首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Application of a sensomics approach on the water-soluble extract of a matured Gouda cheese including gel permeation chromatography, ultrafiltration, solid phase extraction, preparative RP-HPLC, and HILIC combined with analytical sensory tools enabled the comprehensive mapping of bitter-tasting metabolites. LC-MS-TOF and LC-MS/MS, independent synthesis, and sensory analysis revealed the identification of a total of 16 bitter peptides formed by proteolysis of caseins. Eleven previously unreported bitter peptides were aligned to beta-casein, among which 6 peptides were released from the sequence beta-CN(57-69) of the N terminus of beta-casein and 2 peptides originated from the C-terminal sequence beta-CN(198-206). The other peptides were liberated from miscellaneous regions of beta-casein, namely, beta-CN(22-28), beta-CN(74-86), beta-CN(74-77), and beta-CN(135-138), respectively. Six peptides were found to originate from alpha(s1)-casein and were shown to have the sequences alpha(s1)-CN(11-14), alpha(s1)-CN(56-60), alpha(s1)-CN(70/71-74), alpha(s1)-CN(110/111-114), and alpha(s1)-CN(135-136). Sensory evaluation of the purified, synthesized peptides revealed that 12 of these peptides showed pronounced bitter taste with recognition thresholds between 0.05 and 6.0 mmol/L. Among these peptides, the decapeptide YPFPGPIHNS exhibited a caffeine-like bitter taste quality at the lowest threshold concentration of 0.05 mmol/L.  相似文献   

2.
The first comprehensive quantitative determination of 49 putative taste-active metabolites and mineral salts in 4- and 44-week-ripened Gouda cheese, respectively, has been performed; the ranking of these compounds in their sensory impact based on dose-over-threshold (DoT) factors, followed by the confirmation of their sensory relevance by taste reconstruction and omission experiments enabled the decoding of the nonvolatile sensometabolome of Gouda cheese. The bitterness of the cheese matured for 44 weeks was found to be induced by CaCl2 and MgCl2, as well as various bitter-tasting free amino acids, whereas bitter peptides were found to influence more the bitterness quality rather than the bitter intensity of the cheese. The DoT factors determined for the individual bitter peptides gave strong evidence that their sensory contribution is mainly due to the decapeptide YPFPGPIHNS and the nonapeptides YPFPGPIPN and YPFPGPIHN, assigned to the casein sequences beta-CN(60-69) and beta-CN(60-68), respectively, as well as the tetrapeptide LPQE released from alphas1-CN(11-14). Lactic acid and hydrogen phosphate were identified to play the key role for the sourness of Gouda cheese, whereas umami taste was found to be due to monosodium L-glutamate and sodium lactate. Moreover, saltiness was induced by sodium chloride and sodium phosphate and was demonstrated to be significantly enhanced by L-arginine.  相似文献   

3.
Adapted, follow-up, probiotic follow-up, toddler, and probiotic toddler infant formulas were subjected to an in vitro enzymatic procedure simulating physiological digestion. The formation and identification of casein phosphopeptides (CPPs) in the milk-based infant formulas were studied using reversed phase high-performance liquid chromatography coupled on line to an ion trap mass spectrometer. Most CPPs formed contained the cluster sequence SpSpSpEE, a mineral binding site. Phosphopeptide alpha(s2)-CN(1-19)4P was present in all formulas analyzed. Probiotic formulas released CPPs not detected in nonprobiotic formulas and probably formed by bifidobacteria action. These observations suggest that physiological digestion of these products promotes the formation of bioactive peptides with mineral carrier properties in the gastrointestinal tract, which resist further proteolysis.  相似文献   

4.
Influence of various phosphopeptides of caseins on iron absorption   总被引:2,自引:0,他引:2  
The influence of the origin and kind of caseinophosphopeptide (CPP) on iron absorption was assessed by comparing a commercially available CPP mixture (CPPs) and derived chromatographic fractions with the purified, chemically phosphopeptide of beta-casein [beta-CN(1-25)] using a perfused rat duodenal loop system; gluconate iron was used as control. Only iron complexed to beta-CN(1-25) displayed a better bioavailability than gluconate iron. The results obtained with various chromatographic fractions indicated that phosphopeptides of different origins (alpha(s)- versus beta-caseins) display specific effects. These findings contribute to the explanation of the discrepancy about the role of caseinophosphopeptides on mineral bioavailability in vivo.  相似文献   

5.
Today proteases have become an integral part of the food and feed industry, and plant latex could be a potential source of novel proteases with unique substrate specificities and biochemical properties. A new protease named "wrightin" is purified from the latex of the plant Wrightia tinctoria (Family Apocynaceae) by cation-exchange chromatography. The enzyme is a monomer having a molecular mass of 57.9 kDa (MALDI-TOF), an isoelectric point of 6.0, and an extinction coefficient (epsilon1%280) of 36.4. Optimum activity is achieved at a pH of 7.5-10 and a temperature of 70 degrees C. Wrightin hydrolyzes denatured natural substrates such as casein, azoalbumin, and hemoglobin with high specific activity; for example, the Km value is 50 microM for casein as substrate. Wrightin showed weak amidolytic activity toward L-Ala-Ala-p-nitroanilide but completely failed to hydrolyze N-alpha-benzoyl- DL-arginine-p-nitroanilide (BAPNA), a preferred substrate for trypsin-like enzymes. Complete inhibition of enzyme activity by serine protease inhibitors such as PMSF and DFP indicates that the enzyme belongs to the serine protease class. The enzyme was not inhibited by SBTI and resists autodigestion. Wrightin is remarkably thermostable, retaining complete activity at 70 degrees C after 60 min of incubation and 74% of activity after 30 min of incubation at 80 degrees. Besides, the enzyme is very stable over a broad range of pH from 5.0 to 11.5 and remains active in the presence of various denaturants, surfactants, organic solvents, and metal ions. Thus, wrightin might be a potential candidate for various applications in the food and biotechnological industries, especially in operations requiring high temperatures.  相似文献   

6.
蒸汽爆破预处理和微生物发酵对玉米秸秆降解率的影响   总被引:7,自引:2,他引:5  
为了提高玉米秸秆的利用效率,首先对玉米秸秆进行蒸汽爆破预处理(压力2.5 Mpa,维压200 s),然后再进行米曲霉发酵,研究物理和生物学处理对秸秆成分及相关酶活变化的影响。结果表明,蒸汽爆破使秸秆中纤维素、半纤维素和木质素的降解率分别达到8.47%、50.45% 和36.65% (p<0.05)。爆破预处理的秸秆再经米曲霉发酵6 d后,秸秆中纤维素和半纤维素的降解率分别为27.89%和64.80% (p<0.05),发酵秸秆中的滤纸酶、羧甲基纤维素酶、淀粉酶和蛋白酶活力分别达到335.10、1138.92、1954.20和201.99 U/g。爆破预处理后进行米曲霉发酵,对于提高玉米秸秆的降解率具有非常重要的意义。  相似文献   

7.
Proteolysis of milk proteins can be attributed to both native proteases and the proteases produced by psychrotrophic bacteria during storage of fresh raw milk. These proteases cause beneficial or detrimental changes, depending on the specific milk product. Plasmin, the major native protease in milk, is important for cheese ripening. Milk storage and cheese-making conditions can affect the level of plasmin in the casein and whey fractions of milk. A microbial protease from a psychrotrophic microorganism can indirectly increase plasmin levels in the casein curd. This relationship between the plasmin system and microbial proteases in milk provides a means to control levels of plasmin to benefit the quality of dairy products. This paper is a short review of both the plasmin system and microbial proteases, focusing on their characteristics and relationship and how the quality of dairy products is affected by their proteolysis of milk proteins.  相似文献   

8.
Polyclonal antibodies raised against the plasmin-released 1-28 phosphopeptide from bovine beta-casein [i.e., beta-CN(f1-28)4P] specifically recognized the tryptic beta-casein 1-25 and 2-25 peptides, whatever the degree of phosphorylation, but were unresponsive to the shortened beta-casein 16-22 phosphopeptide. These antibodies were able to recognize the parent bovine beta-casein as well as the homologous water buffalo protein, but they could not detect the homologous counterparts from ovine and caprine milks. Such antibodies were used in competitive enzyme-linked immunosorbent assays to monitor the plasmin-mediated release of the 1-28 phosphopeptide from beta-casein and to evaluate the residual native beta-casein in bovine cheese sampled during ripening. Applications of these polyclonal antibodies are suggested mainly for estimating the age of hard cheeses and, possibly, for tracing the presence of bovine casein in fresh ovine and caprine cheeses.  相似文献   

9.
Caseinophosphopeptides (CPP) issued from enzyme digestion of caseins bind cations and keep them soluble in the digestive tract. They could be used as ligands to improve iron (Fe) bioavailability. Fe-deficient young rats were repleted with Fe (40 or 200 mg/kg of diet) bound either to the beta-CN (1-25) of beta-casein or to whole beta-casein or as FeSO(4). A control pair-fed group was given 200 mg of Fe (FeSO(4))/kg of diet for 6 weeks. After repletion, hemoglobin concentration of the control group was reached only by the ) animals fed 200 mg of Fe/kg; beta-CN (1-25) bound Fe (40 and 200 mg) produced higher Fe liver and spleen stores than FeSO(4). Binding Fe to the whole, nonhydrolyzed beta-casein gave results intermediate between the other experimental groups. Binding Fe to phosphoserine residues of low molecular weight CPP improved its ability to cure anemia and to restore iron tissue stores, as compared to Fe bound to the whole casein and to inorganic salts.  相似文献   

10.
Traditionally, milk has been heat treated to control microorganisms and to alter its functionality, for example, to increase its heat stability. Pressure treatment has been considered as a possible alternative for microorganism control, but some of the functionality-related milk protein interactions have not been explored. The present study used two novel two-dimensional polyacrylamide gel electrophoresis (2D PAGE) methods to explore the differences in the irreversible disulfide bond changes among the milk proteins after four common heat treatments and after 30-min pressure treatments of milk at 200, 400, 600, and 800 MPa at ambient temperature (22 degrees C). The pasteurizing heat treatment (72 degrees C for 15 s) denatured and aggregated only a few minor whey proteins, but the high heat treatments (100 degrees C for 120 s, 120 degrees C for 120 s, and 140 degrees C for 5 s) formed disulfide-bonded aggregates that included a high proportion of all of the whey proteins and kappa-casein (kappa-CN) and a proportion of the alpha(s2)-CN. Pressure treatment of milk at 200 MPa caused beta-lactoglobulin (beta-LG) to form disulfide-bonded dimers and incorporated beta-LG into aggregates, probably disulfide-bonded to kappa-CN. The other whey proteins appeared to be less affected at 200 MPa for 30 min. In contrast, pressure treatment at 800 MPa incorporated beta-LG and most of the minor whey proteins, as well as kappa-CN and much of the alpha(s2)-CN, into aggregates. The accessibility of alpha(s2)-CN and formation of complexes involving alpha(s2)-CN, kappa-CN, and whey proteins in the pressure treated milk is an important novel finding. However, only some of the alpha-lactalbumin was denatured or incorporated into the large aggregates. These and other results show that the differences between the stabilities of the proteins and the accessibilities of the disulfide bonds of the proteins at high temperature or pressure affect the formation pathways that give the differences among the resultant aggregates, the sizes of the aggregates, and the product functionalities.  相似文献   

11.
The effect of the ripening time on the proteolytic process in cheeses made from ewe's milk during a 139-day ripening period was monitored by the use of capillary electrophoresis of pH 4.6 insoluble fraction. Totals of 18 and 21 peaks were recognized and matched in the electropherograms obtained with a fused-silica capillary and a neutral capillary (hydrophilically coated), respectively. These peaks correspond to intact ovine caseins and their hydrolysis products (alpha(s1)-casein I, alpha(s1)-casein II, alpha(s1)-casein III, alpha(s2)-casein, beta(1)-casein, beta(2)-casein, p-kappa-casein, alpha(s1)-I-casein, gamma(1)-casein, gamma(2)-casein, and gamma(3)-casein). The alpha(s)-caseins (alpha(s1)- and alpha(s2)-casein) displayed similar degradation pattern to one another, but different from those of beta-caseins (beta(1)- and beta(2)-casein). beta-Caseins were very much undergoing lesser degradation during the ripening time than alpha(s)-casein. Finally, partial least-squares regression and principal components regression were used to predict the ripening time in cheeses. The models obtained yielded good results since the root-mean-square error in prediction by cross validation was <8.6 days in all cases.  相似文献   

12.
A novel protease is purified to homogeneity from the latex of a medicinally important plant Cryptolepis buchanani of family Apocynaceae (formerly Asclepiadaceae). The enzyme named cryptolepain has a molecular mass of 50.5 kDa. The isoelectric point and extinction coefficient (epsilon280nm1%) are 6.0 and 26.4, respectively. Cryptolepain contains 15 tryptophans, 41 tyrosines, and eight cysteine residues forming four disulfide bridges. The detectable carbohydrate moiety in the enzyme was found to be 6-7%. Cryptolepain hydrolyzes denatured natural substrates like casein, azocasein, and azoalbumin with high specific activity. The protease is exclusively inhibited by serine protease inhibitors phenylmethansulfonyl fluoride and diisopropyl fluorophosphate. Hydrolysis of azoalbumin by the cryptolepain is optimal in the pH range of 8-10 and temperatures of 65-75 degrees C. The enzyme shows high stability against pH (2.5-11.5), temperature (up to 80 degrees C), and chemical denaturants. The Km value of the enzyme was found to be 10 microM with azocasein as the substrate. The N-terminal sequence of cryptolepain is unique and shows only little homology to other known serine proteases, which makes this enzyme an ideal candidate for our ongoing biochemical and structure-function investigations of proteases. Easy availability of the latex and simple purification procedures make the enzyme a good system for exploring the biophysical chemistry of serine proteases as well as applications in the food industry.  相似文献   

13.
14.
The formation of color and Maillard reaction products in two model systems consisting of lactose and lysine or N(alpha)-acetyllysine has been investigated. During heating, the blockage of the N(alpha) group of lysine determined a faster color and antioxidative ability development compared to the system with free lysine. This is combined to a greater amount of melanoidin formation in the acetylated lysine system, while in the free lysine system a higher amount of pyrraline and hydroxymethyl furfural were detected. The pattern of low molecular weight products suggests that 3-deoxyglucosone and 1-deoxyglucosone degradation pathways are favored for free lysine and N(alpha)-acetyllysine, respectively. Whole data allow us to hypothesize that in a lactose-N(alpha)-acetyllysine model system the formation of colored high molecular weight polymer proceeds faster because less material is dispersed in reaction pathways, mainly the Strecker degradation, which leads to small and intermediate molecular weight products.  相似文献   

15.
The bioactive anthocyanins present in tart cherries, Prunus cerasus L. (Rosaceae) cv. Balaton, are cyanidin 3-glucosylrutinoside (1), cyanidin 3-rutinoside (2), and cyanidin 3-glucoside (3). Cyanidin (4) is the major anthocyanidin in tart cherries. In our continued evaluation of the in vivo and in vitro efficacy of these anthocyanins to prevent inflammation and colon cancer, we have added these compounds to McCoy's 5A medium in an effort to identify their degradation products during in vitro cell culture studies. This resulted in the isolation and characterization of protocatechuic acid (5), the predominant degradation product. In addition, 2,4-dihydroxybenzoic acid (6) and 2,4,6-trihydroxybenzoic acid (7) were identified as degradation products. However, these degradation products were not quantified. Compounds 5-7 were also identified as degradation products when anthocyanins were subjected to varying pH and thermal conditions. In cyclooxygenase (COX)-I and -II enzyme inhibitory assays, compounds 5-7 did not show significant activities when compared to the NSAIDs Naproxen, Celebrex, and Vioxx, or Ibuprofen, at 50 microM concentrations. However, at a test concentration of 50 microM, the antioxidant activity of protocatechuic acid (5) was comparable to those of the commercial antioxidants tert-butylhydroquinone (TBHQ), butylated hydroxytoluene (BHT), and butylated hydroxyanisole (BHA), and superior to that of vitamin E at 10 microM concentrations.  相似文献   

16.
Biological removal of ochratoxin A (OTA) by living and heat-treated dead conidia of black Aspergillus isolates representing the species Aspergillus niger, Aspergillus carbonarius, and Aspergillus japonicus in synthetic and natural grape juices was found to be a two-stage phenomenon. Several lines of evidence suggest that the first observed stage was passive, metabolism was not required, and OTA adsorption on conidia of black aspergilli could be involved. This removal was fast, without delay just after conidial inoculation both in synthetic and natural grape juices. Moreover, even nonviable, heat-treated conidia were capable of removing OTA. Finally, no OTA degradation products were detected. In the second observed stage, removal of OTA was linked to degradation by live conidia only. Ochratoxin alpha, a degradation product of OTA, was detected in the medium after incubation for 30 and 14 h for biseriate (A. niger and A. carbonarius) and uniseriate (A. japonicus) black aspergilli, respectively, when well-developed mycelium appeared. Comparisons between the three black Aspergillus isolates tested showed that A. carbonarius detoxified grape juice most effectively. However, this species often produces OTA. A. niger and A. japonicus isolates were also effective and because those species are not systematically OTA producers, they could be interesting for further OTA detoxification processes in grape juices and musts.  相似文献   

17.
The cationic hydroxyethylcellulose Polyquaternium 10 (PQ10) was found to produce a dose-dependent destabilization of casein micelles from whole or skim milk without affecting the stability of most of the whey proteins. The anionic phosphate residues on caseins were not determinant in the observed interaction since the destabilization was also observed with dephosphorylated caseins to the same extent. However, the precipitation process was completely inhibited by rising NaCl concentration, indicating an important role of electrostatic interactions. Furthermore, the addition of 150 mM NaCl solubilized preformed PQ10-casein complexes, rendering a stable casein suspension without a disruption of the internal micellar structure as determined by dynamic light scattering. This casein preparation was found to contain most of the Ca2+ and only 10% of the lactose originally present in milk and remained as a stable suspension for at least 4 months at 4 degrees C. The final concentration of PQ10 determined both the size of the casein-polymer aggregates and the amount of milkfat that coprecipitates. The presence of PQ10 in the aggregates did not inhibit the activity of rennet or gastrointestinal proteases and lipases, nor did it affect the growth of several fermentative bacteria. The cationic cellulose PQ10 may cause a reversible electrostatic precipitation of casein micelles without disrupting their internal structure. The reversibility of the interaction described opens the possibility of using this cationic polysaccharide to concentrate and resuspend casein micelles from whole or skim milk in the production of new fiber-enriched lactose-reduced calcium-caseinate dairy products.  相似文献   

18.
The ability of alphas1/beta-casein and micellar casein to protect whey proteins from heat-induced aggregation/precipitation reactions and therefore control their functional behavior was examined. Complete suppression (>99%) of heat-induced aggregation of 0.5% (w/w) whey protein isolate (pH 6.0, 85 degrees C, 10 min) was achieved at a ratio of 1:0.1 (w/w) of whey protein isolate (WPI) to alphas1/beta-casein, giving an effective molar ratio of 1:0.15, at 50% whey protein denaturation. However, in the presence of 100 mM NaCl, heating of the WPI/alphas1/beta-casein dispersions to 85 degrees C for 10 min resulted in precipitation between pH 6 and 5.35. WPI heated with micellar casein in simulated milk ultrafiltrate was stable to precipitation at pH>5.4. Protein particle size and turbidity significantly (P相似文献   

19.
Biodegradation of beta-cyfluthrin by fungi   总被引:6,自引:0,他引:6  
Five fungal species, namely, Trichoderma viride strain 5-2, T. viride strain 2211, Aspergillus niger, A. terricola, and Phanerochaete chrysoporium were screened for degradation study of beta-cyfluthrin. Each fungal species was allowed to grow in Czapek dox medium containing beta-cyfluthrin (5 mg/mL) as the major carbon source of the medium. The highest degradation of beta-cyfluthrin was observed by T. viride 5-2 (T(1/2) = 7.07 days), followed by T.viride 2211 (T(1/2) = 10.66 days). The degradation of beta-cyfluthrin followed first-order kinetics with a fast degradation rate during first 7 days of growth of the fungi. In the case of T. viride strain 5-2, five degradation products were isolated after 20 days of growth of the fungi, out of which three products were identified as alpha-cyano-4-fluorobenzyl-3- (2,2-dichlorovinyl)-2,2-dimethyl cyclopropane carboxylate, alpha-cyano-4-fluoro-3-phenoxy benzyl alcohol, and 3(2,2-dichlorovinyl)-2,2-dimethyl cyclopropanoic acid.  相似文献   

20.
The rate of isomerization of alpha acids to iso-alpha acids (the compounds contributing bitter taste to beer) was determined across a range of temperatures (90-130 degrees C) to characterize the rate at which iso-alpha acids are formed during kettle boiling. Multiple 12 mL stainless steel vessels were utilized to heat samples (alpha acids in a pH 5.2 buffered aqueous solution) at given temperatures, for varying lengths of time. Concentrations of alpha acids and iso-alpha acids were quantified by high-pressure liquid chromatography (HPLC). The isomerization reaction was found to be first order, with reaction rate varying as a function of temperature. Rate constants were experimentally determined to be k1 = (7.9 x 10(11)) e(-11858/T) for the isomerization reaction of alpha acids to iso-alpha acids, and k2 = (4.1 x 10(12)) e(-12994/T) for the subsequent loss of iso-alpha acids to uncharacterized degradation products. Activation energy was experimentally determined to be 98.6 kJ per mole for isomerization, and 108.0 kJ per mole for degradation. Losses of iso-alpha acids to degradation products were pronounced for cases in which boiling was continued beyond two half-lives of alpha-acid concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号