首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
简要探讨、分析了多环芳烃(PAHs)与土壤颗粒吸附的机理以及相关研究现状,对水蒸气剥离法脱附污染土壤中多环芳烃的数学模型进行数值求解,获得净化后土壤中多环芳烃浓度的理论解以及多环芳烃脱附过程的部分变化规律。同时分析了Peclet数Pe,传质参数β、反应器内停留时间γ等对脱附效果的影响。  相似文献   

2.
再生水中典型PAHs垂向迁移特征研究   总被引:1,自引:0,他引:1  
[目的]探究在模拟灌溉条件下,再生水中典型多环芳烃的迁移特征和影响因素。[方法]通过土柱模拟试验,以再生水中多环芳烃萘、菲、芘为对象,北京市东南郊再生水灌区典型土壤为试验介质,对再生水连续灌溉时多环芳烃的迁移情况以及土柱出水中DOM的性质进行分析。[结果]实际土壤介质对多环芳烃的吸附能力不能单纯用土壤有机碳含量很好地描述,组成复杂的介质对多环芳烃的吸附能力增强,萘的实际阻滞因子超过理论值约7倍;多环芳烃在非均质介质中的迁移存在界面效应,土壤有机碳含量差距越大,界面效应越明显;孔隙水流速以及孔隙尺寸增大,会造成固相上多环芳烃的解吸,发生二次迁移。微生物活动能促进多环芳烃的迁移。[结论]该研究可为建立基于地下水质量安全的再生水灌溉模式的提出奠定基础。  相似文献   

3.
模拟酸雨作用下红壤中多环芳烃的释放及纵向迁移特征   总被引:1,自引:1,他引:0  
以USEPA优先控制的16种多环芳烃为研究对象,通过酸雨的土柱淋溶试验模拟实际降水过程,分析了不同酸度的模拟酸雨淋溶后红壤中多环芳烃残留量的变化及不同性质多环芳烃在土柱中纵向迁移特征。研究结果表明:不同酸度模拟酸雨淋溶后红壤中多环芳烃残留量均较淋溶前减少,pH2.5酸雨淋溶后红壤中多环芳烃含量较淋溶前减小的幅度最大(52.08%),pH5.6酸雨淋溶后减小的幅度最小(21.55%);酸雨破坏土壤微结构,使土壤胶体分散,粘粒下移,与土壤粘粒结合在一起的多环芳烃也一起向下迁移,酸雨pH值越小,多环芳烃在土壤中的纵向迁移能力就越强;酸雨对土壤中不同性质多环芳烃的纵向迁移影响不同,对低环多环芳烃(环数≤4)的迁移影响较大,对高环多环芳烃(环数4)影响较小,主要是由于不同性质多环芳烃在土壤中结合的物质不同而引起的。该研究结果为了解酸雨作用下多环芳烃在土壤介质中的稳定性及其对地下水潜在污染的风险评价提供理论依据。  相似文献   

4.
热处理对土壤中多环芳烃的影响   总被引:1,自引:0,他引:1  
[目的]为了对多环芳烃在土壤中的行为进行研究。[方法]利用一种温度辅助解吸-气流式液相微萃取装置结合溶剂超声萃取,研究了热处理(温度为50~300℃)对土壤中多环芳烃(苊、菲、芘、苯并[a]芘)存留的影响。[结果]在该温度范围内进行热处理时只有极少部分的多环芳烃从土壤中释放出来,大部分被保留于土壤中;200℃以上的处理温度明显降低了土壤中多环芳烃的溶剂可提取性,对多环芳烃起锁定作用。[结论]该研究可以为受多环芳烃污染的土壤修复和生物有效性提供指导。  相似文献   

5.
DOM及pH对典型PAHs在土壤中迁移影响模拟实验研究   总被引:2,自引:0,他引:2  
影响多环芳烃(PAHs)在土壤中垂向迁移的因素很多,通过柱实验模拟研究了溶解性有机质(DOM)浓度及pH对多环芳烃在土壤中迁移及转化的影响,以氯离子做示踪剂进行校正,探讨了不同浓度DOM及pH对多环芳烃迁移的影响。结果表明,校正后的多环芳烃迁移速率随着DOM浓度增加呈逐渐增大趋势,与空白柱对照可得低浓度的DOM由于累积吸附与共吸附作用对多环芳烃的迁移起抑制作用,随着DOM浓度增加,抑制作用逐渐减弱,当浓度达到一定程度时,DOM形成表面活性剂胶体束,多环芳烃进入胶体束内部,从而迁移速率加快。当pH为6、8、10时多环芳烃的迁移速率与空白柱相比均较大,且pH为8、10时多环芳烃迁移速率大于pH为6时的迁移速率,由此可见pH会影响多环芳烃迁移速率,其原因为pH的改变会影响DOM所带电荷的电性,当pH升高到中性或碱性时由于空间排斥理论,DOM的迁移会加快,从而影响多环芳烃的迁移速率。  相似文献   

6.
多环芳烃(PAHs)在砂质土壤中的吸附行为   总被引:13,自引:1,他引:13  
采用室内试验方法,研究了多环芳烃(PAHs)在砂质土壤中的吸附行为。结果表明,两阶段吸附模型可较好地模拟PAHs在砂土中的动力吸附过程:快速的线性吸附阶段和慢速吸附阶段。慢速吸附阶段可用乘幂方程拟合,幂指数反映了吸附速率的大小。多环芳烃在砂土中的吸附行为不仅与砂土的性质有关(例如有机碳含量),而且受PAHs物化性质(辛醇/水吸附系数、分子连接指数、分子长度、水溶解度)的影响。与低环PAHs相比,高环PAHs较易吸附到砂土中,且吸附量较大,可用土-水吸附系数表示PAHs的吸附行为。  相似文献   

7.
银川平原及周边地区表层土壤中多环芳烃分布特征   总被引:2,自引:0,他引:2  
为揭示银川平原及周边地区表层土壤中多环芳烃分布特征,分析了银川平原及周边地区37个表层土壤样品中16种美国环保署优先控制多环芳烃的含量与组成特征。结果表明,研究区域内表层土壤中多环芳烃含量为17.2~1 199.3 ng·g-1(干重)之间,算数均值为190.6±232.2 ng·g-1,几何均值为125.9 ng·g-1,与国内外相关研究相比处于较低水平。多环芳烃以三环和二环为主要组分,荧蒽与菲为主要污染物,主要来源为区域内的燃烧源排放。多环芳烃在研究区域内呈南北高、东西低的分布态势,人类生产、生活排放和土壤中有机质对多环芳烃的吸附性是影响其空间分布的重要因素。耕地中多环芳烃含量高于草地与荒地,接近我国东部地区耕地,且受土壤总有机碳影响,高环组分所占丰度高于草地和荒地。  相似文献   

8.
黄岩区表层土壤中多环芳烃含量分布及源解析   总被引:1,自引:0,他引:1  
分析黄岩区83个表层土壤中16种多环芳烃的含量,并对土壤中多环芳烃进行源解析。结果显示,黄岩区表层土壤中,16种多环芳烃除苊烯外,其余多环芳烃均被检出,检出率最高的是荧蒽,其次是萘和芘。黄岩区表层土壤中多环芳烃以中高环(4环及以上)为主。按照样品采集地点分析,多环芳烃总量最高的是江口,其次是城区,以及院桥、澄江和新前等近郊区。农村地区多环芳烃含量较低。冶炼厂或化工厂等工厂的煤炭燃烧、稻草等秸秆的露天焚烧,以及生活用煤燃烧可能是多环芳烃污染的主要来源,石油等液体化石燃料的燃烧也是黄岩土壤多环芳烃的来源之一。  相似文献   

9.
土壤中多环芳烃生物有效性研究进展   总被引:3,自引:0,他引:3  
林纪旺 《安徽农学通报》2011,17(8):34-37,54
多环芳烃是典型的疏水性有机物,在土壤中很难被生物降解和利用。多环芳烃的老化作用、非水相基质的形成都会降低多环芳烃的生物有效性。多环芳烃生物有效性同时受很多因素的影响,如土壤理化性质、多环芳烃与土壤接触时间、多环芳烃性质和环境因素等。对于评价土壤中多环芳烃生物有效性来说,目前有许多化学和生物的方法被广泛使用。  相似文献   

10.
随着我国工业化和经济发展水平不断提高,土壤中多环芳烃污染日益严重。针对多环芳烃污染土壤的治理与修复,本文首先介绍了目前多环芳烃污染土壤的3种修复模式,其次对多环芳烃污染土壤各种修复技术原理、研究进展及优缺点进行了梳理和分析,最后提出在选择修复技术时需综合考虑多环芳烃浓度、场地水文地质条件、修复工期、修复目标、未来土地规划及利用类型等多种要素,为我国多环芳烃污染土壤修复提供借鉴,实现良好的经济效益与社会效益。  相似文献   

11.
3种多环芳烃在木炭上的吸附/解吸行为   总被引:7,自引:1,他引:6  
通过控制氧化时间自制了3种结构不同的木炭(charcoal),对其性质进行了表征,并研究了3种典型多环芳烃菲、蒽、芘在木炭上的吸附/解吸行为.结果表明,通过控制加热处理时间,可以制得结构和性质不同的木炭.多环芳烃在木炭上的吸附/解吸均呈现明显的非线性,可用Freundlich模型描述.吸附系数(K∝)在105.7~106.6之间,而吸附的线性因子(n)在0.4~0.7之间.分配作用和表面吸附共同控制着多环芳烃在木炭样品中的吸附,因此,K∝及n与木炭的结构、多环芳烃的疏水性及分子大小有关.多环芳烃在木炭上的解吸出现不同程度的滞后现象,解吸滞后程度与多环芳烃分子大小有关,表现为芘的解吸滞后程度大于其余两种三环芳烃:芳香碳及极性都会影响解吸滞后程度,而吸附剂的比表面积和致密脂肪碳是关键的结构因素.  相似文献   

12.
针对某焦化厂内高浓度多环芳烃污染土壤,以烷基苷(APG)、十二烷基苯磺酸钠(SDBS)和曲拉通X-100(TX100)为表面活性剂代表物,采用静态平衡法和高效液相色谱分析,探索采用单一及混合表面活性剂清洗修复多环芳烃污染土壤,并考察生物柴油对多环芳烃去除效果的影响。结果表明,单一表面活性剂对土壤中多环芳烃去除率顺序为SDBS>APG>TX100。APG/SDBS混合处理及TX100/SDBS为9∶1混合处理提高了土壤中多环芳烃去除率,而APG/TX100混合处理没能提高多环芳烃去除率。生物柴油对TX100及TX100/SDBS去除多环芳烃效果没有明显提高,对APG及APG/TX100去除多环芳烃略有提高。当APG/SDBS为9∶1时,生物柴油可以使多环芳烃去除率从(63.3±2.0)%提高到(75.6±2.0)%。单一表面活性剂、混合表面活性剂、及表面活性剂-生物柴油乳液对多环芳烃各组分去除率比较类似,对菲的去除率最高,茚并[1,2,3-d]芘次之,其余相对较低。因此,建议采用APG/SDBS+生物柴油的混合体系对高浓度多环芳烃污染土壤进行修复。  相似文献   

13.
《山西农业科学》2017,(7):1200-1204
主要针对国内工业园区周边土壤中多环芳烃(PAHs)的含量、来源、危害及影响因素等方面的研究进行比较分析与综述,归纳总结了焦化、钢铁、石化等工业园区周边土壤中多环芳烃污染的研究成果,以反映有关工业活动导致的周边土壤多环芳烃污染及其潜在危害。结果表明,工业园区排放的PAHs是其周边土壤PAHs的主要来源,其周边土壤多数已遭受多环芳烃的严重污染,已严重危及企业周边居民的生命健康,应急需普及环境教育、提高人们的环保意识,加大对工业园区周边区域环境污染与防治方面科学研究项目的支持力度,有利于政府部门采用有关研究成果,并严格执法,科学根治工业园区周边土壤多环芳烃的污染,以协调经济发展、社会进步与生态环境的关系。  相似文献   

14.
多环芳烃污染土壤的微生物修复研究进展   总被引:7,自引:0,他引:7  
房妮  俱国鹏 《安徽农业科学》2006,34(7):1425-1426
多环芳烃(PAHs)由于其毒性、致癌性和致畸性成为环境中一类重要的污染物。微生物对多环芳烃的降解是去除土壤中多环芳烃的主要途径。阐述了多环芳烃污染土壤中微生物修复的原理、优缺点、影响因素、强化措施及国内外研究进展,并对微生物修复的发展进行了展望。  相似文献   

15.
综述了沉积物中多环芳烃的来源及分布,以及多环芳烃在沉积物中分配和吸附解吸行为,为相应的研究做指导,并提出有待于进一步研究的一些问题。  相似文献   

16.
多环芳烃污染土壤的植物修复研究进展   总被引:7,自引:3,他引:4  
多环芳烃是一类广泛存在于环境中的持久性有机污染物,它不仅降低环境质量还会危害人体健康。植物修复是近年来发展起来的一种利用植物修复环境污染的技术,也是当前生物修复研究领域中的热点,许多实验证明植物能够促进土壤中多环芳烃的去除。植物修复的机理主要包括植物对多环芳烃的直接作用、根际微生物的降解作用和植物与微生物的联合作用,植物修复的效率会受多种环境因素的影响。为此,对植物修复多环芳烃污染土壤的植物筛选、修复机理、影响因素进行了概括,并对国内外近年来植物修复技术在多环芳烃污染土壤修复中的应用、研究成果和存在的一些问题进行了综述。  相似文献   

17.
为研究污染物随再生水进入地下环境后其迁移衰减情况及对地下水的潜在危害性,以Multi-cell模型为基础,结合污染物质量守恒、在水土中吸附再分配、生物降解等机理,针对地下水污染风险评估构建了计算污染物随水在土壤剖面的垂向迁移衰减一维模型,并以北京通州大兴再生水灌区为研究区域,以再生水中持久性有机污染物多环芳烃萘和菲为研究对象,根据当地钻孔资料及灌溉水水质、地下水水质资料,应用该模型进行试算.结果表明,经过多年连续灌溉后,通州大兴大部分地区进入潜水含水层的萘、菲浓度较低,整体污染风险较低,仅在通州区潞城镇等个别地区萘、菲浓度较高,应引起重视;由于大兴区整体包气带较厚,其污染风险低于通州区.土壤粘土层是萘、菲积累的主要层位,其吸附容量远大于细砂等粗颗粒介质,在土壤表层低环多环芳烃迁移性更强.应用这一模型,能够较为宏观地掌握通州大兴再生水灌区不同区域地下水中多环芳烃萘和菲的污染风险差异.  相似文献   

18.
为了解黔南地区表层土壤中多环芳烃的污染状况,采用高效液相色谱法,对黔南地区表层土壤中16种多环芳烃(PAHs)进行定量分析,并研究其污染水平与来源。结果表明:土壤中ΣPAHs检出含量为3.7~259.6μg/kg,其中,苯并(a)蒽检出率最高,为61.9%;屈的残留量最高,平均含量为10.58μg/kg。黔南地区表层土壤中低环与高环PAHs含量比值均小于1,多环芳烃主要来源于燃烧源。  相似文献   

19.
通过增溶实验和土壤洗脱实验,研究了一种生物表面活性剂--皂角苷(saponin)对多环芳烃-重金属复合污染土壤的洗脱作用及机理.结果表明,皂角苷对菲、芘等多环芳烃有极强的增溶作用,当皂角苷浓度为0.04%时,菲、芘在液相中的表观溶解度分别增大了约22倍和128倍,因而皂角苷能显著增强多环芳烃污染土壤中菲、芘的洗脱,洗脱效率最大分别可达84.1%和81.4%,增大了约2倍和17倍.皂角苷可与重金属离子形成水溶性的络合物,从而增强洗脱重金属污染土壤中的Zn2+和Cd2+,在皂角苷浓度为0.4%时,Zn2+、Cd2+的洗脱效率分别可达93.0%和79.4%,增大了约75倍和8倍.皂角苷可同时洗脱多环芳烃-重金属复合污染土壤中的菲、芘和Zn2+、Cd2+,洗脱效率分别达87.6%、83.5%和92.3%、78.6%,重金属的存在略增大了皂角苷对菲、芘等多环芳烃的洗脱效率,但多环芳烃对Zn2+、Cd2+的洗脱效率没有明显影响.皂角苷可同时增强洗脱复合污染土壤中的多环芳烃和重金属,从而为多环芳烃-重金属复合污染土壤的修复奠定基础.  相似文献   

20.
研究了土壤结合态稠环芳烃的生物降解过程。结果表明 ,微生物能够降解土壤中的稠环芳香烃化合物 ,稠环芳烃与土壤结合是妨碍其生物降解的主要因素 ,表面活性剂能够显著提高结合态的稠环芳烃被降解的比例。在30d左右时间内 ,土壤中稠环芳烃可以被降解至一个稳定水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号