首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
太湖水稻土麦季尿素氨挥发损失   总被引:11,自引:4,他引:11  
Ammonia volatilization losses from urea applied as a basal fertilizer and a top dressing at tillering stage in a wheat field of Taihu Region, China, were measured with a micrometeorological technique. Urea as fertilizer was surface broadcast at 81 (low N) and 135 (high N) kg N ha-1 as basal at the 3-leaf stage of the wheat seedling on December 2002, and 54 (low N) and 90 (high N) kg N ha-1 as top dressing on February 2003. Ammonia volatilization losses occurred mainly in the first week after applying N fertilizer and mainly during the period after basal fertilizer application, which accounted for more than 80% of the total ammonia volatilization over the entire wheat growth period. Regression analysis showed that ammonia volatilization was affected mainly by pH and NH4^ -N concentration of the surface soil and air temperature.Ammonia volatilization flux was significantly correlated with pH and NH4^ -N concentration of the surface soil and with daily air average temperature and highest temperature. Thus, application of urea N fertilizer to wheat should consider the characteristics of ammonia volatilization in different periods of N application so as to reduce ammonia losses.  相似文献   

2.
氮肥用量对太湖水稻田间氨挥发和氮素利用率的影响   总被引:28,自引:0,他引:28  
Ammonia volatilization losses, nitrogen utilization efficiency, and rice yields in response to urea application to a rice field were investigated in Wangzhuang Town, Changshu City, Jiangsu Province, China. The N fertilizer treatments, applied in triplicate, were 0 (control), 100, 200, 300, or 350 kg N ha^-1. After urea was applied to the surface water, a continuous airflow enclosure method was used to measure ammonia volatilization in the paddy field. Total N losses through ammonia volatilization generally increased with the N application rate, and the two higher N application rates (300 and 350 kg N ha^-1) showed a higher ratio of N lost through ammonia volatilization to applied N. Total ammonia loss by ammonia volatilization during the entire rice growth stage ranged from 9.0% to 16.7% of the applied N. Increasing the application rate generally decreased the ratio of N in the seed to N in the plant. For all N treatments, the nitrogen fertilizer utilization efficiency ranged from 30.9% to 45.9%. Surplus N with the highest N rate resulted in lodging of rice plants, a decreased rate of nitrogen fertilizer utilization, and reduced rice yields. Calculated from this experiment, the most economical N fertilizer application rate was 227 kg ha^-1 for the type of paddy soil in the Taihu Lake region. However, recommending an appropriate N fertilizer application rate such that the plant growth is enhanced and ammonia loss is reduced could improve the N utilization efficiency of rice.  相似文献   

3.
基施磷肥对石灰性土壤上番茄产量的影响   总被引:4,自引:0,他引:4  
A lysimeter experiment with undisturbed soil profiles was carried out to study nitrogen cycling and losses in a paddy soll with applications of coated urea and urea under a rice-wheat rotation system in the Taihu Lake region from 2001 to 2003. Treatments for rice and wheat included urea at conventional, 300 (rice) and 250 (wheat) kg N ha^-1, and reduced levels, 150 (rice) and 125 (wheat) kg N ha^-1, coated urea at two levels, 100 (rice) and 75 (wheat) kg N ha^-1, and 150 (rice) and 125 (wheat) kg N ha^-1, and a control with no nitrogen arranged in a completely randomized design. The results under two rice-wheat rotations showed that N losses through both NH3 volatilization and runoff in the coated urea treatments were much lower than those in the urea treatments. In the urea treatments N runoff losses were significantly (P 〈 0.001) positively correlated (r = 0.851) with applied N. N concentration in surface water increased rapidly to maximum two days after urea application and then decreased quickly. However, if there was no heavy rain within five days of fertilizer application, the likelihood of N loss by runoff was not high. As the treatments showed little difference in N loss via percolation, nitrate N in the groundwater of the paddy fields was not directly related to N leaching. The total yield of the two rice-wheat rotations in the treatment of coated urea at 50% conventional level was higher than that in the treatment of urea at the conventional level. Thus, coated urea was more favorable to rice production and environmental protection than urea.  相似文献   

4.
Pot experiments were carried out to study the effect of incorporation of wheat straw and/ or urea into soil on biomass nitrogen and mineral nitrogen and its relation to the growth and yield of rice.The combined appliation of wheat straw and urea increased much more biomass nitrogen in soil than the application of wheat straw or urea alone and consequently increased the immobilization of urea nitrogen added and reduced the loss of urea nitrogen.An adequate nitrogen-supplying process to rice plant could be obtained if C/ N ratio of the material added was about 20.The three yield components of rice were affected significantly by the status of nitrogen supplying.More than 30mg N/ kg soil of mineral nitrogen at effective tillering stage,panicle initiation stage and filling stage should be maintained in order to get high rice yield,though the criteria varied with the different experimental conditions.  相似文献   

5.
华北平原冬小麦-夏玉米轮作体系中标记15N的去向及残效   总被引:14,自引:0,他引:14  
A field experiment was conducted to investigate the fate of 15N-labeled urea and its residual effect under the winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) rotation system on the North China Plain. Compared to a conventional application rate of 360 kg N ha-1 (N360), a reduced rate of 120 kg N ha-1 (N120) led to a significant increase (P < 0.05) in wheat yield and no significant differences were found for maize. However, in the 0-100 cm soil profile at harvest, compared with N360, N120 led to significant decreases (P < 0.05) of percent residual N and percent unaccounted-for N, which possibly reflected losses from the managed system. Of the residual fertilizer N in the soil profile, 25.6%-44.7% and 20.7%-38.2% for N120 and N360, respectively, were in the organic N pool, whereas 0.3%-3.0% and 11.2%-24.4%, correspondingly, were in the nitrate pool, indicating a higher potential for leaching loss associated with application at the conventional rate. Recovery of residual N in the soil profile by succeeding crops was less than 7.5% of the applied N. For N120, total soil N balance was negative; however, there was still considerable mineral N (NH4+-N and NO3--N) in the soil profile after harvest. Therefore, N120 could be considered agronomically acceptable in the short run, but for long-term sustainability, the N rate should be recommended based on a soil mineral N test and a plant tissue nitrate test to maintain the soil fertility.  相似文献   

6.
施用辐照处理的污水污泥对作物产量和土壤氮的影响   总被引:1,自引:0,他引:1  
A field experiment was conducted to study the feasibility of irradiated and non-irradiated sewage sludge as a fertilizer for the growth of wheat and rice. The irradiated and non-irradiated sewage sludge were applied at rates of 0 (CK), 75, 150, 225 and 300 kg N ha-1 for wheat, and 0 (CK), 112.5, 225, 337.5 and 450 kg N ha-1 for rice, respectively. (NH4)2SO4 at a rate of 150 kg N ha-1 for wheat, and 225 kg N ha-1 for rice were added to the control treatments. Additionally, 20 kg 15N ha-1 in the form of (NH4)2SO4 was added to each treatment for wheat to study the effect of sewage sludge on chemical nitrogen fertilizer recovery. The results showed that the irradiation of sewage sludge by gamma ray at a dosage of 5 kGy increased crop yield by 11%~27% as compared to the non-irradiated treatments. Irradiation stimulated mineralization of organic nitrogen in the sludge and improved seedling growth. It was found that addition of irradiated sludge could reduce the leaching loss of chemical nitrogen fertilizer. Both irradiated and non-irradiated sewage sludge could increase the content of soil total nitrogen. Based on the preliminary results, it was concluded that irradiated sewage sludge could partly substitute for chemical nitrogen fertilizer in crop production.  相似文献   

7.
Total nitrogen(N) loss and ammonia volatilization from urea applied to flooded rice grown on a paddy soil in Zhejiang Province were measured by ^15N balance and micro-meteorological methods,respectively.Floodwater properties and ammonia loss from the circular plot were compared with those from the microplots.And the effectiveness of urease inhibitor,NBPT [N-(n-butyl) thiophosphoric triamide],was also tested Results showed that the total losses from urea broadcast and incorporated at transplanting (basal dressing) were similar with those from urea broadcast 12 days after transplanting (top-dressing)(51.5% and 48%,respectively,of applied N),and ammonia losses were low,the corresponding figures were 10.8% and 7.0% of applied N,respectively.Thus,denitrification was a much more important pathway of nitrogen loss than ammonia volatilization under the particular conditions.Addition of NBPT retarded urea hydrolysis,reduced pHs and ammoniacal nitrogen concentrations of floodwater for either the application of urea as basal or as top-dressing,but these effects were not translated into the reduction of total nitrogen loss.Floodwater pHs and ammonia loss in the microplots were apparently lower than those in the circular plot from urea applied as basal dressing;however,such differences were not found when urea was top-dressed.The frequently raining days occurred after top-dressing may be responsible for the insignificant effect of plot size on floodwater pHs and ammonia volatilization.It seems that the effects of phot size on ploodwater properties and ammonia loss mainly depend on weather conditions,in addition to the height and leaf area index of the crop.  相似文献   

8.
The management of fertilizer application is crucial for agricultural production and environmental safety.The objective of this study was to assess the effciency of different fertilization strategies,applying fertilizers with and without nitrification inhibitors(NIs) in split application,in Greece.The assessment criteria used were based on crop yield,soil nitrogen(N)concentrations and economic effciency.For this purpose two crops(winter wheat and cotton)were seffected in order to explore the optimum fertilization strategy for each crop.Three treatments combining fertilizers with NIs were tested compared with conventional fertilization(CF).Slight differences in the quantity and the combination of fertilizers with NIs applied resulted in variable effects on crop yield,soil N and economic return.Split N application of 102 kg ha-1,with half of the total amount applied at seeding,resulted in higher grain yield of winter wheat,lower NO3--N in soil and higher economic return.This result reveals the importance of N application at seeding in wheat crop.Fertilization strategy with 109.5 kg N ha-1 and split P application resulted in higher cotton yield and higher economic profit.Split P application seemed to increase yield,even though it is not a common practise in the area.  相似文献   

9.
淹水条件下FACE处理的水稻以及小麦秸秆的分解及产物   总被引:2,自引:0,他引:2  
LIU Juan  HAN Yong  CAI Zu-Cong 《土壤圈》2009,19(3):389-397
Winter wheat and rice straw produced under ambient and elevated CO2 in a China rice-wheat rotation free-air CO2 enrichment (FACE) experiment was mixed with a paddy soil at a rate of 10 g kg-1 (air-dried), and the mixture was incubated under flooded conditions at 25 ℃ to examine the differences in decomposition as well as the products of crop residues produced under elevated CO2. Results showed that the C/N ratio and the amount of soluble fraction in the amended rice straw grown under elevated CO2 (FR) were 9.8% and 73.1% greater, and the cellulose and lignin were 16.0% and 9.9% lesser than those of the amended rice straw grown under ambient CO2 (AR), respectively. Compared with those of the AR treatment, the CO2-C and CH4-C emissions in the FR treatment for 25 d were increased by 7.9% and 25.0%, respectively; a higher ratio of CH4 to CO2 emissions induced by straw in the FR treatment was also observed. In contrast, in the treatments with winter wheat straw, the CO2-C and CH4-C productions, the ratio of straw-induced CH4 to CO2 emissions, and the straw composition were not significantly affected by elevated CO2, except for an 8.0% decrease in total N and a 9.7% increase in C/N ratio in the wheat straw grown under elevated CO2. Correlation analysis showed that the net CO2-C and CH4-C emissions from straw and the ratio of straw-induced CH4 to CO2 emissions were all exponentially related to the amount of soluble fraction in the amended straw (P < 0.05). These indicated that under flooded conditions, the turnover and CH4 emission from crop straw incorporated into soil were dependent on the effect of elevated CO2 on straw composition, and varied with crop species. Incorporation of rice straw grown under elevated CO2 would stimulate CH4 emission from flooded rice fields, whereas winter wheat straw grown under elevated CO2 had no effect on CH4 emission.  相似文献   

10.
无机包膜肥料在提高小麦氮素利用率和产量效应的研究   总被引:13,自引:2,他引:13  
A field experiment with winter wheat (Triticum aestivurn L.) was conducted on a silt loam calcaric endorusti-ustic Cambosols derived from the Yellow River alluvial deposits in Henan, China, from 2001 to 2002 to evaluate N recovery and agronomic performance of different mineral coated fertilizers (MiCFs) compared to normal urea used in wheat cropping systems under field conditions. Five treatments, including CK (check, no N fertilizer), urea and three different MiCFs at an equivalent N application rate were established in a randomized complete block design. N release from MiCFs in soil was more synchronous with the N requirement of wheat throughout the growth stages than that from urea, with grain yield of the MiCF treatments significantly higher (P 〈 0.05) than that of the treatment urea. Correspondingly, the N recovery rate was greater for all MiCFs compared to urea, increasing from 32.8% up to 50.1%. Due to its high recovery and low cost, use of the mineral coated N fertilizers was recommended instead of the polymer coated N fertilizers.  相似文献   

11.
【目的】在我国水稻生产中探讨秸秆全量还田与氮肥配施的理论与技术,阐明秸秆还田对水稻产量、 氮素利用率及氮素损失的影响,对于提高水稻产量和氮素利用效率、 减少氮污染具有重要意义。【方法】2009~2011年,以水稻南粳46为材料,在江苏常熟农业生态实验站进行原状土柱模拟试验。试验采用裂区设计,主区为秸秆全量还田(S)和无秸秆还田(S0); 副区为氮肥用量(N),设置N 120、 180、 240和300 kg/hm2 4个氮水平,以不施氮肥(N0)为对照。分析了水稻基肥期、 分蘖期、 穗肥期的氨挥发量和土壤80 cm处渗漏水全氮含量,土壤0—15 cm全氮含量,水稻产量,以及水稻籽粒和秸秆氮含量,计算水稻生育期氮肥的氨挥发损失率、 淋溶损失率、 土壤残留率以及水稻的氮肥利用效率。【结果】水稻产量随氮肥适宜用量增加而增加,与单施氮肥相比,秸秆还田下水稻平均增产6.3%,其中N 240 kg/hm2 处理产量最高; 水稻的氮肥利用率随施氮量的增加呈下降趋势,秸秆还田能够提高水稻的氮肥利用率,氮肥农学效率和氮肥表观利用率较单施氮肥分别提高1.4~3.4 kg/kg和1.8%~4.2%; 水稻田氨挥发损失量、 氮肥淋溶损失量和土壤残留氮量均随施氮量的增加而增加,在N 240 kg/hm2水平下,秸秆还田氨挥发损失量增加18.2%、 土壤残留氮量增加10.1 kg/hm2,减少氮素淋溶损失量30.9%,氮肥总损失率降低6.0%。【结论】在秸秆全量还田下,配施适量的氮肥,可以提高水稻对氮肥的利用率,增加产量,同时减少氮肥损失。本试验中,以麦秸全量还田配施N 240 kg/hm2为最优组合。  相似文献   

12.
优化施氮下稻-麦轮作体系氮肥氨挥发损失研究   总被引:19,自引:4,他引:15  
采用密闭室连续通气法研究了优化施氮下湖北稻-麦轮作体系农田氨挥发损失。结果表明,肥料氮素氨挥发损失量随施肥量增加而增加。施肥处理小麦季氨挥发损失量为N 11.37~17.05 kg/hm2,肥料氮氨挥发损失率为4.75%5~.43%,氨挥发峰值大约发生在施肥后的第35~d,肥料氨挥发过程持续71~0 d;水稻季氨挥发损失量为N32.506~2.82 kg/hm2,肥料氮氨挥发损失率为8.24%1~9.38%,氨挥发峰值大约发生在施肥后的第23~d,氨挥发过程持续57~d。水稻季和小麦季氨挥发之间差异显著,整个稻-麦轮作体系氨挥发主要发生在水稻季,约占整个轮作体系的74.08%7~8.65%。同习惯施氮相比,基于作物阶段氮素吸收增加追肥比例和施肥次数的优化施氮能有效减少肥料氮的氨挥发损失。  相似文献   

13.
稻田控释氮肥的施用效果与合理施用技术   总被引:26,自引:7,他引:26  
选用新型控释氮肥(LP)5个类型,采用其不同用量和组合,在南方典型双季稻区第四纪红壤发育的水稻土上进行早稻和晚稻的一次性基肥试验。结果表明,施用不同控释氮肥,稻田表层土和表面水的NH4+-N含量极显著地低于常规氮肥(尿素);控释肥的氮素释放过程与水稻吸氮过程基本一致。控释氮肥用量以N75kg/hm2较适宜,其用量比尿素N150kg/hm2相比仍可维持高产;早稻施用控释氮肥,可成功地实现施肥、播种、抛秧的一次性技术配套与结合,减轻劳动强度,适当提高种植密度有利于高产;晚稻采用条施的方法可显著地提高产量。与尿素N150kg/hm2比较,早稻选用控释氮肥LPS40或LPS60较好;晚稻选用LP70和LPS80并按LP70(50%)+LPS80(50%)的比例搭配,有利于水稻生长发育和维持高产。控释氮肥具有缓释作用,其供应氮素持久;LPS40和LPS60用量N150kg/hm2且高密度栽培时有一定的后效,可分别提高再生稻产量10%和16%。  相似文献   

14.
太湖地区冬小麦季土壤氨挥发与一氧化氮排放研究   总被引:1,自引:0,他引:1  
采用密闭室连续抽气法和静态箱法同步研究了太湖地区冬小麦季田间小区试验中不同施氮处理的氨挥发与一氧化氮(NO)排放的规律。结果表明,麦季氨挥发主要发生在施肥后 7~10d,以基肥期挥发量最大,为NH3-N 0.49~9.36 kg/hm2,占整个麦季观测期间挥发量的60.4%~74.7 %;NO的排放则主要发生在施用基肥后的30d 内,量虽小但持续时间较长,排放速率为NO-N 0.009~0.304 mg/(m2.h),该时期总损失量为NO-N 0.68~1.23 kg/hm2,约占整个麦季观测期排放量的 93%。氨挥发和 NO 排放均随施氮量的增加而增加。各施氮处理麦季观测期的氨挥发总损失量为NH3-N 7.6~12.6 kg/hm2,损失率4.62%~5.26%;NO排放总量为NO-N 0.73~1.3 kg/hm2,损失率0.27%~0.41%。研究结果对综合评价太湖地区麦季氮肥的气态损失及其环境效应、指导合理施肥都具有重要意义。  相似文献   

15.
镇江丘陵区稻田化肥氮的氨挥发及其影响因素   总被引:34,自引:6,他引:34       下载免费PDF全文
采用密闭室方法对镇江丘陵区典型稻麦轮作制度下的水稻插秧、分蘖和孕穗期施用尿素的氨挥发进行了测定,并对施肥后土壤pH的变化及其对氨挥发的影响进行了分析,结果表明稻田施用尿素有明显的氨挥发损失,氨挥发损失率在水稻不同生育期有很大的差异,分蘖肥的氨挥发显著高于基肥和孕穗肥,受温度、植株状况以及光照条件等因素的影响,氮挥发存在明显的年际差异。田面水的pH值在施肥后有明显的昼夜波动,而氨挥发损失受田面水pH值变化的显著影响。稻草对不同生育期施肥的氨挥发影响不同。  相似文献   

16.
常规灌溉条件下施氮对温室土壤氨挥发的影响   总被引:4,自引:1,他引:4  
为明确温室土壤的氨挥发特征,探讨适宜的减量施氮措施对氨挥发损失量及黄瓜产量的影响,在常规灌溉条件下设置了3个施氮(尿素)处理,采用通气法测定了冬春季黄瓜地中的氨挥发速率。结果表明:温室土壤在氮肥基施后7 d出现氨挥发速率峰值,但在氮肥追施后,施肥带与非施肥带的氨挥发速率峰值分别在第1 d与第5 d出现,氨挥发速率的峰值比氮肥基施时下降了8.6%~46.3%,施肥带的累积氨挥发量是非施肥带的0.91~1.54倍。冬春季黄瓜地的氨挥发损失量为16.7~26.6 kg/hm2,其中减施氮25%处理N900(900 kg/hm2)与减施氮50%处理N600(600 kg/hm2)与习惯施氮处理N1200(1 200 kg/hm2)相比,氨挥发损失量分别降低了22.1%和37.2%。而2 a黄瓜产量的平均值以处理N600(600 kg/hm2)最高,比处理N1200(1 200 kg/hm2)增加了6.52%。综合考虑氨挥发损失量、黄瓜产量及施氮量,在河北省的温室冬春季黄瓜生产中,比农民习惯氮用量(1 200 kg/hm2)减少25%~50%的措施是可行的。  相似文献   

17.
冬小麦上短控释期尿素的适宜施用量与施用方法研究   总被引:4,自引:3,他引:1  
【目的】控释尿素受土壤温度、 水分等环境条件的影响,应用效果不一。对比相同施氮量下一次性基施控释尿素与尿素分期施用,以及控释尿素和普通尿素追施对冬小麦籽粒产量、 品质, 氮肥利用率及综合经济效益的影响,可为控释尿素的合理施用提供理论和技术依据。【方法】采用大田试验,选用新麦26为供试材料,随机区组试验设计,调查了冬小麦籽粒产量、 主要品质性状、 氮肥利用率及经济效益。设两个试验,试验1: 控释尿素和普通尿素各设5个氮肥水平,即N 0、 120、 160、 200和240 kg/hm2; 试验2: 设不施氮肥、 N 200 kg/hm2总氮量下普通尿素和控释尿素均40%返青期追施3个处理。【结果】 1)与不施氮(CK)相比,控释尿素和普通尿素均可显著提高小麦籽粒产量,且随着施氮量的增加而增加,其中以分期施用普通尿素N 240 kg/hm2处理籽粒产量最高。相同施氮量下,分期施用普通尿素处理小麦籽粒产量显著高于一次性基施控释尿素处理(N 160 kg/hm2除外)。然而,返青期追施控释尿素处理小麦籽粒产量显著高于同期追施普通尿素处理,增产率达15.8%; 2)相同施氮量下,分期施用普通尿素处理较一次性基施控释尿素处理的小麦籽粒容重、 蛋白质含量、 水分含量、 湿面筋含量均有所提高,且两种尿素处理间籽粒容重在N 160 kg/hm2和N 200 kg/hm2时差异达显著水平。然而,返青期追施控释尿素处理小麦籽粒容重、 湿面筋含量、 蛋白质含量等品质指标显著高于同期追施普通尿素处理; 3)两种尿素处理氮肥农学利用率和氮肥偏生产力随施氮量的增加而降低,在相同施氮量下分期施用普通尿素处理显著高于一次性基施控释尿素处理。此外,与分期施用普通尿素处理相比,一次性基施控释尿素处理减少了小麦拔节期追肥人工成本投入,但由于一次性基施控释尿素处理籽粒产量较低和氮肥价格较高,导致经济效益相对较低。然而,试验2结果表明,返青期追施控释尿素处理氮素利用率(氮肥农学效率、 氮肥偏生产力及氮素回收率)和经济效益显著高于同期追施普通尿素处理。【结论】本研究地区较适宜的推荐氮肥施用量为N 200 kg/hm2,一次性基施控释尿素较适宜于劳力欠缺的农户,而对于个别劳力充足的农户则适宜采用分期追施普通尿素或者小麦返青期追施控释尿素的氮肥管理技术。因此,在当前农村劳动力日益减少,用工成本日益增加以及种粮比较效益持续降低的大环境下,氮素肥料合理选择和施用技术要依据实际情况而定。  相似文献   

18.
氨挥发是肥料氮素损失的重要途径之一,损失率因土壤类型、气候条件、肥料用量、施肥时间和方式等不同而存在很大差异。为了筛选提高氮肥利用率的肥料运筹方式,本文利用长期定位试验平台,采用间歇密闭通气法,研究了有机无机肥长期施用条件下小麦季土壤氨挥发损失及其影响因素。结果表明,不同肥料种类和配施强烈地影响着土壤氨挥发,在150kgN·hm^-2用量下小麦季氨挥发损失量以NK和有机肥处理为最高,分别达到17.89和15.70kgN·hm^-2,占氮肥用量的10.47%-11.93%,显著高于NPK、NP和有机无机肥配施(1/20M)处理。土壤氨挥发速率与气温呈显著正相关,基肥施用后灌水可以有效地降低氨挥发损失。NPK肥料平衡施用或者有机无机肥配施可以减少氨挥发损失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号