首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
4.
Adiponectin is a protein synthesized and secreted by adipocytes. Decreased adiponectin is responsible for insulin resistance and atherosclerosis associated with human obesity. We obtained a cDNA clone corresponding to canine adiponectin, whose nucleotide and deduced amino acid sequences were highly identical to those of other species. Adiponectin mRNA was detected in adipose tissues, but not in other tissues, of dogs. When 22 adult beagles were given a high-energy diet for 14 weeks, they became obese, showing heavier body weights, higher plasma leptin concentrations, but lower plasma adiponectin concentrations. The adiponectin concentrations of plasma samples collected from 71 dogs visiting veterinary practices were negatively correlated to plasma leptin concentrations, being lower in obese than non-obese dogs. These results are compatible with those reported in other species, and suggest that adiponectin is an index of adiposity and a target molecule for studies on diseases associated with obesity in dogs.  相似文献   

5.
The discovery of the obesity gene and its product, leptin, it is now possible to examine the relationship between body fat and the neuroendocrine axis. A minimum percentage of body fat may be linked to onset of puberty and weaning-to-estrus interval in the pig. Adipose tissue is no longer considered as only a depot to store excess energy in the form of fat. Recent findings demonstrate that numerous genes, i.e., relaxin, interleukins and other cytokines and biologically active substances such as leptin, insulin-like growth factor-I (IGF-I), IGF-II and Agouti protein are produced by porcine adipose tissue, which could have a profound effect on appetite and the reproductive axis. Hypothalamic neurons are transsynaptically connected to porcine adipose tissue and may regulate adipose tissue function. In the pig nutritional signals such as leptin are detected by the central nervous system (CNS) and translated by the neuroendocrine system into signals, which regulate appetite, hypothalamic gonadotropin-releasing hormone (GnRH) release and subsequent luteinizing hormone (LH) secretion. Furthermore, leptin directly affects LH secretion from the pituitary gland independent of CNS input. Changes in body weight or nutritional status are characterized by altered adipocyte function a reduction in adipose tissue leptin expression, serum leptin concentrations and a concurrent decrease in LH secretion. During pubertal development serum leptin levels, hypothalamic leptin receptor mRNA and estrogen-induced leptin gene expression in fat increased with age and adiposity in the pig and this occurred at the time of expected puberty. In the lactating sow serum and milk leptin concentrations were positively correlated with backfat thickness and level of dietary energy fed during gestation as well as feed consumption. Although, these results identify leptin as a putative signal that links metabolic status and neuroendocrine control of reproduction, other adipocyte protein products may play an important role in regulating the reproductive axis in the pig.  相似文献   

6.
7.
The methylation status of pivotal genes involved in fat deposition in chickens has been extensively studied. However, the whole-genome DNA methylation profiles of broiler abdominal adipose tissue remain poorly understood. Using whole-genome bisulfite sequencing, we generated DNA methylation profiles of chicken abdominal adipose tissue from Northeast Agricultural University broiler lines divergently selected for abdominal fat content. We aimed to explore whether DNA methylation was associated with abdominal fat deposition in broilers. The whole-genome DNA methylation profiles of fat- and lean-line broilers abdominal adipose tissue were constructed. The DNA methylation levels of functional genomic regions in the fat broiler were higher than those in the lean broiler, especially in the 3′ untranslated regions (UTRs) and exons in the non-CG contexts. Additionally, we identified 29,631 differentially methylated regions and, subsequently, annotated 6,484 and 2,016 differentially methylated genes (DMGs) in the gene body and promoter regions between the two lines, respectively. Functional annotation showed that the DMGs in promoter regions were significantly enriched mainly in the triglyceride catabolic process, lipid metabolism-related pathways, and extracellular matrix signal pathways. When the DMG in promoter regions and differentially expressed genes were integrated, we identified 30 genes with DNA methylation levels that negatively correlated with their messenger RNA (mRNA) expression, of which CMSS1 reached significant levels (false discovery rate < 0.05). These 30 genes were mainly involved in fatty acid metabolism, peroxisome-proliferator-activated receptor signaling, Wnt signaling pathways, transmembrane transport, RNA degradation, and glycosaminoglycan degradation. Comparing the DNA methylation profiles between fat- and lean-line broilers demonstrated that DNA methylation is involved in regulating broiler abdominal fat deposition. Our study offers a basis for further exploring the underlying mechanisms of abdominal adipose deposition in broilers.  相似文献   

8.
Chicken leptin: properties and actions   总被引:6,自引:0,他引:6  
Chicken leptin cDNA shows a high homology to mammalian homologous, with an expression localized in the liver and adipose tissue. It is noteworthy, that the hepatic expression is most likely associated with the primary role that this organ plays in lipogenic activity in avian species. As in mammals, chicken leptin expression is regulated by hormonal and nutritional status. This regulation is tissue-specific and with a high sensitivity in the liver compared to adipose tissue. The blood leptin levels are regulated by the nutritional state with high levels in the fed state compared to the fasted state. The recombinant chicken leptin markedly inhibits food intake as reported in mammals, suggesting the presence of an hypothalamic leptin receptor. The chicken leptin receptor has been identified and all functional motifs are highly conserved compared to mammalian homologous. Chicken leptin receptor is expressed in the hypothalamus but also in other tissues such as pancreas, where leptin inhibits insulin secretion and thus may have a key role in regulating nutrient utilization in this species.  相似文献   

9.
Insulin regulation of leptin expression in streptozotocin diabetic pigs   总被引:2,自引:0,他引:2  
The relationship between leptin mRNA and insulin status was explored using streptozotocin diabetic pigs. Twelve male Yorkshire x Landrace crossbred swine (approximately 40 kg BW) were divided into three groups. Two groups were rendered diabetic with the use of streptozotocin (75 mg/kg BW). Diabetes was confirmed 24 h after streptozotocin treatment by the presence of hyperglycemia. One group of diabetic animals received daily injections of insulin (.5 U/(kg x d)(-1)) for 7 d, whereas the other group of diabetic animals received saline injections. The nondiabetic group also received saline injections (controls). Tissue and blood were collected after 7 d of treatment. Leptin mRNA concentrations in dorsal s.c. adipose tissue were measured by Northern analysis and standardized against 28S rRNA expression. Diabetes reduced leptin mRNA concentration by 67% in s.c. adipose tissue (P < .05). Serum insulin concentrations in the diabetic animals were reduced by 69% (P < .05). Insulin treatment of diabetic animals resulted in an increase in leptin mRNA concentration to levels in controls. Primary cell culture of porcine adipose tissue was used to assess whether these actions were the direct or indirect action of insulin. Acute exposure (1 to 24 h) of primary cultures of porcine adipocytes to insulin did not result in a change in leptin expression. However, chronic (7-d) exposure to insulin elevated leptin mRNA levels by 73%. These data suggest that insulin mediates changes in porcine leptin mRNA levels in vivo or in vitro, most likely by an indirect action.  相似文献   

10.
11.
12.
The aim of the study was to determine if cattle breeds differing in their carcass characteristics also differ in the profiles of their leptin and metabolic hormones. Three breeds, Belgian Blue (BB) (n = 12), Limousin (L) (n = 12) and Aberdeen Angus (AA) (n = 12) with varying ability to deposit fat and protein were compared. Blood, muscle and subcutaneous (SC) adipose tissue were sampled. Animal performance, carcass and meat characteristics were determined as well as plasma leptin concentration, leptin gene expression in SC adipose tissue, leptin-receptor gene expression in SC adipose tissue and plasma concentration of insulin, tri-iodothyronin (T3), thyroxin (T4) and cortisol. The BB bulls showed the lowest values of leptin gene expression (P < 0.05). Values of plasma leptin concentration and of leptin-receptor gene expression tended to be lower in BB than in the other breeds. For a similar amount of adipose tissue (after normalisation), BB bulls showed a higher ratio of plasma leptin (P < 0.05), whereas normalised leptin gene and leptin-receptor gene expressions did not significantly differ between breeds. Belgian Blue bulls also differed in their metabolic hormone profile, tending to show lower values of insulin, T3 and T4 than the two other breeds. Cortisol levels were significantly lower (P < 0.05) in BB than in L and AA animals.  相似文献   

13.
瘦素(leptin,LEP)是白色脂肪分泌的一种蛋白质激素,在哺乳动物中,LEP是一种16-ku的肽类激素,在能量平衡的神经内分泌和外周调节中发挥重要作用,是反应体脂含量和调节体重、摄食的重要信号因子。在人类疾病方面,LEP基因的表达对很多疾病的发生起着重要的调控作用,尤其是LEP基因的突变可能导致肥胖、糖尿病和乳腺癌等疾病;在畜牧生产上,LEP基因的表达对牛、羊和猪的采食和生长性状影响显著。为了加深对LEP基因的认识,作者对LEP基因的结构及LEP的分布、结构和功能进行了总结,并对近几年LEP基因在疾病和畜牧生产方面的研究进展进行了综述。  相似文献   

14.
Coordinate regulation of ovine adipose tissue gene expression by propionate   总被引:5,自引:0,他引:5  
The current study examined the acute effects of intravenous propionate infusion on plasma hormones and metabolites and the expression of adipose tissue lipogenic genes. Four yearling rams were assigned to one oftwo groups (saline or propionate infusion) in a crossover design. All sheep were cannulated in both jugular veins and infused with 1.2 M propionate at a rate of 64 micromol x mix(-1) x kg BW(-1) for 30 min. Blood samples were collected at -10, 0, 5, 10, 20, 30, 60, and 120 min after initiation of infusion. Subcutaneous adipose tissue biopsies were obtained from the tailhead at 0 and 2 h after propionate infusion and analyzed for gene expressions of lipoprotein lipase, acetyl CoA carboxylase, fatty acid synthase, peroxisome proliferator-activated receptor gamma, leptin, and uncoupling protein-2 using a nonisotopic ribonuclease protection assay. The partial cDNA of the enoyl reductase region of ovine fatty acid synthase was cloned and sequenced from s.c. adipose tissue of sheep. The deduced amino acid sequence (210 amino acids) was 86% identical to human, 88% identical to rat, 88% identical to mouse, and 72% identical to chicken. Plasma glucose and insulin concentrations abruptly increased 5 min after beginning propionate infusion and further increased up until 30 min but were unaffected in saline-infused sheep (P < 0.05). Plasma concentration of NEFA decreased (P < 0.05) during propionate infusion, whereas IGF-I levels were unaltered. The amounts of lipoprotein lipase, acetyl CoA carboxylase, fatty acid synthase, peroxisome proliferator-activated receptor gamma, and leptin mRNA increased (P < 0.05) in s.c. adipose tissue of propionate-infused sheep compared with those of saline-infused sheep. However, uncoupling protein-2 mRNA decreased (P < 0.05) in propionate-infused sheep. This study demonstrates that an acute nutrient challenge, in the form of i.v. propionate, can stimulate or inhibit the expression of various adipose tissue genes involved with lipogenesis and adipose tissue metabolism.  相似文献   

15.
犬肿瘤性疾病是兽医临床上常发的一种疾病,其发病率较高,是造成世界范围内犬死亡的重要原因之一,由于其病理学分类、自发性、基因和信号通路等方面与人类肿瘤有相似之处,可作为人类肿瘤的研究模型。表观遗传是基于DNA序列没有发生改变的情况下所致基因功能和表达水平发生了可遗传的变化,主要通过基因转录或翻译过程的调控,影响其功能和特性。表观遗传改变主要包括DNA甲基化水平改变、组蛋白修饰、染色质重塑和非编码RNA调控等。DNA异常甲基化在犬的多种肿瘤中均有研究,包括犬白血病、淋巴瘤及黑色素瘤等,且犬与人类肿瘤的DNA异常甲基化模式相似。在肿瘤中组蛋白各种修饰酶表达失调,是抗肿瘤药物开发分子靶点研究的主要焦点,但目前在犬肿瘤中的研究较少。非编码RNA中microRNA与lncRNA是目前的研究热点,已有较多研究致力于开发针对非编码RNA的靶向研究药物,但目前在兽医领域应用较少。作者主要综述了犬肿瘤疾病的流行病学、DNA甲基化、组蛋白修饰、非编码RNA等表观遗传学变化在犬肿瘤中的研究进展,揭示表观遗传异常与犬肿瘤发生发展的关系,以期为开发犬肿瘤性疾病诊断、靶向治疗及预后的特异性标志物提供参考依据。  相似文献   

16.
17.
18.
Although cDNA microarray studies have examined gene expression in human and rodent adipose tissue, only one microarray study of adipose tissue from growing pigs has been reported. Total RNA was collected at slaughter from outer subcutaneous adipose tissue (OSQ) and middle subcutaneous adipose tissue (MSQ) from gilts at 90, 150, and 210 d (n=5 age(-1)). Dye labeled cDNA probes were hybridized to custom porcine microarrays (70-mer oligonucleotides). Gene expression of insulin-like growth factor binding proteins (IGFBPs), hormones, growth factors, neuropeptide Y (NPY) receptors (NPYRs) and other receptors in OSQ and MSQ changed little with age in growing pigs. Distinct patterns of relative gene expression were evident within NPYR and IGFBP family members in adipose tissue from growing pigs. Relative gene expression levels of NPY2R, NPY4R and angiopoietin 2 (ANG-2) distinguished OSQ and MSQ depots in growing pigs. We demonstrated, for the first time, the expression of IGFBP-7, IGFBP-5, NPY1R, NPY2R, NPY, connective tissue growth factor (CTGF), brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) genes in pig adipose tissue with microarray and RT-PCR assays. Furthermore, adipose tissue CTGF gene expression was upregulated while NPY and NPY2R gene expression were significantly down regulated by age. These studies demonstrate that expression of neuropeptides and neurotrophic factors in pig adipose tissue may be involved in regulation of leptin secretion. Many other regulatory factors were not influenced by age in growing pigs but may be influenced by location or depot.  相似文献   

19.
20.
We tested the hypothesis that fatty acid biosynthesis and adipocyte diameter and volume would be greater in s.c. and i.m. adipose tissues of calf-fed steers than in yearling-fed steers at a constant BW, due to the greater time on feed for the calf-fed steers. Conversely, we predicted that the capacity for s.c. and i.m. preadipocytes to divide, as estimated by 3H-thymidine incorporation into DNA, would be greater in the less mature adipose tissues of calf-fed steers and in yearling-fed steers at 16 mo of age than in yearling-fed steers fed to 18 mo of age. Brangus steers were fed a corn-based finishing diet as calves (calf-fed; n = 9) or yearlings (n = 4) to 16 mo of age (CA yearling-fed); another group of yearlings (n = 5) was fed to a constant-BW end point of 530 kg (CW yearling-fed). Both groups of yearling-fed steers had free access to native pasture until 12 mo of age. At slaughter, the fifth to eighth thoracic rib section of the LM was removed, and fresh s.c. and i.m. adipose tissues were removed for in vitro incubations. There were no differences in the number of s.c. adipocytes/g or mean peak volumes of adipocytes across production groups (P > or = 0.14). However, s.c. adipose tissue of CA yearling-fed steers contained greater proportions of smaller adipocytes (<1,500 pL) than calffed or CW yearling-fed steers, and similar results were observed for i.m. adipose tissue. Acetate incorporation into total lipids was greater (P = 0.02) in s.c. adipose tissue of CA yearling-fed steers than in calf-fed or CW yearling-fed steers, and tended to be different (P = 0.10) across production groups in i.m. adipose tissue. The production system x cell fraction interaction was significant (P = 0.03) for s.c. adipose tissue DNA synthesis, which was greatest in adipocytes from CA yearling-fed steers, whereas there were no differences across production system in stromal vascular (SV) DNA synthesis. For i.m. adipose tissue, DNA synthesis was greatest in adipocytes and SV cells from CA yearling-fed calves, and was greater in SV cells than in adipocytes (both P = 0.01). Therefore, stage of adipose tissue development more strongly influenced fatty acid synthesis, adipocyte volume, and DNA synthesis than age at sampling, final BW, or time on the finishing diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号