首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Legumes as dry season fallow in upland rice-based systems of West Africa   总被引:4,自引:0,他引:4  
Declining fallow length in traditional upland rice-based cropping systems in West Africa results in a significant yield reduction due mainly to increased weed pressure and declining soil fertility. Promising cropping system alternatives include the use of weed-suppressing legumes as short duration fallows. N accumulation, N derived from the atmosphere (Ndfa), weed suppression, and the effects on rice yield were evaluated in 50 legumes, grown at four sites in Côte d'Ivoire with contrasting climate, soils, and rice production systems. The sites were located in the derived and the Guinea savanna and in the bimodal and the monomodal rainfall forest zones. Legume and weed biomass during the fallow were determined at bimonthly intervals. Percent Ndfa by biological N fixation was determined by 15N natural abundance. Fallow vegetation was cleared and rice seeded according to the practice of local farmers and the cropping calendar. Weed biomass and species composition were monitored at monthly intervals. Legume fallows appear to offer the potential to sustain rice yields under intensified cropping. Biomass was in most instances significantly greater in the legume fallow than in the "weedy" fallow control, and several legume species suppressed weed growth. N accumulation by legumes varied between 1–270?kg N ha–1 with 30–90%?Ndfa. Across sites, Mucuna spp., Canavalia spp., and Stylosanthes guianensis showed consistently high N accumulation. Grain yields of rice which had been preceded by a legume fallow were on average 0.2?Mg ha–1 or about 30% greater than that preceded by a natural weedy fallow control. At the savanna sites where fallow vegetation was incorporated, Mucuna spp. and Canavalia ensiformis significantly increased rice yield. In the bimodal forest zone, the highest rice yield and lowest weed biomass were obtained with Crotalaria anagyroides. In general, the effects of legume fallows on rice yield were most significant in environments with favourable soil and hydrological conditions.  相似文献   

2.
Abstract

The popular and widely used 15nitrogen (N)–isotope dilution method for estimating biological N fixation (BNF) of pasture and tree legumes relies largely on the ability to overcome the principal source of error due to the problem of selecting appropriate reference plants. A field experiment was conducted to evaluate the suitability of 12 non‐N2‐fixing plants (i.e., nonlegumes) as reference plants for estimating the BNF of three pasture legumes (white clover, Trifolium repens L.; lucerne, Medicago sativa; and red clover, Trifolium pratense L.) in standard ryegrass–white clover (RWC) and multispecies pastures (MSP) under dry‐land and irrigation systems, over four seasons in Canterbury, New Zealand. The 15N‐isotope dilution method involving field 15N‐microplots was used to estimate BNF. Non‐N2‐fixing plants were used either singly or in combination as reference plants to estimate the BNF of the three legumes. Results obtained showed that, on the whole, 15N‐enrichment values of legumes and nonlegumes varied significantly according to plant species, season, and irrigation. Grasses and herb species showed higher 15N‐enrichment than those of legumes. Highest 15N‐enrichment values of all plants occurred during late summer under dry‐land and irrigation conditions. Based on single or combined non‐N2‐fixing plants as reference plants, the proportion of N derived from the atmosphere (% Ndfa) values were high (50 to 90%) and differed between most reference plants in the MSP pastures, especially chicory (Cichorium intybus), probably because it is different in phenology, rooting depth, and N‐uptake patterns compared to those of legumes. The percent Ndfa values of all plants studied also varied according to plant species, season, and irrigation in the MSP pastures. Estimated daily amounts of BNF varied according to pasture type, time of plant harvest, and irrigation, similar to those shown by percent Ndfa results as expected. Irrigation increased daily BNF more than 10‐fold, probably due to increased dry‐matter yield of pasture under irrigation compared to dry‐land conditions. Seasonal and irrigation effects were more important in affecting estimates of legume BNF than those due to the appropriate matching of N2‐fixing and non‐N2‐fixing reference plants.  相似文献   

3.
Twelve herbaceous and shrub legume species were grown in pot and field experiments in five sites representing three agroecological zones in moist savanna in Nigeria. The objectives were to: (1) assess natural nodulation of the legumes and characterize their indigenous rhizobia, (2) determine their need for rhizobia inoculation and (3) estimate the amount of N2 fixed by each of these legumes. At 4 weeks after planting (WAP), Crotolaria verrucosa was not nodulated at any of the sites while Centrosema pascuorum had the highest number of nodules in all sites. At 8 WAP, all legumes were nodulated, with Mucuna pruriens having the least number of nodules and Stylosanthes hamata the highest. The number of nodules, however, was inversely correlated to the mass of nodules. Significant differences in nodulation of the legume species grown in the field also occurred between and within sites. Mucuna pruriens and Lablab purpureus produced more shoot and nodule biomass than the other legumes in all sites. Growth of most of these legumes responded to fertilizer application, except for C. verrucosa and Aeschynomene histrix. Except for C. verrucosa, average proportion of N2 fixed was about 80% and this was reduced by about 20% with N fertilizer application. The majority of rhizobia isolates (60%) were slow growing, belonging to the Bradyrhizobia spp. group. Selected rhizobia isolates evaluated on Cajanus cajan, C. pascuorum, M. pruriens and Psophocarpus palustris varied from ineffective to highly effective in Leonard jar conditions. However, only growth of M. pruriens responded to inoculation in potted soils, whereas it was lower than that obtained with N fertilizer application. This indicated the need to screen more rhizobia in order to improve N2 fixation and growth of legume species such as M. pruriens when it is introduced in soils deficient in N.  相似文献   

4.
Summary The competitive ability of inoculated and indigenous Rhizobium/Bradyrhizobium spp. to nodulate and fix N2 in grain legumes (Glycine max, Vigna unguiculata, Phaseolus vulgaris) and fodder legumes (Vicia sativa, Medicago sativa, and Trifolium subterraneum) was studied in pots with two local soils collected from two different fields on the basis of cropping history. The native population was estimated by a most-probable-number plant infectivity test in growth pouches and culture tubes. The indigenous rhizobial/bradyrhizobial population ranged from 3 to 2×104 and 0 to 4.4×103 cells g-1 in the two soils (the first with, the second without a history of legume cropping). Inoculated G. max, P. vulgaris, and T. subterraneum plants had significantly more nodules with a greater nodule mass than uninoculated plants, but N2 fixation was increased only in G. max and P. vulgaris. A significant response to inoculation was observed in the grain legume P. vulgaris in the soil not previously used to grow legumes, even in the presence of higher indigenous population (>103 cells g-1 soil of Rhizobium leguminosarum bv phaseoli). No difference in yield was observed with the fodder legumes in response to inoculation, even with the indigenous Rhizobium sp. as low as <14 cells g-1 soil and although the number and weight of nodules were significantly increased by the inoculation in T. subterraneum. Overall recovery of the inoculated strains was 38–100%, as determined by a fluorescent antibody technique. In general, the inoculation increased N2 fixation only in 3 out of 12 legume species-soil combinations in the presence of an indigenous population of rhizobial/bradyrhizobial strains.  相似文献   

5.
Studies were conducted on paddy soils to ascertain N2 fixation, growth, and N supplying ability of some green-manure crops and grain legumes. In a 60-day pot trial, sunhemp (Crotalaria juncia) produced a significantly higher dry matter content and N yield than Sesbania sesban, S. rostrata, cowpeas (Vigna unguiculata), and blackgram (V. mungo), deriving 91% of its N content from the atmosphere. Dry matter production and N yield by the legumes were significantly correlated with the quantity of N2 fixed. In a lowland field study involving sunhemp, blackgram, cowpeas, and mungbean, the former produced the highest stover yield and the stover N content, accumulating 160–250 kg N ha-1 in 60 days, and showed great promise as a biofertilizer for rice. The grain legumes showed good adaptability to rice-based cropping systems and produced a seed yield of 1125–2080 kg ha-1, depending on the location, species, and cultivar. Significant inter- and intraspecific differences in the stover N content were evident among the grain legumes, with blackgram having the highest N (104–155 kg N ha-1). In a trial on sequential cropping, the groundnut (Arachis hypogaea) showed a significantly higher N2 fixation and residual N effect on the succeeding rice crop than cowpeas, blackgram, mungbeans (V. radiata), and pigeonpeas (Cajanus cajan). The growth and N yield of the rice crop were positively correlated with the quantity of N2 fixed by the preceding legume crop.  相似文献   

6.
Topography and slope position influence the soil and environmental factors that affect N2 fixation by legumes. The present study was conducted to (1) estimate N2 fixation by field peas in a gently rolling farm field using the natural 15N abundance and the 15N-enriched isotope dilution techniques and (2) identify soil and environmental factors that influence N2 fixation at the landscape scale. Whereas soil available water capacity, available NH inf4 sup+ , total crop yield, and percent N derived from N2 fixation (% Ndfa) estimated using enriched N were significantly affected by landform patterns, soil NO inf3 sup- levels, seed yield, and the % Ndfa estimated using natural abundance did not follow landform patterns. The % Ndfa using natural abundance was correlated with NH inf4 sup+ but not with available soil water, pH, electrical conductivity, NO inf3 sup- , or particle size. Estimates of the % Ndfa using enriched 15N ranged from 0 to 92.8%. The highest median value (68.6%) for % Ndfa using enriched N occurred on the divergent footslopes, with the lowest value (28.1%) on the convergent shoulders. Estimates of % Ndfa using natural abundance ranged from 13.2% to 96.9%. Smaller fluctuations during the growing season in the 15N of the available N pool may have resulted in less variability for % Ndfa using natural abundance compared to enriched 15N. Despite similar mean values for % Ndfa using natural abundance (44.5) and enriched 15N (49.6), no significant correlation between the two estimates was found. These results suggest that although topography may exert gross controls on N2 fixation, large variations in N2 fixation at the microsite level may preclude correlations between individual estimates and limit detection of landscape scale patterns of N2 fixation.Contribution No. R754 of the Saskatchewan Center of Soil Research  相似文献   

7.
Ontogenic variations in N2 fixation and accumulation of N by the mungbean (Vigna radiata L. Wilczek), blackgram (Vigna mungo L. Hepper), cowpea (Vigna unguiculata L. Walp.), and groundnut (Arachis hypogaea L.) were studied by a 15N-dilution technique. Pots filled with 7 kg of red yellow podzolic soil were used. Samples were taken 20, 40, 60, and 80 days after emergence which approximately corresponded to preflowering, flowering, early/mid-pod filling and late pod filling stages, respectively. During early growth (up to 40 days after emergence), the carryover of seed N accounted for a considerable fraction of the total plant N in the legumes, the highest being in the groundnut. With a correction for carryover, the groundnut derived over 45% of its N content from the atmosphere 20 days after emergence whereas the corresponding figures were 33% for the blackgram and about 28% for the cowpea and mungbean. Between flowering and early pod fill, there was a rapid increase in N2 fixation in all legumes except in groundnut which showed highest fixation from 60 to 80 days after emergence. In the mungbean, N2 fixation and uptake of soil N were insignificant 60 days after emergence while in other legumes these processes continued beyond this time. All legumes derived about 90% of their N from atmosphere by 80 days after emergence. However, due to considerable interspecific differences in total N yield the final amount of N2 fixed showed an appreciable variation among legumes. It was highest in the groundnut (443 mg N plant-1) followed by the cowpea (385), blackgram (273), and mungbean (145), respectively. The groundnut maintained nodules until the late pod filling stage while in other legumes, nodules senesced progressively following the mid-pod filling stage. During pod filling there was a net mobilization of N from vegetative tissues to developing pods in the mungbean, which amounted to about 20% of N in seeds. This mobilization was not evident in other legumes.  相似文献   

8.
Influence of NPK on performance of the stem-nodulating legumes Sesbania rostrata and Aeschynomene afraspera in lowland rice The stem-nodulating tropical legumes S. rostrata and A. afraspera are promising green manure species for the low-input rice farming systems of lowland areas. Nutrient imbalances and soils low in available nutrients can considerably affect the use of biofertilizers. Use of mineral N, P, and K fertilizers in the growth of S. rostrata and A. afraspera as biofertilizers for lowland rice in the Philippines was evaluated. Applied P and K both stimulated growth, nodulation, and N2 fixation. N accumulation in PK fertilized S. rostrata was about 40% higher than in nonfertilized green manure. Mineral N application (urea) depressed nodulation and N2 fixation (ARA) in roots and resulted in an increased ARA in stem nodules. The legumes produced more N gains in the presence of small amounts of N. Use of S. rostrata and A. afraspera green manure increased in all cases significantly rice grain yield. Thus integration of mineral N, P, and K fertilizers in a green manurebased rice farming system can considerably improve biofertilizer production and increase rice grain yield.  相似文献   

9.
Growth and soil N supply in young Eucalyptus tereticornis stands at two sites in Kerala, India, were examined in response to cover cropping with three legume species (Pueraria phaseoloides, Stylosanthes hamata, and Mucuna bracteata). The effects of legume residues on soil N supply were investigated in a long-term (392 day) laboratory incubation using leaching micro-lysimeters. Residues from the eucalypt and legume species had different rates of net N release during the laboratory incubation. Net N release was significantly related to residue N concentration (R2 =0.94), the C:N ratio (R2 =0.91), the lignin:N ratio (R2 =0.83), and the (lignin + soluble polyphenol):N ratio (R2 =0.95). Nitrogen release rates declined in the order Mucuna > Pueraria > Eucalyptus > Stylosanthes. There was no net N release from Stylosanthes residues during the 392-day laboratory incubation, whereas Mucuna and Pueraria released N throughout the incubation period. Net N release from mixtures of legume and eucalypt residues was not additive in the early phase of the incubation, probably because eucalypt residues initially immobilized a portion of the legume-derived N in addition to the soil-derived N. Legume establishment had no significant effect on tree growth at one site (Kayampoovam), but resulted in depressed tree growth at the lower rainfall site (Punnala) at 18 months. There were no significant treatment effects on growth at Punnala after that time. Cover cropping with legumes during the early phase of forest plantation growth may be a useful mechanism to enhance soil N supply and optimize the synchrony between N supply and tree N uptake. Although these effects did not translate into improved plantation growth in the 3 years of this study, improved soil organic matter and N fertility may help ensure sustainable productivity over several rotations in the future. This study showed that the effect of legumes on N dynamics varies markedly with legume species. This, together with other factors (e.g. competition with trees, N fixation capacity), will be important in selecting suitable species for cover cropping in forest plantations.  相似文献   

10.
Summary A field experiment in concrete-based plots was conducted to estimate the contribution of N derived from air (Ndfa) or biological N2 fixation in Sesbania rostrata and S. cannabina (syn. S. aculeata), using various references, by the 15N dilution method. The two Sesbania species as N2-fixing reference plants and four aquatic weed species as non-N2-fixing references were grown for 65 days after sowing in two consecutive crops, in the dry and the wet seasons, under flooded conditions. Soil previously labeled with 15N at 0.26 atom % 15N excess in mineralizable N was further labeled by ammonium sulfate with 3 and 6 atom % 15N excess. The results showed that 15N enrichment of soil NH 4 + -N dropped exponentially in the first crop to half the original level in 50 days while in the second crop, it declined gradually to half the level in 130 days. The decline in 15N enrichment, in both N2-fixing and non-fixing species, was also steeper in the first crop than in the second crop. Variations in 15N enrichment among non-fixing species were smaller in the second crop. The ratio of the uptake of soil N to that of fertilizer N in N2-fixing and non-fixing species was estimated by the technique of varying the 15N level. In the second crop, this ratio in non-fixing species was higher than that in N2-fixing species. Comparable estimates of % Ndfa were obtained by using 15N enrichment of various non-fixing species. There was also good agreement between the estimates obtained by using 15N enrichment of non-fixing species and those by using soil NH 4 + -N, particularly in the second crop. By 25 days after sowing, the first crop of both Sesbania spp. had obtained 50% of total N from the atmosphere and the second crop had obtained 75%. The contribution from air increased with the age of the plant and ranged from 70% to 95% in 45–55 days. S. rostrata fixed substantially higher amounts of N2 due to its higher biomass production compared with S. cannabina. Mathematical considerations in applying the 15N dilution method are discussed with reference to these results.  相似文献   

11.
The Old Rotation cotton experiment was designed to aid farm managers in implementing rotation schemes that not only increase yield, but also improve soil quality. Six different crop rotation treatments were imposed since 1896. Rotations were: IA, cotton (Gossypium hirsutum L.) grown every year without a winter legume and without N fertilization; IB, cotton grown every year with a winter legume and without N fertilization; IC, cotton grown every year without a winter legume and with 134 kg N as NH4NO3 ha-1 year-1; IIA, 2-year cotton-corn (Zea mays L.) rotation with a winter legume and without N fertilization; IIB, 2-year cotton-corn rotation with a winter legume and with 134 kg N ha-1 year-1 as NH4NO3; and III, 3-year cotton-corn- alternating soybean [Glycine max (L.) Merr.] or rye (Secale cereale L.) rotation with a winter legume and with 134 g N as NH4NO3 ha-1 year-1. Crimson clover (Trifolium incarnatum L.) was the winter legume cover crop. The 2-year cotton-corn rotation with a winter legume and with 134 kg N ha-1 year-1 (IIB) and the 3-year cotton-corn soybean/rye rotation with a winter legume and with 134 kg N ha-1 year-1 (III) had higher amounts of soil organic matter, soil microbial biomass C and crop yield than the other four treatments. The cotton grown every year without a winter legume or N fertilizer (IA) had a lower amount of soil organic matter, soil microbial biomass C and N and cotton seed yield than all other rotations. In 1988 and 1992 cotton seed and legume yield were correlated in positive, curvilinear relationships with soil organic matter (r 2 ranged from 0.72 to 0.87). In most months, soil microbial biomass C and N was lower in the cotton grown every year without winter legumes or fertilizer (IA) than the other five rotations. In 1994, microbial biomass C and the Cmic:Corg ratio correlated in positive, curvilinear relationships with seed cotton yield (r 2=0.87 and 0.98, respectively). After 99 years of management the Old Rotation cotton experiment indicates that winter legumes increase amounts of both C and N in soil, which ultimately contribute to higher cotton yields. Microbial biomass C and the Cmic:Corg ratio are poor predictors of annual crop yield but may be an accurate indicator of soil health and a good predictor of long-term crop yield.  相似文献   

12.
Nitrogen (N) and phosphorus (P) deficiencies are key constraints in rainfed lowland rice (Oryza sativa L.) production systems of Cambodia. Only small amounts of mineral N and P or of organic amendment are annually applied to a single crop of rainfed lowland rice by smallholder farmers. The integration of leguminous crops in the pre‐rice cropping niche can contribute to diversify the production, supply of C and N, and contribute to soil fertility improvement for the subsequent crop of rice. However, the performance of leguminous crops is restricted even more than that of rice by low available soil P. An alternative strategy involves the application of mineral P that is destined to the rice crop already to the legume. This P supply is likely to stimulate legume growth and biological N2 fixation, thus enhancing C and N inputs and recycling N and P upon legume residue incorporation. Rotation experiments were conducted in farmers' fields in 2013–2014 to assess the effects of P management on biomass accumulation and N2 fixation (δ15N) by mungbean (Vigna radiata L.) and possible carry‐over effects on rice in two contrasting representative soils (highly infertile and moderately fertile sandy Fluvisol). In the traditional system (no legume), unamended lowland rice (no N, + 10 kg P ha?1) yielded 2.8 and 4.0 t ha?1, which increased to 3.5 and 4.7 t ha?1 with the application of 25 kg ha?1 of urea‐N in the infertile and the moderately fertile soil, respectively. The integration of mungbean as a green manure contributed up to 9 kg of biologically fixed N (17% Nfda), increasing rice yields only moderately to 3.5–4.6 t ha?1. However, applying P to mungbean stimulated legume growth and enhanced the BNF contribution up to 21 kg N ha?1 (36% Nfda). Rice yields resulting from legume residue incorporation (“green manure use”–all residues returned and “grain legume use”–only stover returned) increased to 4.2 and 4.9 t ha?1 in the infertile and moderately fertile soil, respectively. The “forage legume use” (all above‐ground residues removed) provided no yield effect. In general, legume residue incorporation was more beneficial in the infertile than in the moderately fertile soil. We conclude that the inclusion of mungbean into the prevailing low‐input rainfed production systems of Cambodia can increase rice yield, provided that small amounts of P are applied to the legume. Differences in the attributes of the two major soil types in the region require a site‐specific targeting of the suggested legume and P management strategies, with largest benefits likely to accrue on infertile soils.  相似文献   

13.
Rotation of nitrogen-fixing woody legumes with maize has been widely promoted to reduce the loss of soil organic matter and decline in soil biological fertility in maize cropping systems in Africa. The objective of this study was to determine the effect of maize-fallow rotations with pure stands, two-species legume mixtures and mixed vegetation fallows on the richness and abundance of soil macrofauna and mineral nitrogen (N) dynamics. Pure stands of sesbania (Sesbania sesban), pigeon pea (Cajanus cajan), tephrosia (Tephrosia vogelii), 1:1 mixtures of sesbania + pigeon pea and sesbania + tephrosia, and a mixed vegetation fallow were compared with a continuously cropped monoculture maize receiving the recommended fertilizer rate, which was used as the control. The legume mixtures did not differ from the respective pure stands in leaf, litter and recycled biomass, soil Ca, Mg and K. Sesbania + pigeon pea mixtures consistently increased richness in soil macrofauna, and abundance of earthworms and millipedes compared with the maize monoculture (control). The nitrate-N, ammonium-N and total mineral N concentration of the till layer soil (upper 20 cm) of pure stands and mixed-species legume plots were comparable with the control plots. Sesbania + pigeon pea mixtures also gave higher maize grain yield compared with the pure stands of legume species and mixed vegetation fallows. It is concluded that maize-legume rotations increase soil macrofaunal richness and abundance compared with continuously cropped maize, and that further research is needed to better understand the interaction effect of macrofauna and mixtures of organic resources from legumes on soil microbial communities and nutrient fluxes in such agro-ecosystems.  相似文献   

14.
Pot experiments were conducted with two soils, from Rottenhaus and Seibersdorf in Austria, to ascertain whether the rate of fertilizer N application and the test crop would influence the amount of N available in the soil as assessed by the A-value method. 15N-labelled fertilizer was applied at rates of 10, 25, 40, 60, and 100 mg N kg-1 soil, corresponding approximately to 20, 50, 80, 120 and 200 kg N ha-1 respectively, and two crop species, barley (Hordeum vulgareL.) and non-nodulating soybean (Glycine max L.) were used to determine the soil A N value under the various fertilizer regimes. The results showed that the Rottenhaus soil had a higher A N value than the Seibersdorf soil, suggesting that the former was more fertile than the latter. The A N values of both soils were significantly affected by the level of N application. When grown in the same soil, the two test crops showed significantly different fertilizer use efficiency and per cent N derived from fertilizer when the rate of N application exceeded 20 kg ha-1. Thus, the A N value as determined by the two test crops differed significantly for the same soil when the rate of N application was greater than 20 kg/ha. The difference was greater when the soil fertility level was high. The dependence of the A N value on the level of N application and the species of crop seriously compromises the suitability of this method for determining plant-associated N2 fixation. Hence, considerable caution is required when using this method to estimate plant-associated N2 fixation.  相似文献   

15.
To quantify the contribution of biological nitrogen fixation (BNF) to legume crops using the 15N natural abundance technique, it is necessary to determine the 15N abundance of the N derived from BNF—the B value. In this study, we used a technique to determine B whereby both legume and non-N2-fixing reference plants were grown under the same conditions in two similar soils, one artificially labelled with 15N, and the other not. The proportion of N derived from BNF (%Ndfa) was determined from the plants grown in the 15N-labelled soil and it was assumed that the %Ndfa values of the legumes grown in the two soils were the same, hence the B value of the legumes could be calculated. The legumes used were velvet bean (Mucuna pruriens), sunnhemp (Crotalaria juncea), groundnut (Arachis hypogaea) and soybean (Glycine max) inoculated, or not, with different strains of rhizobium. The values of %Ndfa were all over 89%, and all the legumes grown in unlabelled soil showed negative δ15N values even though the plant-available N in this soil was found to be approximately +6.0‰. The B values for the shoot tissue (Bs) were calculated and ranged from approximately −1.4‰ for inoculated sunnhemp and groundnut to −2.4 and −4.5‰ for soybean inoculated with Bradyrhizobium japonicum strain CPAC 7 and Bradyrhizobium elkanii strain 29W, respectively. The B (Bwp) values for the whole plants including roots, nodules and the original seed N were still significantly different between the soybean plants inoculated with CPAC 7 (−1.33‰) and 29W (−2.25‰). In a parallel experiment conducted in monoxenic culture using the same soybean variety and Bradyrhizobium strains, the plants accumulated less N from BNF and the values were less negative, but still significantly different for soybean inoculated with the two different Bradyrhizobium strains. The results suggest that the technique utilized in this study to determine B with legume plants grown in soil in the open air, yields B values that are more appropriate for use under field conditions.  相似文献   

16.
Annual (Pisum sativum L. and Vicia sativa L.) and perennial (Trifolium repens L. and Lotus corniculatus L.) leguminous species were grown in pots containing samples from the ash layers of two Cambisols under Pinus sylvestris L., which has been affected by high-intensity wildfires 3 and 15 days before the sampling. The gramineous Lolium perenne L. was cultivated as a second plant after Trifolium and Lotus harvesting. Three treatments were compared: soils without fertilization and soils fertilized with two doses of poultry manure (1 and 2 g total N kg-1 dry soil). The aim of the work was to study the capacity of the ash layer to sustain vegetation and the influence of plants and organic manure on the recovery of vegetation cover, ash layer fixation and soil structure formation to avoid erosion. The ash samples were able to sustain vegetation without fertilization. The organic manure increased the yields of all the plants tested, the lower dose being the optimal for the first crop whereas the higher dose was beneficial for the second crop. The annual legumes grew very quickly. The mixture of Trifolium and Lotus seemed very suitable for reclamation of soil degraded by wildfires because Trifolium produced more phytomass than Lotus in the first growing stages whereas the development of Lotus was higher in the later growing stages. Ash layer conditions did not inhibit nodulation, which was, however, stimulated by the organic manure, particularly in the case of Lotus. Lolium after perennial legumes was the best plant combination because it produced the highest phytomass, particularly root phytomass, and thus improved vegetation cover and ash layer fixation. All the plants tested improved the formation of soil aggregates, particularly the combination of perennial legumes and Lolium. However, wet aggregate stability was higher when plants were grown on soils fertilized with poultry manure than when plants were cropped on unmanured soils, which points to the favourable influence of the organic manure on soil aggregation.  相似文献   

17.
Uptake of barium (Ba) from soil by vascular plants varies among species. Despite the toxicity of soluble Ba compounds to plants, research on mechanisms controlling Ba uptake from natural soils is scarce. This study investigated the treatment effect of lime (CaCO3) added to a sandy soil containing a total of 500 mg Ba kg?1 on uptake and interspecies distribution of Ba in legumes and other cultivated food and feed plants. Nine species of grasses, vegetables, herbs, and legumes were cultivated under controlled conditions in a greenhouse experiment. The plants were harvested at maturity or flowering, dried, milled, and digested with nitric acid using the microwave technique prior to ICP‐MS analysis. All plant species acquired Ba from the soil in considerable amounts, probably due to low Ba adsorption potential of the sandy soil. Shoot tissue concentrations ranged from about 100 (grass) to 600 mg Ba kg?1 (legume) and root concentrations from about 100 (tuber vegetable) to 700 mg kg?1 (legume). Vicia cracca L. (bird vetch) showed an accumulation capacity due to high shoot concentrations of Ba compared to the other species. Higher yield accompanied by a potential dilution effect can partly explain why Trifolium repens L. (white clover), Pisum sativum ssp. arvénse L. (gray pea) and Hordeum vulgare L. (barley) did not display the highest Ba concentrations, but showed the highest Ba uptake from soil. High plant uptake of calcium (Ca) also seemed to enhance Ba uptake, by legumes in particular. However, liming reduced shoot Ba concentrations, particularly of species with low affinity for Ca. The risk of Ba accumulation thus raises toxicity concerns when forage legumes are cultivated in soils containing elevated concentrations of Ba.  相似文献   

18.
The response of 8 leguminous cover crops to phosphorus (P) application (7.5 mg P2O5 kg‐1 soil or 15 kg P2O5 ha‐1 to the depth of 15 cm) on soils with variable history was evaluated in a pot trial supplemented with a field experiment in 1993. The soil from a livestock farmer's field showed higher total organic carbon content and extractable cations compared to that from a non‐livestock farmer's field. In the pot trial, P application, on average, increased shoot, root, nodule dry matter and nitrogen (N) accumulation of the legumes by 82%, 45%, 871%, and 900%, respectively, compared to the control. Cajanus cajan, Crotalaria ochroleuca, Centrosema pascuorum, and white‐seeded Mucuna pruriens showed a higher P response than Centrosenza brasilianum and Chamaecrista rotundifolia. The legumes grown on the manured soil showed not only higher biomass and N accumulation, but also higher increase (110% and 117%) in total dry matter and N accumulation because of P application than those grown on the un‐manured soil (27% and 45%). In the field experiment, spreading legume groundcover at 16 weeks after planting was increased by 40% in the un‐manured soil and by 31% in the manured soil. Centrosema brasilimmm even showed a negative response of groundcover to P application. There was little response in erect legume height to P, except for measurements at 6 and 8 weeks after planting, when P increased plant height for Crotaktria on un‐manured soil. Results imply high returns can be expected when P is applied to leguminous cover crops in fairly fertile soil. The relatively low response under the field conditions, compared to pot, suggests caution is needed when P is recommended for legumes grown under environmentally stressed conditions.  相似文献   

19.
Abstract

The contribution of biological nitrogen fixation (BNF) to the N nutrition of six annual forage legumes, subterranean clover (Trifolium subterraneum), burr medic (Medicago polymorpha), balansa clover (Trifolium michelianum), Persian clover (Trifolium resupinatum), yellow serradela (Ornithopus compressus), and pink serradela (Ornithopus sativus) was evaluated by the 15N natural abundance technique, using four grass species (Briza máxima, Bromus mollis, Hordeum berteroanum, Avena barbata) and two composite species (Leontodon leysseri and Hedipnois cretica) as reference plants. An additional objective was to determine whether alternative legume species to those in common use (T. subterraneum and M. polymorpha) in the area, could improve BNF. The field studies were conducted in two edaphic conditions, granitic (Entisol) and clay (Vertisol) soil, located in Cauquenes, VII Region, in the sub-humid Mediterranean zone of Chile. In the granitic soil the percentages of N derived from fixation were high in all species (74 to 94%); yellow serradela cv. Tauro presented the greatest N content in dry matter and N fixation, equivalent to 91 kg N ha?1. In contrast, pink serradela cv. Cádiz and subterranean clover cv. Gosse presented the lowest N fixation. In the clay soil, under periodically waterlogged conditions, balansa clover cv. Paradana and persian clover cv. Prolific had high percentage values of BNF (>95%) and fixed more N (100.2 and 82.5 kg N ha?1, respectively) than burr medic and subterranean clover cv. Gosse. The present study allowed the identification of new germplasm of high capacity of N fixation which is an additional criterion for selecting species for infertile and waterlogged soil conditions in the Mediterranean area of Chile.  相似文献   

20.
Background : Rice production in low‐input systems of West Africa relies largely on nitrogen supply from the soil. Especially in the dry savanna agro‐ecological zone, soil organic N is mineralized during the transition period between the dry and the wet seasons. In addition, in the inland valley landscape, soil N that is mineralized on slopes may be translocated as nitrate into the lowlands. There, both in‐situ mineralized as well as the laterally translocated nitrate‐N will be exposed to anaerobic conditions and is thus prone to losses. Aim : We determined the dynamics of soil NO3‐N along a valley toposequence during the dry‐to‐wet season transition period and the effects of soil N‐conserving production strategies on the grain yield of rainfed lowland rice grown during the subsequent wet season. Methods : Field experiments in Dano (Burkina Faso) assessed during two consecutive years the temporal dynamics and spatial fluxes of soil nitrate along a toposequence. We applied sequential and depth‐stratified soil nitrate analysis and nitrate absorption in ion exchange resin capsules in lowlands that were open to subsurface interflow and in those where the interflow from the was intercepted. During one year only we also assessed the effect of pre‐rice vegetation on conserving this NO3‐N as well as on N addition by biological N2 fixation in legumes using δ15N isotope dilution. Finally, we determined the impact of soil N fluxes and their differential management during the transition season on growth, yield and N use of rainfed lowland rice. Results : Following the first rainfall event of the season, soil NO3‐N initially accumulated and subsequently decreased gradually in the soil of the valley slope. Much of this nitrate N was translocated by lateral sub‐surface flow into the valley bottom wetland. There, pre‐rice vegetation was able to absorb much of the in‐situ mineralized and the laterally‐translocated soil NO3‐N, reducing its accumulation in the soil from 40–43 kg N ha?1 under a bare fallow to 1–23 kg N ha?1 in soils covered by vegetation. Nitrogen accumulation in the biomass of the transition season crops ranged from 44 to 79 kg N ha?1 with a 36–39% contribution from biological N2 fixation in the case of legumes. Rice agronomic performance improved following the incorporation as green manure of this “nitrate catching” vegetation, with yields increasing up to 3.5 t ha?1 with N2‐fixing transition seasons crops. Conclusion : Thus, integrating transition season legumes during the pre‐rice cropping niche in the prevailing low‐input systems in inland valleys of the dry savanna zone of West Africa can temporarily conserve substantial amounts of soil NO3‐N. It can also add biologically‐fixed N, thus contributing to increase rice yields in the short‐term and, in the long‐term, possibly maintaining or improving soil fertility in the lowland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号