were evaluated including methanol, acetic acid, molasses and Cerelose™, a hydrolyzed starch, to determine their applicability under commercial culture conditions and to determine if any of these carbon sources encouraged the production of two common “off-flavor” compounds, 2-methyisoborneol (MIB) or geosmin. The denitrification design consisted of a 1.89 m3 covered conical bottom polyethylene tank containing 1.0 m3 media through which water up-flowed at a rate of 10 lpm. A commercial aquaculture system housing 6 metric tonnes of Siberian sturgeon was used to generate nitrate through nitrification in a moving bed biological filter. All four carbon sources were able to effectively reduce nitrate to near zero concentrations from influent concentrations ranging from 11 to 57 mg/l NO3–N, and the maximum daily denitrification rate was 670–680 g nitrogen removed/m3 media/day, regardless of the carbon source. Although nitrite production was not a problem once the reactors achieved a constant effluent nitrate, ammonia production was a significant problem for units fed molasses and to a less extent Cerelose™. Maximum measured ammonia concentrations in the reactor effluents for methanol, vinegar, Cerelose™ and molasses were 1.62 ± 0.10, 2.83 ± 0.17, 4.55 ± 0.45 and 5.25 ± 1.26 mg/l NH3–N, respectively. Turbidity production was significantly increased in reactors fed molasses and to a less extent Cerelose™. Concentrations of geosmin and MIB were not significantly increased in any of the denitrification reactors, regardless of carbon source. Because of its very low cost compared to the other sources tested, molasses may be an attractive carbon source for denitrification if issues of ammonia production, turbidity and foaming can be resolved.  相似文献   

14.
Recirculating aquaculture system (RAS) is an increasingly popular alternative to open aquaculture production systems. However, off‐flavours and odours can accumulate in the fish flesh from the circulating water and decrease the fish meat quality. Off‐flavours are typically caused by geosmin (GSM) and 2‐methylisoborneol (MIB) that are lipophilic compounds formed as secondary by‐products of bacterial metabolism. Even though GSM and MIB are not toxic, they often are disliked by consumers, and both have very low human sensory detection limits. Multiple methods have been suggested to remove or decrease GSM and MIB in fish, including ozonation, advanced oxidation processes (AOP)s and adsorption removal from water using activated carbon and/or zeolites. So far, purging with fresh water is the only efficient method available to remove the off‐flavours. There are multiple analytical methods available for the extraction and separation of GSM and MIB from fish flesh and water. This review discusses the current knowledge of GSM and MIB formation, the challenges faced by RAS farms due to these compounds and process solutions available for their removal.  相似文献   

15.
Abstract

In this study, the masking or reduction of off-flavor in tilapia due to various preservation methods such as salting, drying, frying, smoking, microwave heating, marinating and fermentation with carbohydrate mixture (som fak preparation) was investigated by subjecting the processed tilapia to sensory evaluation and analyzing the concentrations of geosmin (1,10-trans -dimethyl-trans -9-decaol) in the processed samples. Dry salting or brining muddy-flavored fish and then drying either by hot air at 50°C or sun-drying resulted to only a slight reduction in the geosmin content of the product. Deep-frying reduced the muddy flavor intensity and geosmin content in salted-dried tilapia. Pretreatment of tilapia fillets with acidified brine before smoking reduced geosmin content and masked the muddy flavor in the smoked product. Microwave cooking of fresh muddy-flavored tilapia showed no effect on its geosmin content nor its off-flavor. Marinating tilapia in acetic acid solution resulted in decreased muddy flavor, and longer marinating period led to lower geosmin content in the product. The geosmin content of som fak made from muddy-flavor and non-muddy-flavor tilapia differed significantly, although sensory evaluation yielded no significant differences between the two types of som fak, and the taste panelists preferred the product fermented for 3 days.  相似文献   

16.
Off flavor characterization and origin in French trout farming   总被引:1,自引:0,他引:1  
The results of a study on off-flavor problems in four French trout (Onchorynchus mykiss) farms are presented. Methodological aspects on sensory analyses and volatile compounds quantification in fish are discussed. Detection of odorous compounds by gas chromatography–mass spectrometry shows that significant concentrations of geosmin (up to 18 μg/kg in fat) are found in trout. The sensory evaluation, the presence/absence of geosmin in the flesh and the identification of off-flavor compounds producers demonstrate the implication of Microcoleus in the appearance of earthy/musty off-flavors. The presence of this particular cyanobacterium is linked to the deterioration of water quality during the water recirculation period. Correlations between chemical and sensory detection in the flesh indicate that the taste evaluation enables the differentiation of the four categories “non-tainted”, “slightly-tainted”, “tainted” and “strongly-tainted”. However, the average concentrations of geosmin found for these different intensities are relatively limited, from 0.2 to 4.9 μg/kg. Finally, recommendations are made to allow a more effective control of off-flavor occurrences.  相似文献   

17.
The ‘earthy’ and ‘muddy’ off‐flavours in pond‐reared fish are due to the presence of geosmin or 2‐methylisoborneol in the flesh of the fish. Similar off‐flavours have been reported in fish raised in recirculating aquaculture systems (RAS); however, little information is available regarding the cause of these off‐flavours. Our hypothesis was that earthy and muddy off‐flavour compounds, found previously in pond‐raised fish, are also responsible for off‐flavours in fish raised in RAS. In this preliminary study, we examined water, biofilms in RAS and fillets from cultured arctic charr known to have off‐flavours and requiring depuration using instrumental [solid‐phase microextraction procedure and gas chromatograph‐mass spectrometry (GC‐MS)] and human sensory analyses. Geosmin was present in the samples taken from the biofilter and on the side walls of the tanks. Two‐methylisoborneol was only found in low levels in the samples. The GC‐MS results indicated the presence of geosmin in the fillets (705 ng kg?1), but lower levels were found in the water (30.5 ng L?1). Sensory analyses also detected an earthy flavour (i.e., geosmin presence) in the fillets, and, therefore, it appears that geosmin is the main compound responsible for the off‐flavour in RAS. Further studies are being performed to identify the microorganisms responsible for geosmin production in RAS.  相似文献   

18.
Seasonal trends in types and intensities of fish flavors were determined for channel catfish, Ictalurus punctatus, from 10 ponds located on a commercial farm in west-central Mississippi. Fish were sampled bimonthly from July-September, 1990 and monthly from October, 1990-July, 1991. Sensory evaluation indicated that, on a yearly basis, 19% of ponds could be considered on- flavor. Off-flavors were strongest from July through September when 76% of ponds had fish tainted by 2-methylisoborneol (MIB). In nine ponds, the onset of MIB off-flavor episodes could be correlated with the presence of an MIB-producing cyanobacterium Oscillatoria chalybea. In seven ponds, fish lost the MIB off-flavor within 3 to 8 weeks after the fist date in September that 0. chalybea was noticed to be absent from the water. In June, 0. chalybea reappeared and caused MIB off-flavors in eight ponds. During the winter and spring, ponds were affected by woody (22%) and decay (25%) offflavors. The most prevalent algal species-Raphidiopsis brookii, 0. aaardhii. and Microcystis aeruginosa-were not associated with off flavor problems. On average, MIB off-flavor episodes lasted for 115 days (range: 27-344), and seven ponds were considered free of off-flavors for an average of 74 days (range: 14-140) in October, November, and December.  相似文献   

19.
The study investigated the growth performance of abalone from juvenile to marketable size in a commercial-scale recirculating aquaculture system. The rearing system consisted of 12 raceways (4.0 × 0.8 × 0.6 m) with a protein skimmer and a submerged biofilter for juveniles and 10 raceways (6.6 × 1.3 × 0.6 m) with a protein skimmer and a trickling biofilter for on-growing. Sea mustard (Undaria pinnatifida) and kelp (Laminaria japonica) were fed to the abalone. The total weight of abalone in the recirculating aquaculture system at the juvenile stage increased from 22.0 kg (average shell length 24.5 mm) to 75.5 kg (average shell length 42.5 mm) after 180 days. Feed conversion ratios increased slightly from 13.7 for the first 90 days to 16.3 thereafter. The shell growth rate of juvenile abalone between 24.5 mm and 34.8 mm was 3.4 mm month−1, while for juveniles between 34.8 mm and 42.5 mm it was 2.6 mm month−1. The total weight of abalone in the recirculating aquaculture system for the on-growing stage increased from 100.0 kg (average shell length 44.0 mm) to 433.3 kg (average shell length 72.7 mm) after 570 days. The feed conversion ratios for the first 173 days, the next 320 days, and the last 570 days were 19.6, 22.1, and 24.8, respectively. The growth rate of the average shell length during the on-growing period was 1.5 mm month−1. Total ammonia nitrogen (TAN) concentrations were stabilized below 0.12 mg l−1 in the juvenile recirculating system and 0.14 mg l−1 in the on-growing recirculating system after conditioning of the biofilters.  相似文献   

20.
A pilot-scale wastewater treatment station was built and operated at a commercial recirculating aquaculture facility in order to initiate, characterize and optimize the operation of a treatment strategy for effluent recovery and reuse. The treatment train consisted of sedimentation, denitrification, ozonation, trickling filter treatment, and chemical flocculation. The study consisted of four different sets of treatment conditions, differentiated by alternative use of 6 or 4 lpm flow and recycling rates, ozone doses between 36.6 and 82.5 mg O3/l water, and 6- or 9-min ozonation time. The effects of treatment on solids and dissolved organic compounds are reported here. Over 70% of solids were removed by sedimentation under all experimental conditions. At the end of treatment, up to 99% of TSS was removed due to the combined action of ozonation and chemical flocculation. COD removal was not significantly different among experimental conditions by sedimentation (59.2–62.7%, p > 0.05), but was positively correlated with ozone dose (slope = 0.452, r2 = 0.99), yielding total COD removal η(CODt) of 19.8–40.7%. Of these amounts, 60.4–66.5% of COD was removed with foam, while the balance was mineralized. The ozone reactivity was 83.7% at a dose of 82.5 mg O3/l water. The ozone consumption coefficient Y(O3/CODox) for COD oxidized was 1.92–2.23 g/g O3 COD and 0.70–0.78 g O3/g COD when total COD removed was considered. Overall, 87.9–92.4% of COD was removed by the treatment train, to an average of 44 mg/l at the highest ozone dose, a value 3.3–3.9 times less than in fish tanks. Under the same conditions, cBOD5 was reduced by 88%, 3.8–4.1 times less than in fish tanks. The water’s biodegradability was increased by over 20%. DOC did not change significantly through the treatment train, and fluctuated through the system due to methanol addition to support denitrification. Work with the pilot station showed that the treatment strategy employed could support effective recovery and recycling of aquaculture effluent, although salts and refractory organics may accumulate in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号