首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 296 毫秒
1.
【目的】探究酶用量、酶解时间及研磨时间对制备的桉树纸浆纤维微/纳纤丝微观形貌及性能的影响。【方法】以桉树纸浆为原料,经不同的酶用量(20,40,60和80ECU/g)和酶解时间(2,4,6和8h)预处理后,用研磨法制备纤维素微/纳纤丝,利用扫描电镜、X射线衍射仪对制备的微/纳纤丝进行表征。【结果】在酶解时间为6h的条件下,当酶用量由20ECU/g增加至80ECU/g时,研磨制备的微/纳纤丝直径由143.89nm减小至52.21nm;在酶用量为60ECU/g的条件下,当酶解时间由2h增加至8h时,研磨制备的微/纳纤丝直径由131.23nm减小至43.73nm。酶处理后的纤维及研磨处理后的纤维均保持了天然纤维的Ⅰ型结构,结晶度分别比纸浆纤维(59.21%)提高11.68%和8.31%,所制备的微/纳纤丝的结晶度为67.52%。【结论】酶预处理可以有效降低微/纳纤丝的制备时间,减少能耗;随着酶用量及酶解时间的增加,微/纳纤丝直径逐渐减小;纤维素酶可降解纤维素部分非结晶区并使纤维润胀。  相似文献   

2.
纤维素酶协同超声波处理制备杨木微/纳纤丝   总被引:1,自引:1,他引:0  
杨木纤维经纤维素酶预处理后,用超声波法制备杨木微/纳纤丝,利用扫描电子显微镜、X射线衍射仪和红外光谱仪对制备的杨木微/纳纤丝进行表征分析.结果表明:纤维素酶可降解纤维素的部分无定形区并能润胀纤维,再用超声波处理能制备出微/纳纤丝,所制备的杨木微/纳纤丝宽度在50 nm-1μM之间;杨木微/纳纤丝保持了天然纤维的晶型,结...  相似文献   

3.
可溶性膳食纤维是一种非常重要并为国际一致公认的功能性食品基料。以枣渣为原料,采用纤维素酶法提取可溶性膳食纤维,探讨了加酶量、料液比、酶解温度和酶解时间对可溶性膳食纤维得率的影响。通过正交试验确定制备枣渣可溶性膳食纤维的最佳工艺条件为:纤维素酶加酶量为4%,料液比1∶15,酶解温度50℃,酶解时间1.5 h,此条件下枣渣可溶性膳食纤维得率达6.20%。研究结果将为枣渣的综合利用提供参考数据,并能丰富膳食纤维的材料来源。  相似文献   

4.
双酶法提取褐蘑菇膳食纤维的最佳工艺条件研究   总被引:1,自引:0,他引:1  
为了确定从褐蘑菇中提取膳食纤维的工艺参数,采用双酶法提取褐蘑菇膳食纤维,对加酶量、pH值、酶解温度、酶解时间及液料比5个因素进行研究.结果表明:褐蘑菇膳食纤维的最佳提取工艺参数为:加酶量2.1%,酶解温度60℃,酶解时间4.5 h,pH值7.0,料水比1:10,在此条件下褐蘑菇膳食纤维提取率较高,可达41.37%,且提取的膳食纤维理化性质好.  相似文献   

5.
研究了橘皮中水不溶性膳食纤维提取的工艺条件,并探讨了酶解温度、加酶量、料液比、碱液浓度、酶解时间对提取效果的影响。通过L16(45)正交试验确定了影响膳食纤维提取效果的最主要因素是料液比,并得出橘皮膳食纤维提取的最佳工艺条件:酶解温度60℃、加酶量0.4 g、料液比1∶10(g/mL)、碱液浓度0.25%、酶解时间120 min。  相似文献   

6.
[目的]采用响应面法研究亚麻籽粕不溶性膳食纤维的最佳提取条件.[方法]以亚麻籽粕为原料,采用碱性蛋白酶水解.在单因素试验基础上,选取酶解温度、时间、加酶量(质量分数)和料液比为响应变量,以不溶性膳食纤维提取率为响应值,利用Box-Behnken试验设计方案和响应面分析法,建立不溶性膳食纤维提取率与响应变量的回归方程,并确定最佳提取条件.[结果]在提取率的二次多项模型中,温度、时间、加酶量在一次项中表现差异显著,温度、料液比、加酶量在二次项中表现差异显著.[结论]亚麻籽粕不溶性膳食纤维的最佳提取条件为:酶解温度55℃、酶解时间4h、料液比1:20、加酶量9;,此条件下水不溶性膳食纤维得率为52.05;,与预测值52.5;较为一致.  相似文献   

7.
刘莹  赵杰  刘政 《江苏农业科学》2012,40(3):252-253
研究了料液比、酶处理时间、酶解温度等因素对酶法提取褐蘑菇水溶性膳食纤维产率的影响.结果表明,酶法提取褐蘑菇水溶性膳食纤维的最佳工艺为:料液比1 g:10mL、酶处理时间0.5h、酶解温度60℃,此条件下产率为36.1%.  相似文献   

8.
本文以高能超声波法制备了香根草纤维素微/纳纤丝,并通过X射线衍射仪、光学显微镜和电子扫描电镜分别对处理前后的香根草纤维素的相对结晶度和形貌进行了分析.并将其作为改性剂与三聚氯胺浸渍树脂共混,对比分析了改性前后三聚氰胺浸渍树脂的耐磨性.研究表明:浸渍树脂中添加15%的微/纳米纤丝悬浮液,三聚氰胺浸渍树脂表面耐磨性提高最为显著.  相似文献   

9.
张丽君  李爱军  欧仕益 《广东农业科学》2012,39(14):113-115,118
以大豆皮为原料,采用纤维素酶酶解法制备大豆皮微晶纤维素(MCC).通过单因素试验考察料液比、酶添加量、pH值、酶解时间、酶解温度对制备大豆皮微晶纤维素得率及聚合度的影响,并在此基础上通过正交试验确立最佳酶解条件:酶添加量0.3 mL/g、pH 5.8、料液比1∶20(g/mL)、温度50℃、酶解时间3h.该最佳条件下制得的微晶纤维素的得率为29.93%,聚合度为494.  相似文献   

10.
王丽萍  徐传远 《湖北农业科学》2012,51(12):2574-2575,2585
以红薯[Ipomoea batatas(L.) Lam]茎叶为原料,采用酶-超声波提取绿原酸.对料液比、加酶量、超声功率和超声时间进行了单因素和正交试验.确定绿原酸提取的最佳工艺为料液比1∶20、加酶量1.5%、超声波功率175W、提取时间20 min,在此条件下,绿原酸的提取率为3.45%.  相似文献   

11.
分步酶解法提取扁桃仁油及水解蛋白研究   总被引:2,自引:1,他引:1  
胡睿娟  郝利平 《山西农业科学》2012,40(2):156-160,163
以扁桃仁为原料,采用水酶法提取扁桃仁油及水解蛋白。经比较,选用纤维素酶、碱性蛋白酶进行分步酶解。通过单因素试验和正交试验,确定最佳工艺条件为:料水比1∶5,纤维素酶用量2%,pH值5,温度45℃,时间4.5 h;碱提pH值8.5,温度55℃,时间30 min;碱性蛋白酶用量1.5%,pH值9.5,温度50℃,时间2 h。在此条件下,扁桃仁油与水解蛋白提取率分别为76.03%和84.39%。  相似文献   

12.
[目的]采用水酶法提取扁桃仁油.[方法]采用单因素试验和正交试验,研究单一酶和复合酶种类及浓度、酶解时间、酶解温度、酶解pH、料液比对出油率的影响.[结果]水酶法提取扁桃仁油的最佳工艺条件为:采用由果胶酶、纤维素酶和木瓜蛋白酶组成的复合酶,酶解温度55℃,酶解时间3h,酶浓度2;,酶解pH7.0、料液比1∶4,在此条件下出油率达77.31;.[结论]单一酶中碱性蛋白酶,复合酶中果胶酶、纤维素酶、木瓜蛋白酶的组合对扁桃仁油的提取率最高;复合酶的出油率比单一酶高.  相似文献   

13.
采用纤维素酶酶解结合超声波辅助提取,通过大孔树脂分离,纯化杨梅核中的黄酮类化合物,并进行工艺优化.结果表明:纤维素酶酶解最佳条件为:料液比1∶10,酶量1.5%,酶解温度40℃,pH6.0,最佳酶解时间2 h;超声辅助提取最佳条件为:乙醇浓度50%,提取时间4 h.以自然流速上大孔树脂D101柱,经水洗除杂、60%的乙醇洗脱,获得杨梅核提取物的黄酮含量达66.10%.该实验方法适于杨梅核中低含量黄酮类化合物的提取纯化.  相似文献   

14.
研究了纤维素酶水解杂细胞的适宜条件及酶回收利用技术。在底物浓度为 3 % ,酶用量为 12 5IU/ g杂细胞(干重 ) ,酶解时间为 2 4h的最适酶解条件下 ,酶解转化率达 70 2 0 % ,还原糖浓度为 2 2 18mg/mL。用底物吸附法可以对同一批纤维素酶重复利用 3次 ,相当于每克杂细胞 (干重 )的酶用量仅为 41IU ,显著降低了纤维素酶用量 ,并有较高的酶解转化率。采用本工艺 ,1t杂细胞可得SCP饲料 2 5 0kg(干重 ) ,其粗蛋白含量为 45 5 %。  相似文献   

15.
【目的】研究利用果胶酶和纤维素酶酶解杏皮渣制备皮渣汁最佳工艺条件。【方法】采用单因素试验和正交试验,研究果胶酶用量、纤维素酶用量、酶解温度、酶解时间对杏皮渣出汁率、浸提汁可溶性固形物含量的影响。【结果】杏皮渣制汁的最佳条件是:果胶酶用量0.5%、纤维素酶用量2%、酶解温度49℃、酶解时间4h。出汁率为73.41%,比空白提高15.75%,可溶性固形物质量为22.88 g,比空白对照相比提高9.14 g。【结论】采用果胶酶和纤维素酶,能提高杏皮渣出汁率和可溶性固形物含量,改善杏皮渣制汁效果。  相似文献   

16.
[目的]研究超声波-分步酶解法对香菇多糖的提取效果,优化提取工艺。[方法]试验参考有关文献采用纤维素酶、木瓜蛋白酶分步酶解与超声波方法结合进行香菇多糖的提取,对酶量、pH、超声处理时间、浸提温度4个相关工艺参数进行正交试验优化。[结果]试验表明,超声波-分步酶解法提取香菇多糖的最佳工艺为:酶量1.0%、pH 5.5、超声处理时间1 h、浸提温度55℃。在此提取工艺条件下,香菇多糖提取率达到15.8%。[结论]超声波-分步酶解法可以显著提高香菇多糖提取率,为香菇的深加工应用提供参考依据。  相似文献   

17.
赵广河 《南方农业学报》2012,43(10):1553-1557
[目的]确定猴头菇氨基酸营养液的最佳制备工艺,为以猴头菇为原料的氨基酸强化食品开发提供参考.[方法]以猴头菇营养液中的氨基酸总量为指标,采用单因素试验和正交试验对影响氨基酸总量的酸性蛋白酶用量、纤维素酶用量、酶解温度、酶解时间、酶解pH、液料比等因素进行优化.[结果]影响猴头菇营养液中氨基酸总量的主次因素依次为:酸性蛋白酶用量>纤维素酶用量>液料比>酶解时间>酶解温度>酶解pH,其最佳制备工艺参数为:酸性蛋白酶用量1.00%,纤维素酶用量1.50%,酶解温度50℃,酶解时间60 min,酶解pH 3.5,液料比25∶1.与热水浸提法相比,双酶法制备的猴头菇氨基酸营养液中氨基酸总量提高了73.2%、可溶性固形物含量提高了75.0%.[结论]以双酶法制备猴头菇氨基酸营养液是可行的,能有效提高营养液中的氨基酸总量和可溶性固形物含量.  相似文献   

18.
本文对水酶法提取沙枣种子油的工艺条件进行了研究。在单因素试验基础上,通过正交优化得出最佳提取工艺条件为:采用纤维素酶、果胶酶、α-淀粉酶按1:1:1配成复合酶进行提取,加酶量2.5%,酶解温度45℃,酶解时间5 h,料液比1:4。沙枣种子油的提取率达23.84%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号