共查询到20条相似文献,搜索用时 32 毫秒
1.
To test the assumption that changes to earthworm communities subsequently affect macroporosity and then soil water infiltration, we carried out a 3 year study of the earthworm communities in a experimental site having six experimental treatments: 2 tillage management systems and 3 cropping systems. The tillage management was either conventional (CT; annual mouldboard ploughing up to −30 cm depth) or reduced (RT; rotary harrow up to −7 cm depth). The 3 cropping systems were established to obtain a wide range of soil compaction intensities depending on the crop rotations and the rules of decision making. In the spring of 2005, the impact of these different treatments on earthworm induced macroporosity and water infiltration was studied. During the 3 years of observation, tillage management had a significant effect on bulk density (1.27 in CT and 1.49 mg m −3 in RT) whereas cropping system had a significant effect on bulk density in RT plots only. Tillage management did not significantly affect earthworm abundance but significantly influenced the ecological type of earthworms found in each plot (anecic were more abundant in RT). On the contrary cropping system did have a significant negative effect on earthworm abundance (104 and 129 ind. m −2 in the less and most compacted plots, respectively). Significantly higher numbers of Aporrectodea giardi and lower numbers of Aporrectodea caliginosa were found in the most compacted plots. CT affected all classes of porosity leading to a significant decrease in the number of pores and their continuity. Only larger pores, with a diameter superior to 6 mm, however, were adversely affected by soil compaction. Tillage management did not change water infiltration, probably because the increase in macroporosity in RT plots was offset by a significant increase in soil bulk density. However, cropping system had a significant effect on water infiltration (119 vs 79 mm h −1 in the less and most compacted plots, respectively). In RT plots, a significant correlation was observed between larger macropores (diameter > 6 mm) and water infiltration illustrating the potential positive effect of earthworms in these plots. 相似文献
2.
In laboratory experiments, earthworms are often observed to burrow through compacted soil layers, leading to the general assumption that these animals play a significant role in regenerating compacted soils in agricultural plots. To demonstrate this role under field conditions, the abundance of earthworm macropores inside compacted zones was estimated on plots under reduced (RT) or conventional tillage (CT). Then, different types of compacted zones typically found in CT (plough pan and compacted clods) and RT plots (compacted volume under wheel tracks) were experimentally simulated in wooden boxes, buried in the field and inoculated with different earthworm species. After 6 weeks of incubation, the number of macropores inside the compacted zones was examined. Field observations showed that approximately 10% and 30% of the compacted zones were colonised by at least one macropore in CT and RT plots, respectively. A significantly greater number of anecics was found in RT plots, but we could not conclude that this ecological type of earthworm plays a more major role in the regeneration process in these plots since there were fewer compacted zones and these covered a smaller area in CT. The semi-field experiment provided evidence that earthworm-mediated regeneration of compacted zones is possible and its nature varies between ecological types of earthworm. Lumbricus terrestris, which makes individual burrows that are vertical and deep, was the main species to cross through the plough pan. The other three earthworm species ( Aporrectodea giardi, A. caliginosa and A. rosea) did burrow inside the other types of compacted zones (“wheel tracks” and “compacted clods”). In every case, however, macropore density was far greater in non-compacted zones, illustrating that avoidance of compacted soil by earthworms is important and should be taken into account when extrapolating results from laboratory studies. 相似文献
3.
After earthworms of the species Aporrectodea caliginosa and A. rosea had burrowed in compacted cores of soil for 68 days the cores were sectioned horizontally. The upper surface of each sectioned layer of soil was photographed before it was dissected and the dimensions of all burrows within the layer measured. Volume densities calculated from the direct measurement of burrows were compared with the values calculated by stereology from data obtained from two image analysis methods, computerised image analysis and point counting with a systematic lattice. The assumption implicit in all stereology calculations was satisfied for this experiment in that the burrows of both species showed no preferred orientation in the compacted soil. Computerised image analysis could not measure the density of all burrows in the photographs because of the lack of contrast between cast-filled burrows and the soil and the complex shapes of the burrows. Although the volume densities of A. caliginosa burrows calculated from point counts were correlated with the values calculated from direct measurement, point counting over-estimated volume densities by two to three times. In the experiment, A. rosea produced too few airfilled burrows for the lattice to detect. The relative ratios of air-filled to cast-filled burrows calculated from the point counts suggested that approximately two-thirds and eight-ninths of the burrows of A. caliginosa and A. rosea, respectively, were filled with casts. 相似文献
4.
The philosophy toward tillage throughout the last century in Hungary can be characterized as a fight against extreme climatic and economic situations. The ‘Hungarian reasonable tillage’ approach that was promoted by Cserháti at the end of the 1800s was aimed at reducing tillage without increasing the risk of crop failure in arable fields. Recently, new tillage trends and systems have been introduced because of the rise in energy prices and because of the need to cut production costs, conserve soil and water resources and protect the environment. In Hungarian relation, the rationalized plowing, loosening and mulching systems are counted to the new tillage solutions. There are new steps in the sowing methods too, such as seedbed preparation and plant in one pass, till and plant, mulch-till and plant and direct drilling, which are environment capable, throughout improving soil condition and avoiding the environment harms. The applicability of various soil conservation tillage methods is currently being tested in research projects and discussed in workshops throughout the country. In this paper, soil quality problems such as compaction, trends in soil tillage, and factors affecting soil quality or condition as well as improvement and maintenance are summarized. The data show that annual disking and plowing causes subsoil compaction at the depth of tillage within 3 years and that the compacted layer expanded both in surface and deeper layers after the 5th year. Soil quality deterioration by tillage-pans was improved by subsoiling and maintained by direct drilling and planting soil-loosening catch crops. Within a loam and a sandy loam soil there were close correlations between earthworm activity and soil quality. Earthworm numbers increased on undisturbed but noncompacted soils and soils that included stubble residues remaining on the surface, but did not increase on soils that were deteriorated by tillage-pans or left bare by the absence of mulch. Our goal for the new millennium, is to use only enough tillage to create and maintain harmony between soil conservation, soil quality and crop production. 相似文献
5.
The genesis and architecture of the structures built by ants and earthworms differ markedly, suggesting that—in addition to having different physical and chemical properties—the resident microbial community should also have unique properties. We characterized the inorganic N, biomass C, C mineralization rate, and functional diversity of the microbial communities of earthworm casts, earthworm burrow soil, ant mounds, and bulk soil from an agricultural field. Mound soil was most enriched in inorganic N and had the lowest pH, moisture content, and C mineralization rate. Functional diversity was evaluated by determining the ability of microorganisms to grow on 31 substrates using Biolog ®EcoPlates in combination with a most probable number (MPN) approach. Casts had MPNs that were one to two orders of magnitude higher than burrow, mound and bulk soil for most substrates. Casts also had the highest MPNs for particular substrate guilds relative to bulk soil, followed by mound and burrow soil. Indices of substrate diversity and evenness were highest for casts, followed by burrow, mound, and bulk soil. Differences in the type of habitat provided by the structures built by ants and earthworms result in the differential distribution of nutrients, microbial activity, and metabolic diversity of soils within an agricultural field that affect soil fertility and quality. 相似文献
6.
Lumbricid earthworms have often been shown to increase the growth of plants. The earthworms and plants were generally grown
together in the same soil, although sometimes earthworms were reluctant to enter the soil. It was not possible to isolate
the mechanism for the increased growth, as no method was available to extract the earthworms with no damage to the soil before
the plants were grown. A method is described which enabled Aporrectodea caliginosa, but not A. trapezoides, to enter all cores, and which extracted A. caliginosa from the cores probably with minimum damage to the soil.
Received: 20 October 1998 相似文献
7.
Summary Adult earthworms ( Aporrectodea longa) were maintained for 199 days in soil columns ( h=30 cm; ø=10 cm) where the water potential ranged from -7 to-65 kPa and compaction from 50 to 350 kPa. The weight of casts on the soil surface was measured at the end of two periods of activity (spring and autumn). Cast production increased with bulk density, but the activity of earthworms was limited both by the mechanical strength of the soil and by decreasing water potential. The results obtained in the laboratory conditions of this study were consistent with field observations on casting and burrowing activities. The effects of water potential and soil compaction on these activities were estimated. 相似文献
8.
Summary Column experiments were carried out to quantify the effect of earthworms on compacted soil. The earthworms ( Lumbricus terrestris) were able to burrow into soil which was artificially compacted to a pore volume as low as 40%; they may also penetrate an artificial plough pan deep in the soil. The effect of the burrowing activity of Lumbricus terrestris was quantified by measuring hydraulic conductivities and infiltration rates through the whole soil column (19 cm wide, 40 cm long). Morphological parameters, mainly the vertically projected burrow depth, were correlated with the saturated hydraulic conductivity. The amount of casts deposited by Lumbricus terrestris on the soil surface increased with the degree of soil compaction. The bulk density of casts was always less than that of the original soil. 相似文献
9.
Summary The F contamination of soils and Lumbricus spp. around a site of long-term industrial emission in southern Germany was examined. Among total, water extractable, and HCl-soluble fractions, the latter most appropriately characterized anthropogenic F accumulation. Based on the HCl-soluble fractions from 88 sampling sites, a contamination map consisting of three zones was established. F accumulation in the calcareous soils of the area was restricted to the top 40–50 cm and can be explained by precipitation as CaF 2. Earthworms ( Lumbricus spp.) collected from the different zones reflected the F contamination well in the significant correlations found between total F in earthworms with and without gut and the corresponding soils. The bioaccumulation of F in earthworms is obvious, and may become hazardous for the earthworms themselves and for other animals feeding on contaminated soil and/or its fauna. A significantly higher F value was recorded in the linings of earthworm tubes than in the corresponding soil. F translocation by earthworm burrowing may be a mechanism of subsoil contamination. 相似文献
10.
This paper aims to provide guidance for field practitioners on the vulnerability of different subsoils to compaction under different field conditions and on the tyre pressures necessary to reduce or avoid damage. It also indicates ways of identifying situations where some compaction alleviation may be necessary to improve subsoil conditions and methods for alleviating subsoil compaction problems, without increasing the risk of more extensive compaction damage in the future. 相似文献
11.
Summary Earthworm burrows of endogeic species ( Allolobophora caliginosa, Octolasium cyaneum) in artificially packed soil columns were examined using X-ray computed tomography. By means of digital image processing, it was possible to reconstruct and visualize the burrow system in three dimensions. The reconstruction revealed morphological features of the burrows which were not obvious from two-dimensional section images. 相似文献
12.
Research was conducted to develop a knowledge-based decision support system to assess the degree of compaction in agricultural soils. The experiments were conducted in a laboratory soil bin at the Asian Institute of Technology in three soils, namely, clay, silty clay loam, and silty loam. The research was likewise aimed to quantify the effect of tire variables (section width, diameter, inflation pressure); soil variables (soil moisture content, initial cone index, initial bulk density); and external variables (travel speed, axle load, number of tire passes) on soil compaction and to develop compaction models for soil compaction assessment. Dimensional analysis technique was used in the development of the compaction models. The soil compaction models were found to provide good predictions of the bulk density and cone index. Using the compaction models and other secondary data, the decision support system was developed to assess the compaction status of the soil in relation to crop yield. The predictions by the decision support system were validated with actual field data from earlier studies and high correlation was observed. Thus, the output of the decision support system may be able to provide useful recommendations for appropriate soil management practices and solutions to site-specific soil compaction problems. 相似文献
14.
Earthworm casts and digestive tract contents were simultaneously examined, using the same methods, in a recently formed humus profile in a mountain spruce forest. Earthworm species had distinct diets and an earthworm foodweb could be distinguished. Lumbricus terrestris and Aporrectodea icterica were distinct from the other species examined: the former to some extent as a litter consumer, and both species because they excavated mineral material which was deposited within new top layers of the mull humus. Aporrectodea nocturna and Aporrectodea caliginosa both had a non-specific soil feeding mode. Most of the species enriched the humus profile with amorphous organic matter finely incorporated within a mineral matrix. Besides different food selection, a network of burrows was produced as a consequence of the different burrowing behaviour of each earthworm species. Received: 2 January 1997 相似文献
15.
Earthworms are known to regulate the sequestration of soil and leaf litter carbon (C). However, their impacts on the more accessible rhizospheric C, which represents a major energy source for soil food webs and an essential factor for C sequestration, are still unclear. Previous studies indicate that earthworms regulate the dynamics of SOC and leaf litter-C by increasing C accessibility to microbiota. However, in the case of labile rhizodeposit-C, microbiota might not require any pre-conditioning by earthworms and may rapidly metabolize most of this root-derived C. Consequently, potential pathways by which earthworms may affect the fate of rhizodeposit-C would be to regulate the biomass and/or activity of rhizosphere microbiota and, further, to mineralize/stabilize microbial products. A 13CO 2 labelling experiment was performed to determine the impacts of four different earthworm species on the fate of tree rhizodeposit-C in a subtropical soil. We hypothesized that endogeic earthworm species, representing primarily geophagous species, would closely interact with soil microbiota and sequester the microbially metabolized rhizodeposit-C more efficiently than epigeic and anecic earthworm species. We found that irrespective of ecological group affiliation, the three native earthworms did not affect rhizodeposit-C sequestration. In contrast, the exotic endogeic species stimulated the immobilization of rhizodeposit-C in the biomass of root-associated bacteria and/or arbuscular mycorrhizal fungi and, further, accessed the microbiota-metabolized rhizodeposit-C more efficiently. As a consequence, the exotic endogeic earthworm species transiently tripled rhizodeposit-C retention in soil. We propose that the weak linkages between native earthworms and rhizodeposits-related microbiota limit earthworm impacts on rhizodeposit-C sequestration. However, the exotic endogeic species Pontoscolex corethrurus may potentially alter rhizodeposit-C dynamics in invaded areas by shifting rhizosphere microbial community composition. This work highlights a distinct mechanism by which earthworms can regulate C dynamics and indicates a significant contribution of invasive earthworm species to belowground processes. 相似文献
16.
Dispersal capacity is a life-history trait that may have profound consequences for earthworm populations: it influences population dynamics, species persistence and distribution and community structure. It also determines the level of gene flow between populations and affects processes such as local adaptation, speciation and the evolution of life-history traits. It may play a great role in soil functioning by determining the spatial distribution of ecosystem engineers such as earthworms. Dispersal is an evolutionary outcome of the behaviour in response to the ecological constraints of the species. Hence different dispersal behaviour is expected from the different ecological types of earthworms. Nevertheless the dispersal behaviour of earthworms has been little documented.In this work we test a series of basic mechanisms that are fundamental and complementary to understand earthworms dispersal behaviour. We focus on the dispersal triggered by environmental conditions, a fundamental process usually termed “conditional dependent dispersal”. We show experimentally in mesocosms that in one week: 1) earthworm dispersal can be triggered by low habitat quality, either through soil quality or the presence/absence of litter. 2) Earthworms can be subject to positive density dependent dispersal, that is the rate of dispersal increases when density increases; and 3) earthworm dispersal can be reduced by the pre-use of the soil by conspecific individuals that are no longer present.Our results suggest that earthworms may be more mobile than expected from previous estimations, and that they present high capacities of habitat selection. In the light of our findings we elaborate a behavioural scenario of earthworm foraging, and propose several priority working directions. 相似文献
18.
Soil compaction prevents turfgrass roots from growing deep into the soil and may limit access to water and nutrients. The objective of this study was to characterize the ability of turfgrass roots to penetrate a compacted subsurface layer. Seven turfgrasses were grown in soil columns. Each column was divided into three sections with the top and bottom packed to a bulk density of 1.6 g cm ?3, and the middle (treatment) layer packed to 1.6, 1.7, 1.8, 1.9, or 2.0 g cm ?3. Subsurface compaction reduced root mass for two of the species, and inhibited deep root growth in all seven species, with the greatest reduction occurring between 1.7 and 1.8 g cm ?3. There appears to be little difference between species in ability to penetrate compacted soils, suggesting that soil preparation and routine management practices, rather than grass selection, is the more viable way to handle soil compaction problems in turf. 相似文献
19.
Traffic and tillage induced compaction affect soil physical, chemical and biological properties and processes directly and influences plant root growth indirectly. In a pot experiment with an Entisol and an Alfisol, the effect of 0, 50, 100 and 200 kPa of compactive stress on bulk density, penetration resistance, and on root growth of maize seedlings, at the early stages of development, was studied. Compaction resulted in a progressive increase in bulk density and penetration resistance for both soils. The Entisol reached a greater bulk density and penetration resistance than the Alfisol. Bulk density or penetration resistance were closely correlated with compactive stress. The correlation between bulk density and penetration resistance was not so close. Increased bulk density and penetration resistance resulted in a reduction of all the root growth parameters such as number of roots, mean and total root length, rateof root elongation and fresh and dry root mass. Significant linear or curvilinear relationships were found between bulk density or penetration resistance and most of the root growth parameters studied. However, the relationships were improved when relative values (expressed as fractions of the controls) of bulk density or penetration resistance and of any one of the root growth parameters were considered. Roots grown in more compact soil had a smaller ratio of fresh to dry mass. 相似文献
20.
Little is known of the effects of mechanized harvesting on ground conditions during the harvesting of short-rotation coppice. An investigation was therefore carried out in which different vehicles were used to simulate the effects of wheeling from heavy and light harvesters and crop removal equipment. The experiments were carried out on sites containing Bowles hybrid willow ( Salix viminalis) and poplars ( Populas rap) and on clay and sandy loam soils. The effect of different vehicles was assessed in terms of rut damage and direct measurements of soil stress using buried sensors. Maximum stresses measured 0.3 m below tractor wheels ranged from 50 to 200 kPa, but the greatest stresses, 350 kPa, were recorded under laden trailer wheels. Maximum stresses measured beneath crawler tracks were only 25 kPa. Similarly, substantial ruts were caused by vehicles simulating wheeled harvesters, the deepest ruts were caused by laden trailers but crawler tracks created least disturbance. Wheeling was carried out at soil water contents above the plastic limit and the deepest ruts were created on clay rather than sandy loam soil. The effects of the stresses generated in the soil could impede future root growth, and the deeper ruts formed could damage existing root systems of coppice. 相似文献
|