首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical model of biofilm reactors was tested using Monod typebiological kinetics in terms of the properties of feed solutionand dispersion. The model is based on computer techniques andthe numerical evaluation of the normalized biofilm mathematicalmodel. The effect of inlet parameters including concentration,flow rate, mass transfer coefficient and biofilm thickness wereinvestigated using the computer program developed. The numericalmodel was also applied to experimental data to demonstrate itsvalidity. In thin biofilms kinetic coefficients and otherparameters such as molecular diffusivity can be determinedbased upon experimental results. In thick biofilms, however, anadditional kinetic parameter or any other quantity related tomass transfer is a prerequisite in the evaluation ofexperimental data.  相似文献   

2.
A full scale rotating biologicalcontactor (RBC) system has been studied for a year.The main objective was to determine the distributionof protozoan and metazoan communities inhabiting theRBC biofilms, and to relate them to the BOD5content along RBC train. RBC system operatedefficiently as showed the removal of TBOD5 and TSSalong the plant. A weak nitrification process tookplace at last stages of the system. Orthophosphatesand pH average values were maintained quite similarthroughout the RBC stages. Microscopical countingindicated that communities were mainly made up ofciliated protozoa, although the abundance anddiversity of species varied widely along the differentRBC stages. A careful characterisation of ciliatespecies was carried out, with Vorticellaconvallaria, Epistylis entzii and Carchesiumpolypinum being the most abundant species in the wholesystem. Metazoa only reached a noticeable proportionin the last stages of the system. Spatial distributionof biofilm communities reflected the environmentalchanges observed as waste purification progresses.Associations between microorganisms and BOD5concentrations were studied by correlation analysis.Results chiefly revealed the importance of ciliatedprotozoa in this biological system. They showed a highabundance on the biofilms and some groups– cyrtophorids, hypotrichs, scuticociliates andpleurostomatids ciliates – were closely related to adecrease of BOD5 content.  相似文献   

3.
Ong  S. L.  Liu  Y.  Lee  L. Y.  Hu  J. Y.  Ng  W. J. 《Water, air, and soil pollution》2004,157(1-4):245-256
A lab-scale novel biofilm reactor system, Ultra-Compact Biofilm Reactor (UCBR), was studied to investigate its performance and operational characteristics for domestic sewage treatment. The reactor was operated at four different hydraulic retention times, namely, 90, 60, 30 and 15 min. The operating ranges of volumetric loading rates in terms of COD, BOD5, NH+ 4-N and TKN were 5.6-62.1 kg COD/m3 d, 2.6-32.5 BOD5/m3 d, 0.6-3.2 kg NH+ 4-N/m3 d and 0.82-6.2 kg TKN/m3 d, respectively. The COD, BOD5 and NH+ 4-N removal efficiencies at 90-min hydraulic retention time (HRT) and 60-min HRT could exceed 80%, 90% and 99%, respectively. The corresponding maximum biomass concentrations were 12.0 g/L and 15.0 g/L at 90-min HRT and 60-min HRT, respectively. At 30-min HRT, the biomass concentration increased to a maximum of 24.0 g/L. However, COD and BOD5 removal efficiencies decreased to 75% and 80%, respectively, while the NH+ 4-N nitrification efficiency decreased to only 25% to 30%. These observations suggested that high biomass concentration alone was not sufficient to provide a high removal capacity in a UCBR. Further reduction in HRT to 15 min led to an excessive biomass decline from 22.5 g/L to 4.0 g/L. On the whole, the UCBR was able to sustain COD removal and NH+ 4-N conversion of up to 5.96-18.70 kg COD/m3 d and 0.73-1.00 kg NH+ 4-N/m3 d, respectively.  相似文献   

4.
Zhou  Ping  He  Jiahan  Qian  Yi 《Water, air, and soil pollution》2003,144(1-4):81-100
Domestic wastewater with an influent COD of 160 to 327 mg L-1 was evaluated for treatment by the Biofilm Airlift Suspension-reactor (BAS-reactor). Ceramic materials withdiameters of 0.25–0.5 mm (for reactor (1)) and 0.5–0.71 mm(for reactor (2)) were used as carriers, respectively. Theresults show that reactor (1) with smaller carriers outperformedreactor (2) with larger carriers. At steady state, the BAS-reactors showed high COD removal efficiencies. When the HRT was kept at 0.5 hr, the mean effluent CODs were 33±4 and 58±5 mg L-1 for reactors (1) and (2), respectively, at a confidence interval of 95% (p = 95%). When HRT was extended to 1.0 hr, these values decreased to 24±2 and 30±3 mg L-1 for reactors (1) and (2), respectively (p = 95%). Biomass concentration increased whilebiofilm thickness decreased with an increase in carrierconcentration. Biomass concentrations as high as 6.16±0.12 and 5.50±0.10 g VSS L-1 (p = 0.95) were achieved at carrier concentrations of 100 g L-1 forreactors (1) and (2), respectively. Biofilm thickness had a significanteffect on reactor performance: with an increase in biofilm thickness, biomass concentration increased and the critical gas velocity to maintain carrier fluidization decreased. An oxygenation model for a BAS-reactor was proposed and the effectsof gas velocity and carrier concentration on the oxygen transfercoefficient were examined. It was found that oxygen transfer coefficient increased with gas velocity while the relationship between carrier concentration and oxygen transfer coefficient wascomplicated. During a period of more than three months of steadystate operation, carrier washout with the effluent was negligible.Comparison of the parameters of the conventional activated sludgeprocess to that of the BAS-reactor shows that the BAS-reactor isa promising wastewater treatment process with high efficiency andlow operation cost.  相似文献   

5.
A novel biofilm reactor named as `rotating perforated tubes biofilm reactor' was used for treatment of synthetic wastewaterwith and without liquid phase aeration. Effects of major processvariables such as feed wastewater flow rate, COD concentration and loading rate, liquid phase aeration on the rate and extent ofCOD removal were investigated. Liquid phase aeration was provento be advantageous especially for high strength wastewaters at highCOD loading rates. Kinetics of COD removal was investigated andkinetic constants were determined by using the experimental data.An empirical design equation was developed to quantify the system's performance as a function of major process variables.  相似文献   

6.
摘要:胸膜肺炎放线杆菌(APP)是重要的猪呼吸道病原菌,给世界养猪业造成严重的经济损失。生物被膜在许多细菌的感染与致病过程中起重要作用。我们在筛选APP转座突变体库时,发现hns基因缺失突变可显著增强APP血清1型生物被膜的形成,该基因编码一种DNA结合蛋白(组蛋白样类核结构蛋白)。为了进一步研究H-NS蛋白对APP生物被膜形成的影响,本文以APP血清1型4074株基因组DNA为模板,PCR扩增了408bp的hns基因编码区,克隆到原核表达载体pET-28c中获得重组质粒pET-hns,转化大肠杆菌BL21(DE3),经IPTG诱导表达和组氨酸亲和层析柱纯化获得大小约19KDa的重组蛋白rH-NS。将不同浓度的rH-NS添加到hns突变株1-21及其亲本菌株4074的培养基中,用微孔板法测定生物被膜的形成。结果显示,在不添加rH-NS时,4074株不能形成可见的生物被膜,而1-21株形成明显的生物被膜;在添加0.1-0.3μM的rH-NS的情况下,1-21株生物被膜的形成量随着rH-NS浓度的升高而降低,而4074株随着rH-NS浓度的升高而升高;rH-NS添加量超过0.4μM对两个菌株生物被膜形成未见明显影响。结果表明H-NS蛋白负调控APP生物被膜的形成,并呈现一定的剂量效应。  相似文献   

7.
A vertically moving biofilm system (VMBS) was developed to treat wastewater. In this system, the biofilm grows on a biofilm module consisting of plastic media that is vertically and repeatedly moved up into the air and down into the water. The objectives of this study were to investigate the oxygen transfer efficiency and industrial wastewater treatment performance of the VMBS. The oxygen transfer coefficient (K L a) depended on the movement frequency (n) of the biofilm module and was proportional to n 1.67. K L a values measured were within the range of 0.0001 to 0.0027 s-1. The VMBS exhibited good carbonaceous removal when treating industrial wastewater produced in a factory manufacturing synthetic fibres. Removal efficiency of filtered chemical oxygen demand (COD) and biological oxygen demand (BOD5) was up to 93.2 and 97.9%, respectively. The volumetric removal rates of filtered COD and BOD5 reached 1320 g COD m-3 day-1 and 700 g BOD5 m-3 day-1. The areal organic removal rates, based on the surface area of the biofilm substrata, were 16 g BOD5 m-2 day-1 and 39 g COD m-2 day-1. No clogging occurred during the experiment. The mean areal biofilm mass increased with increasing the mean areal BOD5 removal rate. The new biofilm process has such advantages as high carbonaceous oxidation, energy saving, simpleconstruction and easy operation for industrial wastewater treatment.  相似文献   

8.
9.
A new hybrid process has been proposed and evaluated the feasibility for complete removal of chromate and selenate at high level. The process consists of a H2-based membrane biofilm reactor (MBfR) and reverse osmosis (RO)/nanofiltration (NF) stages. The essential feature of the process is the recycling of the RO and NF concentrate into the membrane biofilm reactor. First, two different H2-based denitrifying MBfR initially reduced selenate (Se (VI)) or chromate (Cr (III)) stably to Se° or Cr (III) to limited levels (approximately 70–85% removal for selenate and approximately 40–65% removal for chromate). In order to achieve more stable and lower levels, two different membrane (NF and RO) filtration technologies as sequential process were combined. Two wastewaters produced from two MBfRs having similar amounts of target toxic ions (C o?=?366 μg-Cr L?1 and C o?=?326 μg-Se L?1), pH, and conductivity were tested to determine the solute rejection and the membrane flux for one RO and one NF membranes at varying recovery conditions (10–90%). The results show that the rejection of solutes decreases with increasing the recovery due to the increase in osmotic pressure. The rejections by the RO membrane were >99–98% for chromate and 99–94% for selenate, while slightly lower rejections (<20%) were observed for the NF membrane at the recovery conditions.  相似文献   

10.

Purpose

Granular activated carbon (GAC) that is both an efficient polychlorinated biphenyl (PCB) adsorbent and a good growth support for microorganisms is considered suitable for in situ remediation of PCB-contaminated aquatic sediment. Here, the potential competition between biofilm formation and PCB (Aroclor 1260) adsorption on GAC in a PCB-contaminated aquatic sediment was investigated.

Materials and methods

GACs, both coated and uncoated with biofilm or PCBs, were incubated with sediment. Each was monitored for biofilm development and PCB adsorption by: (a) cryo-scanning electron microscopy, (b) real-time quantitative PCR analysis of the 16S rRNA, (c) terminal restriction fragment length polymorphism and (d) chemical analysis.

Results and discussion

Biofilm formation on the GAC by the sediment's bacteria was rapid and occurred in three stages: (1) initial adherence of discrete bacteria, (2) an increase in biomass associated with a shift in bacterial diversity and (3) exopolymeric matrix production. The density and biodiversity of the multispecies biofilm depended on the biofilm's age. The addition of Aroclor 1260 to the sediment resulted in a decrease of the biofilm biomass, whereas Aroclor 1260 previously adsorbed on the GAC prior to contact with the sediment did not influence the biofilm biomass or its formation dynamics. Similarly, a biofilm previously developed on the GAC did not significantly decrease PCB adsorption, although contact of the GAC with the sediment did hamper adsorption of the higher chlorinated PCB congeners.

Conclusions

A mature multispecies bacterial biofilm developed in 1 month on GAC in contact with aquatic sediment did not hamper PCB adsorption, and PCB adsorption did not influence biofilm formation. These findings are important for the application of remediation strategies.  相似文献   

11.
Ammonia (NH3) emission from nitrogen (N) fertilizers used in agriculture decreases N uptake by the crop and negatively impacts air quality. In order to better understand the factors influencing NH3 emission from agriculture, this research was conducted with four major soils used for potato production: Biscayne Marl Soil (BMS, pH 7.27), and Krome Gravelly Loam (KGL, pH 7.69) from Florida; and Quincy Fine Sand (QFS, pH 6.65), and Warden Silt Loam (WSL, pH 6.46) from Washington. Potassium nitrate (KNO3), ammonium nitrate (NH4NO3), ammonium sulfate ((NH4)2SO4) or urea ((NH)2CO) sources were evaluated for ammonia volatilization at 75 kg N ha?1 rate. The soil water regime was maintained at either 20 or 80% of field capacity (FC), and incubated at 11, 20 or 29°C. Results indicated that NH3 volatilization rate at 20% FC was 2 to 3-fold greater than that at 80% FC. The cumulative volatilization loss over 28 days ranged from 0.21% of N applied as NH4NO3 to 25.7% as (NH4)2SO4. Results of this study demonstrate that NH3 volatilization was accelerated at the low soil water regime. Moisture quotient (Q) is defined as a ratio of NH3 emission rate at 20% FC to that at 80% FC both at the same temperature. The peak Q values of NH3 volatilization were up to 20.8 for the BMS soil at 20°C, 112.9 for the KGL soil at 29°C, 19.0 for the QFS soil at 20°C, and 74.1 for the WSL soil at 29°C, respectively. Thus, maintaining a suitable soil water regime is important to minimize N-loss via NH3 volatilization and to improve N uptake efficiency and air quality.  相似文献   

12.
蔡述杰  邓开英  李九玉  徐仁扣 《土壤》2020,52(3):525-531
以稻田自然生物膜为研究对象,研究不同浓度金属离子对生物膜酸性和碱性磷酸单酯酶(ACPase和ALPase)活性与酶反应动力学参数的影响。发现K~+和Na~+在0~1.0 mmol/L浓度下均对ACPase和ALPase无明显影响,Ca~(2+)和Mg~(2+)对ACPase和ALPase活性均有激活效应,可使磷酸酶活性最大提高14.1%和46.7%;Zn~(2+)、Cu~(2+)、Mn~(2+)、Al~(3+)和Ag~+对ACPase和ALPase活性均有抑制作用。Co~(2+)在低浓度时对ACPase和ALPase活性有一定的激活作用,高浓度时变为抑制作用;Cr~(6+)在0.1 mmol/L时对ACPase活性有促进作用,而在离子浓度0.25~1 mmol/L的范围内,均对ACPase活性产生抑制作用。通过酶反应动力学分析发现,Mg~(2+)的加入使ACPase与底物的亲和力与催化效率增强,Cu~(2+)对ACPase和ALPase的抑制作用主要是非竞争性抑制作用,Zn~(2+)虽然提高ACPase与底物的亲和力,但是降低了ALPase与底物的亲和力与催化效率。金属离子对酶活性的影响因金属离子种类、浓度和磷酸酶类型而异,主要通过与酶活性位点或底物结合,改变酶的活性、对底物的亲和力,以及影响酶基因的表达等实现的。研究结果将为评估自然生物膜在稻田磷的生物地球化学循环中的作用,以及稻田受重金属污染的可能风险提供理论依据。  相似文献   

13.
以养殖废水沼气池沼泥为接种物,构建了乙二胺、三氯化铁改性阳极的无介体单室微生物燃料电池(MFC)体系,均成功实现了连续产电,同时对废水中的污染物也具有很好的去除效果。为了更好地研究微生物燃料电池阳极生物膜的微生物多样性,分别采集了两种MFC阳极生物膜样品,采用PCR-DGGE法研究了一个完整产电周期的启动期(S)、葡萄糖产电稳定期(RG)和养殖废水原水稳定期(RS)的MFC阳极生物膜的微生物群落变化。结果表明,不同时期MFC阳极生物膜的微生物多样性存在明显差异,S-RG、S-RS、RG-RS的微生物群落相似性分别为70.1%、42.0%和50.6%。两种不同阳极富集的生物膜微生物群落相似性仅为48%,这表明不同改性方法所得的阳极对微生物具有选择性作用。对DGGE条带测序和比对发现,不同时期阳极生物膜上优势微生物包括Trichococcus sp.、Thauera sp.、Azoarcus sp.、Azospirillum sp.、Zobellella sp.、Pseudomonas sp.、Aeromonas sp.、Thiobacillus sp.、Desulfovibrio sp.、Thiomonas sp.,其中Pseudomonas sp.、Aeromonas sp.和Desulfovibrio sp.与已报道的相关产电微生物具有较高的序列相似度,这些菌种可能是本MFC体系中的主要产电菌。  相似文献   

14.
The herbicides 2,4-diclorophenoxiacetic and 4-chloro-2-methylphenoxyacetic acids (2,4-D and MCPA) are widely used in agricultural practices worldwide. Not only are these practices responsible of surface waters contamination, but also agrochemical industries through the discharge of their liquid effluents. In this investigation, the ability of a 2,4-D degrading Delftia sp. strain to degrade the related compound MCPA and a mixture of both herbicides was assessed in batch reactors. The strain was also employed to remove and detoxify both herbicides from a synthetic effluent in a continuous reactor. Batch experiments were conducted in a 2-L aerobic microfermentor, at 28 °C. Continuous experiments were carried out in an aerobic downflow fixed-bed reactor. Bacterial growth was evaluated by the plate count method. Degradation of the compounds was evaluated by UV spectrophotometry, gas chromatography (GC), and chemical oxygen demand (COD). Toxicity was assessed before and after the continuous process by using Lactuca sativa seeds as test organisms. Delftia sp. was able to degrade 100 mg L?1 of MCPA in 52 h. When the biodegradation assay was carried out with a mixture of 100 mg L?1 of each herbicide, the process was accomplished in 56 h. In the continuous reactor, the strain showed high efficiency in the simultaneous removal of 100 mg L?1 of each herbicide. Removals of 99.7, 99.5, and 95.0% were achieved for 2,4-D, MCPA, and COD, respectively. Samples from the influent of the continuous reactor showed high toxicity levels for Lactuca sativa seeds, while toxicity was not detected after the continuous process.  相似文献   

15.
Wastewater treatment plants are typically subjected to variable influent loading conditions. Extreme variations of flow, composition and substrate concentration may occur in the influent of industrial wastewater treatment plants, but also at plants serving tourist areas. High rate reactors of low hydraulic buffer capacity are particularly affected. Exploitation of internal equalization capacities are proposed to dampen the fluctuations of biomass loading. In this context, the biomass itself and — in case of biofilm reactors — the biofilm support media may be considered as a sink during peak loading situations, and as a source of substrate as soon as the influent loading drops. Sequencing Batch Biofilm Reactors (SBBR) studies in laboratory and pilot scale were conducted to investigate the capacity of these internal sink and source terms. The reactors were packed with four types of biofilm carrier materials, blasted clay granules, granular activated carbon, zeolite and small size plastic rings (Kaldnes). Temporary storage of substrates was achieved by means of adsorption, ion exchange and absorption processes. As the react phase proceeded, the bulk liquid concentration dropped and desorption processes followed by metabolic reactions became dominant. From the results achieved it can be concluded that thick biofilms, and biofilm support media with sorptive capacities are favorable to counteract peak loading fluctuations, and to keep the effluent concentration from exceeding set discharge levels.  相似文献   

16.
17.
生物膜修复技术凭借其高效性、安全性和经济性,已被广泛应用于土壤中难降解污染物的去除。其中,群体感应效应在生物膜修复过程中起着至关重要的作用。群体感应是微生物普遍存在的细胞间通讯形式,有助于生物膜内不同细菌种内/种间的信息交流,使微生物能够在“群体水平”上相互协作,能够调控生物膜胞外聚合物的生成以及对污染物的吸附固定与降解。本文在简要介绍生物膜和群体感应的功能和作用基础上,结合近年来群体感应调控生物膜形成以及对污染物的降解基础上,综述了群体感应在生物膜修复技术中的应用,最后对生物膜群体感应系统在污染土壤修复中的工程化设计进行了展望。  相似文献   

18.
This study compares the effect of heavy metals (Hg2+, Cu2+, and Pb2+) on the Rhodotorula mucilaginosa and Saccharomyces boulardii biofilm and planktonic cells. A MBECTM-HTP assay was used to test the levels of tolerance to heavy metals. The minimum inhibitory concentration (MICp) and minimum lethal concentration (MLCp) of the R. mucilaginosa and S. boulardii planktonic cells were determined, as well as minimum biofilm eradication concentration (MBEC). Metal removal efficiency was determined by batch biosorption assay. Previous studies had focused on heavy metal tolerance and removal efficiency of planktonic cells from Rhodotorula species only. Hence, our study presents and compares results for metal tolerance and removal efficiency of the R. mucilaginosa planktonic cells and biofilm. Biofilm tolerance was higher than the planktonic cells. The R. mucilaginosa planktonic cells showed the tolerance in the presence of Hg2+ (MICp 0.08 mM), Cu2+ (MICp 6.40 mM), and Pb2+ (MICp 3.51 mM), while the S. boulardii planktonic cells only tolerated Pb2+ (MICp 0.43 mM). The R. mucilaginosa biofilm showed the highest tolerance in the presence of Hg2+ (MBEC >0.31 mM), Cu2+(MBEC >12.81 mM), Pb2+ (MBEC >7.12 mM), and obtained results were confirmed by fluorescence microscopy. S. boulardii did not show potential in biofilm formation. The R. mucilaginosa biofilm exhibited better efficiency in removal of all tested metals than the planktonic cells. Metal removal efficiency was in the range from 4.79–10.25% for planktonic cells and 91.71–95.39% for biofilm.  相似文献   

19.
在筛选胸膜肺炎放线杆菌(Actinobacills pleuropneumoniae,APP)转座突变体库时,发现hns基因缺失突变可显著增强APP血清l型生物被膜的形成,该基因编码一种DNA结合蛋白(组蛋白样类核结构蛋白,H-NS).为了进一步研究H-NS对APP生物被膜形成的影响,实验以APP血清l型4074株基因组DNA为模板,PCR扩增了408 bp的hns基因编码区,并克隆到原核表达载体pET-28c中获得重组质粒pET28c-hns,转化大肠杆菌(Escherichia coli)BL21(DE3),经IPTG诱导表达和组氨酸亲和层析柱纯化获得大小约19 kD的重组蛋白rH-NS.将不同浓度的rH-NS添加到hns突变株1-21及其亲本菌株4074的培养基中,用微孔板法测定生物被膜的形成.结果显示,在不添加rH-NS时,4074株不能形成可见的生物被膜,而1-21株形成明显的生物被膜;在添加0.1~0.3μmol/L rH-NS的情况下,1-21株生物被膜的形成昔随着rH-NS浓度的升高而降低.而4074株随着rH-NS浓度的升高而升高;rH-NS添加量超过0.4 μmol/L对两个菌株生物被膜形成未见明显影响.结果表明H-NS蛋白负调控APP生物被膜的形成,并呈现一定的剂量效应.  相似文献   

20.
[目的] 分析填料粒径对生物滞留池(BRC)渗透性能及微生物膜形态的作用机理,以期优选出适合生物滞留池填料层的颗粒粒径及相应填充的孔隙率。[方法] 采用数值模拟和试验实测相结合的方法,利用Fluent软件对BRC小尺度计算区域范围内的流场形态进行模拟,对6种粒径(0.5,1.0,2.0,4.0,6.0,8.0 mm)下的流线图、压力分布及变化图进行综合对比分析。为验证模拟结果的正确性,对不同颗粒粒径进行生物膜培养和运行,测定颗粒表面生物膜厚度。[结果] 平均粒径为0.5~1.0 mm时流场形态最好,可形成结构合理数量较多的小涡流,有利于水流渗透及物质传递的进行,实测生物膜也表明粒径为1.0 mm时,微生物膜生长最为均匀且生物量最大。[结论] 填料的粒径会影响BRC的运行效果,数值模拟可为实际粒径的选取提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号