首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was aimed at evaluating the effect of thermal modification temperature on the mechanical properties, dimensional stability, and biological durability of Picea mariana. The boards were thermally modified at different temperatures 190, 200 and 210 °C. The results indicated that the thermal modification of wood caused a significant decrease in the modulus of rupture (MOR) after 190 °C, while the modulus of elasticity (MOE) seemed less affected with a slight increase up to 200 °C and slight decrease with further increase in temperature. The hardness of the thermally modified wood increased in the axial direction. This increase was also observed in tangential and axial directions but at a lesser extent. The final value was slightly higher in axial direction and lower in radial and tangential directions compared to those of the untreated wood. Dimensional stability improved with thermal modification in the three directions compared to the dimensional stability of unmodified wood. The fungal degradation results showed that the decay resistance of thermally modified wood against the wood-rotting fungi Trametes versicolor and Gloephyllum trabeum improved compared to that of the untreated wood. By contrast, the thermal modification of P. mariana had a limited effect on the degradation caused by the fungus Poria placenta.  相似文献   

2.
Acacia hybrid (Acacia mangium × Acacia auriculiformis) clones are widely planted in Vietnam with a total of approximately 400,000 ha to meet the demand for pulpwood, sawn timber and wood chip exports. Silvicultural techniques such as pruning and thinning have been applied to improve productivity and sawlog quality of Acacia hybrid plantations. However, those techniques may also create opportunities for wood decay fungi to enter the Acacia hybrid stems through wounds and cause stem defects that reduce sawlog quality and the value of the plantation. The presence of fungal decay agents in Acacia hybrid trees was examined in two Vietnamese plantations. In July 2011, just prior to a second thinning, discoloured wood samples were taken from a three‐year‐old Acacia hybrid plantation at Phan Truong Hai for the isolation of fungi. In July 2012, approximately 18 months after pruning and thinning treatments, discoloured wood samples were taken from a three‐year‐old Acacia hybrid plantation at Nghia Trung for the isolation of fungi. DNA sequencing of the rDNA ITS identified the isolates. In May 2015, approximately 4 years after thinning and fertilizer treatments, discoloured and decayed wood samples were taken from the above (7‐year‐old) Acacia hybrid plantation at Phan Truong Hai for fungal identification. DNA was extracted directly from discoloured and decayed wood samples and fungal rDNA ITS amplicons sequenced on a Roche 454 sequencer. The results showed that silvicultural treatments did not affect the fungal communities associated with discoloured and decayed wood of Acacia hybrid plantation at Phan Truong Hai. A total of 135 fungal species or OTUs (operational taxonomic units) were identified, including 82 members of Ascomycota and 52 Basidiomycota.  相似文献   

3.
Abstract

Thermal modification at elevated temperatures changes the chemical, biological and physical properties of wood. In this study, the effects of the level of thermal modification and the decay exposure (natural durability against soft-rot microfungi) on the modulus of elasticity (MOE) and modulus of rupture (MOR) of the sapwood and heartwood of Scots pine and Norway spruce were investigated with a static bending test using a central loading method in accordance with EN 408 (1995). The results were compared with four reference wood species: Siberian larch, bangkirai, merbau and western red cedar. In general, both the thermal modification and the decay exposure decreased the strength properties. On average, the higher the thermal modification temperature, the more MOE and MOR decreased with unexposed samples and increased with decayed samples, compared with the unmodified reference samples. The strength of bangkirai was least reduced in the group of the reference wood species. On average, untreated wood material will be stronger than thermally modified wood material until wood is exposed to decaying fungi. Thermal modification at high temperatures over 210°C very effectively prevents wood from decay; however, strength properties are then affected by thermal modification itself.  相似文献   

4.
The aim of this study was to determine changes in crystallinity and crystalline unit cell type of heat-treated Scots pine (Pinus sylvestris L.) and Uludağ fir (Abies nordmanniana stev. subsp. bornmuelleriana Mattf.) wood samples by means of FT-IR spectroscopic method. Heat treatment was applied on the test samples in an oven at three different temperatures (120, 150, and 180°C) and for two different periods of time (6 and 10 h) under atmospheric pressure. It was designated that crystallinity of both Scots pine and Uludağ fir wood samples increased during heat treatment depending on the duration. However, monoclinic structure in crystalline unit cells of Scots pine and Uludağ fir wood samples converted to triclinic structure when heat treated. It was estimated that monoclinic structure was dominant in the crystalline unit cell. It was established that the crystalline structure of Scots pine wood samples was more affected by heat treatment than that of Uludağ fir wood samples.  相似文献   

5.
The effect of heating on the hygroscopicity of Japanese cedar wood was investigated as a simple evaluation of thermal degradation in large-dimension timber being kiln-dried at high temperatures (>100°C). Small wood pieces were heated at 120°C in the absence of moisture (dry heating) and steamed at 60°, 90°, and 120°C with saturated water vapor over 2 weeks, and their equilibrium moisture contents (M) at 20°C and 60% relative humidity (RH) were compared with those of unheated samples. No significant change was induced by steaming at 60°C, while heating above 90°C caused loss in weight (WL) and reduction in M of wood. The effects of steaming were greater than those of dry heating at the same heating temperature. After extraction in water, the steamed wood showed additional WL and slight increase in M because of the loss of water-soluble decomposition residue. The M of heated wood decreased with increasing WL, and such a correlation became clearer after the extraction in water. On the basis of experimental correlation, the WL of local parts in large-dimension kiln-dried timber was evaluated from their M values. The results indicated that the thermal degradation of inner parts was greater than that of outer parts.  相似文献   

6.
Wood modification, of which thermal modification is one of the best-known methods, offers possible improvement in wood properties without imposing undue strain on the environment. This study investigates improvement of the properties of heat-treated solid wood. Scots pine (Pinus sylvestris) was modified in two stages: impregnation with modifiers followed by heat treatment at different temperatures. The impregnation was done with water glass, melamine, silicone, and tall oil. The heat treatment was performed at the temperatures of 180°C and 212°C for three hours. The modified samples were analyzed using performance indicators and scanning electron microscope micrographs. The mechanical and physical properties were determined with water absorption, swelling, bending strength, and impact strength tests. All the modifiers penetrated better into sapwood than hardwood; however, there were significant differences in the impregnation behavior of the modifiers. As regards the effect of heat treatment, generally the moisture properties were improved and mechanical strengths impaired with increasing treatment temperature. In contrast to previous studies, the bending strength increased after melamine impregnation and mild heat treatment. It is concluded that the properties of impregnated wood can be enhanced by moderate heat treatment.  相似文献   

7.
A method for measuring the viscoelastic properties of wood under high temperature and high pressure steam was developed using a testing machine with a built-in autoclave. A newly developed load cell capable of resisting a steam pressure of 16kgf/cm2 and a temperature of 200°C was installed in the autoclave. This load cell could be used to determine precisely the loads while steaming at temperatures from 100°C to 200°C. In addition to load-detection problems, it was necessary to avoid the nonuniform thermal degradation of wood during the measurement process under steaming at high temperatures. This nonuniform degradation could be minimized by shortening the time required for the wood to attain thermal equilibrium using specimens conditioned to the fiber saturation point. According to this method, a stress relaxation curve for sugi (Cryptomeria japonica D. Don) wood being compressed while steaming at 180°C was obtained. The stress was seen to decrease rapidly with time, reaching almost zero at 3000s.  相似文献   

8.
Diffuse reflectance Fourier transform infrared spectroscopy (DRIFT), solid state cross-polarization/magic-angle-spinning 13C-nuclei magnetic resonance spectroscopy (CP/MAS 13C-NMR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and thermomechanical analysis (TMA) were used in this study to elucidate the characteristics of wood sawdust after esterification. Results revealed that thermoplastic wood was produced by solvent-free esterification using octanoyl chloride. Increasing the duration of treatment enhanced the extent of esterification. After octanoylation, the crystallinity of wood sawdust was decreased, whereas thermoplasticity, hydrophobicity, and thermal stability were enhanced. The complete flow of the octanoylated wood meal was achieved at around 300°C under a force of 0.01 N, indicating that octanoylated wood sawdust is a good thermoplastic material.  相似文献   

9.
Thermal modification of wood is an environment-friendly alternative method for improving several properties of wood without the use of chemicals. This paper deals with the examination of color and chemical changes in spruce (Picea abies L.) and oak wood (Quercus robur F.) that occur due to thermal treatment. The thermal modification was performed at 160, 180, and 210 °C according to thermowood process. The color changes were measured by the spectrophotometer and described in the L*a*b* color system. Chemical changes were examined by wet chemistry methods, infrared spectroscopy and liquid chromatography. During the experiment, oak samples showed smaller color changes than spruce samples at all temperature values. During thermal modification, the content of cellulose, lignin, and extractives increases; however, the hemicellulose content drops by 58.85% (oak) and by 37.40% (spruce). In addition to deacetylation, new carbonyl and carboxyl groups are formed as a result of oxidation. Bonds in lignin (mainly β-O-4) and methoxyl groups are cleaved, and lignin is condensed at higher temperatures.  相似文献   

10.
木材易产生吸湿变形和腐朽等问题,影响其应用效果。热改性处理可有效提升木材的尺寸稳定性和耐久性,并具有无毒、环保的特点,是一种极具潜力的木材改性方法。文中综述了木材组分(纤维素、半纤维素、木质素、抽提物)在热改性过程中发生的化学变化,以及木材树种和部位、处理介质、处理温度和时间对木材热降解的影响。经不同热改性工艺处理后,木材的化学成分变化存在较大差异。探明热改性工艺、热改性材化学成分变化和性能之间的响应机制,将有助于开发或优化热改性技术,从而得到性能优异的热改性材,拓宽其应用领域。  相似文献   

11.
Abstract

Thermal modification has been developed for an industrial method to increase the biological durability and dimensional stability of wood. In this study the effects of thermal modification on resistance against soft- and brown-rot fungi of sapwood and heartwood of Scots pine and Norway spruce were investigated using laboratory test methods. Natural durability against soft-rot microfungi was determined according to CEN/TS 15083-2 (2005) by measuring the mass loss and modulus of elasticity (MOE) loss after an incubation period of 32 weeks. An agar block test was used to determine the resistance to two brown-rot fungi using two exposure periods. In particular, the effect of the temperature of the thermal modification was studied, and the results were compared with results from untreated pine and spruce samples. The decay resistance of reference untreated wood species (Siberian larch, bangkirai, merbau and western red cedar) was also studied in the soft-rot test. On average, the soft-rot and brown-rot tests gave quite similar results. In general, the untreated heartwood of pine was more resistant to decay than the sapwood of pine and the sapwood and heartwood of spruce. Thermal modification increased the biological durability of all samples. The effect of thermal modification seemed to be most effective within pine heartwood. However, very high thermal modification temperature over 230°C was needed to reach resistance against decay comparable with the durability classes of “durable” or “very durable” in the soft-rot test. The brown-rot test gave slightly better durability classes than the soft-rot test. The most durable untreated wood species was merbau, the durability of which could be evaluated as equal to the durability class “moderately durable”.  相似文献   

12.
Thermal treatment is an alternative to the chemical treatment in wood preservation, which has been used to some extent in improving timber quality. Despite the enormous works done so far on the effects of heat treatment on wood properties, very little is known about the anatomical changes in the various wood species during the process. Wood samples from western red cedar (Thuja plicata) were heat-treated at a temperature of 220°C for 1 and 2 h. The anatomical structures were examined before and after the heat treatment process by using scanning electron microscope (SEM) and related to density, water uptake, thickness swelling and modulus of rupture of wood samples obtained from the same board. Heat treatment of red cedar wood resulted in the destruction of tracheid walls, ray tissues and pit deaspiration. The destroyed tracheid walls and ray tissues appeared to blow up, thus increasing the size of the specimen. The process of pit deaspiration also resulted in increasing size of the pits, thus creating more openings in the wood. These changes in wood anatomy indicate that the well-established chemical degradation is not the only reason for changes in wood properties during heat treatment. However, it is believed that the effects of the chemical changes still outweigh those of the anatomical changes based on the modification observed during the process of heat treatment.  相似文献   

13.
Conventional chemical wood preservatives have been banned or restricted in some applications due to human and animal toxicity and their adverse impact on the surrounding environment. New, low-environmental-impact wood treatments that still provide effective protection systems are needed to protect wood. Thermal modification of wood could reduce hygroscopicity, improve dimensional stability and enhance resistance to mold attack. The aim of this study was to investigate if these properties enhanced in thermally modified (TM) wood through treatments with oils. In this study, TM European aspen (Populus tremula) and downy birch (Betula pubescens) wood were impregnated with three different types of oil: water-miscible commercial Elit Träskydd (Beckers oil with propiconazole and 3-iodo-2-propynyl butylcarbamate, IPBC), a pine tar formulation and 100% tung oil. The properties of oil-impregnated wood investigated were water repellency, dimensional stability and mold susceptibility. The treated wood, especially with pine tar and tung oil, showed an increase in water repellency and dimensional stability. However, Beckers oil which contains biocides like propiconazole and IPBC showed better protection against mold compared with pine tar and tung oil. To enhance the dimensional stability of the wood, pine tar and tung oil can be used, but these oil treatments did not significantly improve mold resistance rather sometimes enhanced the mold growth, whereas a significant anti-mold effect was observed on Beckers oil treated samples.  相似文献   

14.
The purpose of this study was to determine the effective refractive index of thermally modified Scots pine (Pinus sylvestris L.) wood specimens as a quantitative measure regarding the change of wood density which is due to the thermal modification. The refractive index of thermally modified Scots pine wood was obtained by introducing pine wood powder into an immersion liquid and measuring light backscattering with a homebuilt multifunction spectrophotometer. The present method provides useful information that in principle can be applied, for example, in the optimization of the thermal modification process and inspection of the quality of thermally modified wood.  相似文献   

15.
Strobilurus ohshimae is an edible mushroom, and it specifically forms its fruiting bodies on buried sugi (Cryptomeria japonica) twigs. In this research, we studied lignindegrading activity of S. ohshimae. We isolated 18 strains of S. ohshimae from various regions of Japan, and determined their lignin degradation rates on sugi wood meal medium. All the strains of S. ohshimae degraded approximately 6%–12% of sugi lignin in 30 days, and these lignin degradation rates were 1.5–3 times higher than those of Trametes versicolor, which is a typical lignin-degrading fungus. Among the three main lignin-degrading enzymes, activity of lignin peroxidase and manganese peroxidase was not observed, while 4340U/g of laccase was produced in 30 days. To investigate the effect of wood species on lignin degradation by S. ohshimae, the lignin degradation rate and laccase productivity on sugi wood meal medium were compared with those on beech (Fagus crenata). In T. versicolor, both lignin degradation rate and laccase productivity were higher on beech than on sugi. Conversely, in S. ohshimae, lignin degradation rate and laccase productivity were higher on sugi than on beech. Therefore, it was suggested that coniferous lignin is not always difficult to degrade for the fungi that inhabit softwood. Part of this article presented at the 54th Annual Meeting of the Japan Wood Research Society, Sapporo, August 2004  相似文献   

16.
The pinewood nematode, Bursaphelenchus xylophilus, is the causal agent of pine wilt disease and is transmitted to new host trees by beetles of the genus Monochamus. The increasing interest in imported wood chips from North America for paper production and energy purposes and the corresponding phytosanitary risk of non‐vector transmission of B. xylophilus has been discussed since 1984, the year of the first interception of B. xylophilus in wood chips in the European Union. The long‐term survival of B. xylophilus in wood chips and its non‐vector spread from infested wood chips to non‐infested trees were studied. Pinus sylvestris logs were inoculated with a suspension of B. xylophilus to produce infested wood chips. During the long‐term storage test, B. xylophilus in P. sylvestris wood chips were examined. Four variants, including sealed and openly stored wood chips at both 15°C and 25°C, were studied. For the test of non‐vector spread, B. xylophilus ‐infested wood chips were placed on three‐ to four‐year‐old P. sylvestris saplings under different conditions. Bursaphelenchus xylophilus survived for more than 1 year at both temperatures in the sealed wood chips, which was significantly longer than for the openly stored variant at 25°C. Temperature, tree condition and wood chip location all influenced non‐vector spread through wood chips. Of the 480 trees that were in contact with infested wood chips and showed clear symptoms of pine wilt disease, B. xylophilus were extracted from 42 pines at 25°C and one pine at 15°C. The highest B. xylophilus infestation rates resulting in clear pine wilt disease symptoms (75%) were found in infested wood chips directly attached to stem‐wounded trees at 25°C. However, more variants exhibited B. xylophilus infestation at this temperature; trees with stem or root injuries plus direct contact with infested wood chips to the wounded part were primarily affected. Moreover, non‐vector spread was also detected in stem‐ and root‐injured pines without any direct contact with infested wood chips. Our results confirmed that B. xylophilus can survive for long periods in wood chips and can be transmitted from infested wood chips to damaged trees, but the likelihood of such PWN establishment should be low compared to spread through vectors. These findings must be considered in the pest risk analysis of B. xylophilus, and studies using outdoor trials should be carried out to complete this pest risk analysis.  相似文献   

17.
A new approach is proposed for the evaluation of the brittleness of heat-treated Styrax tonkinensis wood. Heat treatment made wood more brittle when wood was heated at a higher temperature or for a longer time. The brittleness increased to four times that of the control when wood was heated at 200°C for 12 h. For treatment at 160°C, the increase in brittleness without any change in weight is thought to be possibly caused by the relocation of lignin molecules. At higher temperatures, loss of amorphous polysaccharides due to degradation is thought to become the main factor affecting brittleness. The crystallites that were newly formed after 2 h of treatment showed brittleness that was different from that of the inherent crystallites remaining after 12 h of heat treatment. This inherent crystalline cellulose possibly plays a role in brittleness. There is also the possibility of using color to predict the brittleness of heat-treated wood.  相似文献   

18.
To improve interfacial adhesion between wood veneer and high-density polyethylene (HDPE) film, wood veneer was thermally modified in an oven or chemically modified by vinyltrimethoxysilane. The wood veneers were used to prepare plastic-bonded wood composites (PBWC) in a flat-press process using HDPE films as adhesives. The results showed that both modifications reduced veneer hydrophilicity and led to enhancement in shear strength, wood failure, and water resistance of the resulting PBWC. The thermal treatment significantly decreased the storage modulus close to 130 °C (the melting temperature of plastic). Thermal-treated wood veneer maintains mechanical interlocking for bonding and veneer strength which then declined under thermal treatment due to hemicellulose degradation and cellulose de-polymerization. In the silane-treated PBWC, enhanced interlocking and a stronger bonding structure resulted from the reaction between the silane-treated veneer and HDPE. This strong bonding structure allowed thermal stability improvement demonstrated by high modulus and low tanδ values. However, the strength of silane-treated PBWC was still much lower than thermosetting resin-bonded composites at higher temperatures due to the melting behavior of thermoplastic polymer, precluding its use in certain applications.  相似文献   

19.
In Vietnam, the productivity of Acacia hybrid (Acacia mangium A. auriculiformis) plantations is being threatened by an aggressive canker pathogen, Ceratocystis manginecans, and selection for tolerance is the main control strategy. A pot trial was established in Binh Duong province to screen for the host response of nine Acacia genotypes (six Acacia hybrid clones, two A. auriculiformis clones and mixed provenance seedlings of A. mangium) to artificial inoculation with three isolates of C. manginecans. Lesion lengths as measured on the inner bark suggested that the two A. auriculiformis clones were relatively more tolerant to C. manginecans than the A. mangium genotype. In contrast, the lesion lengths of all six Acacia hybrid clones fell between the A. auriculiformis and A. mangium genotypes. The results of this study indicate that among the Acacia hybrid clones, BV10 showed the most tolerance to C. manginecans. Chemical analysis of crude sapwood extracts sampled from the lesion provided some evidence that induced phenolic compounds, particularly tetrahydroxyflavanone and condensed tannins may have a defensive role in the AcaciaC. manginecans pathosystem. However, results were not consistent across individual Acacia hybrid clones and A. mangium genotypes.  相似文献   

20.
Quality assessment of thermally modified spruce (Picea abies (L.) Karst) and beech (Fagus sylvatica L.) wood and of the corresponding reference samples was carried out by means of non-destructive FT-NIR spectroscopic measurements and PLS regression. Oven-dry and basic density as well as MOE and MOR determined by 3-point bending tests were evaluated. The focus was put on specimens produced from material that had been thermally modified in an industrial scale kiln. Modelling results range from poor to very good. The results of the spectra taken from the spruce samples resulted in better prediction results than the spectra of the beech samples. This could be due to different proveniences or variation in the industrial modification process. The results indicate that FT-NIR surface measurements of sound thermally modified wood samples could be applied to evaluate several characteristics before and after the modification process. The method could be used for screening during pre-sorting of thermally modified wood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号