首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of increasing soya bean lecithin (SL) levels (0%, 2% and 4% of diet dry matter, DM) at two fish oil (FO) levels (0% and 3% DM) on gonad index, colour and biochemical composition of Strongylocentrotus purpuratus were evaluated using a 3 × 2 factorial design with six iso‐nitrogenous formulated diets. All diets generated an increase in gonad index of more than 9%. Dietary FO had a positive effect on diet digestibility and accumulation of proteins in the gonad. Soy lecithin did not affect gonad composition, but improved its coloration, decreased gonad feed conversion ratio and increased gonad protein efficiency. There was a clear effect of diets on sea urchins gonad protein, ash and fatty acid content, in particular, decreasing the n‐3/n‐6 ratio associated with a decrease in 20:5n‐3 when SL levels increased. Nevertheless, 22:6n‐3 levels increased by week 12 in all treatments, and diets with SL increased the content of 20:4n‐6 in gonads. A decrease in bitter‐tasting amino acids such as histidine, cysteine, valine and methionine was observed in all treatments with a concomitant increase in isoleucine levels. We recommend using a diet containing 3% of FO and 2% of SL to increase food consumption, diet digestibility, improving marketable gonad colour and an increasing gonad n‐6 fatty acids and C22:6n‐3. In addition, the present study paves the way for future research in the use of FO and SL as an additive in diets for S. purpuratus towards the goal of increasing gonad size and nutritional quality.  相似文献   

2.
The effects of varying protein and carbohydrate levels in prepared diets on the somatic growth of juvenile green sea urchins, Strongylocentrotus droebachiensis, were examined. Ten diets were tested on 600 hatchery reared urchins (mean start weight = 0.11 g) for 6 mo with three replicate groups per diet. Nine of the diets were prepared specifically for urchins and varied in protein (16–40% protein) and carbohydrate (29–49% carbohydrate) levels. The other two diets consisted of a commercially available abalone diet and the kelp, Saccharina latissima. Weight measurements were carried out at 6‐wk intervals, and at the end of the study urchins were individually weighed and a subsample from each treatment was analyzed for gonad weight and color. End weights after 6 mo ranged from 2.56 g for urchins fed the abalone diet to 6.11 g for urchins fed one of the prepared diets. Most of the prepared feeds outperformed kelp, and significant differences in growth were detected between some of the diets. In general, diets with lower protein levels (16–22% protein) and higher carbohydrate levels (>40% carbohydrate) produced the fastest growth. However, further diet refinement and/or use of finishing diets may be necessary to optimize gonad quality.  相似文献   

3.
This gonad enhancement study investigates the effect of different fresh and formulated feeds and feeding regimes on the growth and gonad quality of wild‐collected adult sea urchin, Tripneustes gratilla, under farm conditions for over 18 weeks. In the first 12 weeks (phase 1), urchins were fed fresh Ulva rigida (U); a 50:50 mixture of fresh U. rigida and Gracilaria gracilis (UG); fresh G. gracilis (G) and a formulated diet 20U (containing 20% U. rigida), and in the final 6 weeks (phase 2) of the study, diet was changed to a formulated feed (20U diet). By the end of phase 1, urchins fed the 20U diet produced gonads (50.72 ± 5.4 g) that were significantly heavier (p < .001) than the gonads of urchins fed the fresh seaweed diets (U, UG & G). By the end of phase 2, gonad weight of urchins in treatment groups UG‐20U and G‐20U were similar to those fed the 20U‐20U diet. Gonad colour of urchins in the G‐20U treatment became significantly lighter (ANOVA, p = .029) and poorer quality, compared with urchins in the U‐20U group. This gonad enhancement study, conducted on wild‐collected adult T. gratilla, has shown that a formulated feed (20U diet) can enhance gonad growth and produce commercially acceptable gonads. This farm‐based study supports previous findings from aquarium‐based studies by our group and indicates that short‐term sea urchin gonad enhancement can be carried out under farm conditions in South Africa.  相似文献   

4.
The nutritive values of three pelleted prepared diets, based on animal (AP), vegetable (VP) and yeast protein (YP) were studied for the sea urchin Heliocidaris erythrogramma (Val.). Fresh macroalga Ulva australis was used as a natural control diet. Triplicate groups of five animals were fed one of the four diets ad libitum every second day for 85 days. Sea urchins fed pelleted feeds had significantly higher food consumption rates (dry basis) and significantly lower total and protein absorption efficiencies compared with the algal diet. The gonad yield and gonad production efficiency in sea urchins fed the natural diet were significantly higher compared with initial group (gonad yield only) and urchins fed animal and vegetable diets, but did not differ significantly from those of the animals fed the yeast diet. Percent protein and lipid in the gonads were not affected by the dietary source. The taste and smell of gonads were generally better in sea urchins collected from the wild or fed yeast and natural diets than in sea urchins fed animal and vegetable diets. The animal protein diet was the most stable in seawater while the yeast protein diet had the poorest water stability. The results of this study suggest that development of a more stable, single‐cell, protein‐based diet has a potential to promote gonad production of H. erythrogramma.  相似文献   

5.
Adult (Strongylocentrotus purpuratus) purple sea urchins were fed giant kelp (Macrocystis pyrifera) and sea lettuce (Ulva lactuca) macroalgae that were unenriched and enriched with nutrients. Urchins were fed over 10 weeks (5% body weight per day) under laboratory conditions to determine the effect of macroalgae species and treatment (enriched and unenriched) on growth, gonad index and gonad quality. Significant differences were observed when urchins were fed enriched Macrocystis pyrifera (MPE). Gonad weight increased from 0.7 ± 0.1 g (mean ± SD) to 5.9 ± 1 g, and gonad index increase from 3.5 ± 1.5% to 14.9 ± 2.3% over 10 weeks. Significant differences were also noted in gonad quality, and gonad colour and firmness were better in urchins that were fed unenriched M. pyrifera (MPUE) and MPE – whereas texture did not differ between M. pyrifera treatments and unenriched U. lactuca (ULUE). With regard to taste, gonads were sweeter in MPE‐fed individuals. Enriched U. lactuca (ULE) failed to grow gonads significantly; as a result, their quality was unacceptable for the market. These results suggest that S. purpuratus experience increased gonad production and quality in short periods when fed nutrient‐enriched M. pyrifera.  相似文献   

6.
In this study, we evaluated protein and carbohydrate levels in cold‐extruded dry diets. Sea urchins (12.6 ± 0.12 SE g wet weight, 29.5 ± 0.11 SE mm diameter) were collected from St. Joseph Bay, Florida (30°N, 85.5°W), and transported to the Texas Agrilife Research Mariculture Laboratory in Port Aransas, Texas. Urchins were held individually in replicated enclosures within a recirculating seawater system (32 ± 2 ppt and 22 ± 2 C). Urchins (n = 16urchins) were fed diets that differed in protein : carbohydrate levels (31:33%, 25:39%, 21:44%, and 17:47% dry weight) for 12‐wk. Survival was 100% in all diet treatments. Urchins fed the 31:33% protein : carbohydrate diet consumed less feed, more dry protein, less dry carbohydrate, less energy, and had lower feed conversion ratios than urchins fed other diets. Urchins fed the 31:33% protein : carbohydrate diet had larger test diameters, total wet weights, production efficiencies, and gonad production efficiencies than urchins in the other diets. Weight gain varied directly and significantly with protein intake. Sufficient energy was available for maximum weight gain as protein was spared. Growth rates and production efficiencies for the urchins in this study were higher than in previous feeding studies with adult Lytechinus variegatus.  相似文献   

7.
Abstract— An important aspect in the development of any aquaculture industry is the maximization of juvenile somatic growth (i.e., body growth) to reduce production time and increase the size of the final product. In this study, green sea urchins Strongylocentrotus clroebachiensis were fed a prepared diet from 4 December 1998 to 10 September 1999 (i.e., 280 d) in a laboratory to investigate the effect of protein source (soybean andlor fish), protein concentration (20,30,40, and 50% dry mass) and juvenile size (4‐8 mm and 12‐20 mm initial test diameter) on somatic growth. A natural diet of Laminwia longicrurus (i.e., kelp) was used as a reference. There was no difference in initial size among the treatments for either the smaller cohort 1 or the larger cohort 2 sea urchins (6.3 mm and 13.8 mm initial average test diameter, respectively) (P > 0.05 for all tests). After 280 d, the sea urchins fed kelp had an average size of 20.7 mm and 24.5 mm (cohort 1 and cohort 2, respectively). The final average sizes of the sea urchins fed the prepared diets, which did not relate to dietary protein concentrations andlor protein source, ranged from 13.2 mm to 16.2 mm (cohort 1) and from 20.4 mm to 22.9 mm (cohort 2), and were significantly smaller than the kelpfed sea urchins (P < 0.05 and P < 0.001, cohort 1 and cohort 2, respectively). All treatments experienced 95% survivorship or greater. Sea urchin size appears to affect growth rate when optimal conditions for growth are available (i.e., diet and water temperature). As water temperatures increased during the summer of 1999, the sea urchins in cohort 1 fed kelp had a significantly higher growth rate (0.069 dd) than the cohort 2 kelpfed sea urchins (0.052 dd) (P < 0.05). However, within each cohort, there were no significant difference in growth rate (P > 0.05) among the sea urchins fed prepared diets, suggesting sea urchins do not require high concentrations of dietary protein for superior growth, and that plant protein can substitute fish protein in sea urchin diets. Furthermore, the sea urchins fed the prepared diets had poorer test quality and larger gonad yields (13‐22%) compared to the kelpfed sea urchins (4.2%) and a wild sample of sea urchins of similar size (4.0%). The results suggest that the sea urchins fed the prepared diets allocated more energy to gonad production, whereas those fed a natural diet allocated more energy toward test production. To address this gap, more research is required to identify the nutritional components required for test growth that were present in kelp, but appeared to be deficient in the prepared diets.  相似文献   

8.
This study investigated the effects of dietary minerals and pigments in prepared diets on the somatic growth performance of wild and hatchery‐reared juvenile green sea urchins, Strongylocentrotus droebachiensis, by two feeding trials. In the first feeding trial, a modified Bernhart‐Tomerelli salt mix (BT) at 0, 1.5, 3, 6, and 15% dry mass and a Shur‐Gain/Maple Leaf Foods mineral mix at 3 and 6% dry mass were used to test for mineral effects. Pigment effects were tested by incorporating 1.25% Algro? to the prepared diets (i.e., 250 mg of beta‐carotene per kilogram of diet). Sea urchins (13–15 mm of initial test diameter [TD]) collected from the wild were fed the prepared diets over 154 d. The sea urchins that were fed the pigmented diets had significantly greater test growth than those fed the nonpigmented diets, and mineral concentration in the pigmented diets was directly related to juvenile size at the end of the feeding trial. A sample of juveniles from each treatment group was sacrificed to determine test, gonad, and gut yields and ash concentrations. Ash concentrations in the test and gonad were higher for juveniles fed pigmented diets than for those fed nonpigmented diets with similar mineral concentration, suggesting an interaction between minerals and pigments within the juvenile sea urchins. The second feeding trail used two size cohorts of hatchery‐reared juveniles ranging from 1–2 mm and 2–3 mm of initial TD to compare the growth of sea urchins fed either the pigmented diet with 15% BT (i.e., the best diet in the first feeding trial) or kelp, Laminaria longicruris, over 159 d. Growth performance was similar for both cohorts, indicating no size effect, but the juveniles fed the prepared diet were significantly larger at the end of the feeding trial than those fed kelp. This suggests that prepared diets with pigment and high mineral concentration can outperform kelp, and be utilized for juvenile green sea urchins to increase test growth.  相似文献   

9.
A pilot project aimed at testing roe enhancement strategies based on offshore Paracentrotus lividus cultures was conducted off the south‐east coast of Italy (Apulia Region). Adult sea urchins were reared in sea cages located 700 m offshore at a depth of 12 m for 3 months. The animals were fed once a week on two formulated diets, prepared mixing nutrients with agar 20 g/Kg and differing only in terms of the protein source: anchovy flour (Diet A) or krill flour (Diet K). At the end of the rearing trial, the gonad somatic index of sea urchins fed on formulated diets significantly exceeded that of wild sea urchins. Total FAA content in the gonads of wild sea urchins and Diet A‐fed sea urchins was similar, whereas in Diet K‐fed sea urchins it was significantly higher. In terms of fatty acids, the gonads contained SFAs, MUFAs and PUFAs. In visual and sensory assessment of gonads by panel test and electronic nose, the gonads of reared sea urchins were rated as being of better size, while no differences were recorded for coloration, taste and odour. This study shows that under these experimental conditions, commercial‐grade Paracentrotus lividus roe enhancement can be achieved after 3 months in sea cages.  相似文献   

10.
In experiment 1, juvenile sea urchins (n = 80, 0.088 ± 0.001 g wet weight and 5.72 ± 0.04 mm diameter) were held individually and fed ad libitum one of three semi‐purified formulated diets (n = 16 individuals treatment?1). In the diets, protein was held constant (310 g kg?1 dry, as fed) and carbohydrate level varied (190, 260, or 380 g kg?1 dry, as fed). Wet weights were measured every 2 weeks. Total wet weight gain was inversely proportional to dietary carbohydrate level and energy content of the respective diet. In experiment 2, sea urchins (5.60 ± 0.48 g wet weight, n = 40) fed 190 g kg?1 carbohydrate consumed significantly more dry feed than those fed 260 g kg?1, but not more than those fed 380 g kg?1 carbohydrate. Based on differential feed intake rates, sea urchins that consumed more feed also consumed higher levels of protein and had the highest weight gain. Consequently, protein content and/or protein: energy ratio may be important in determining feed utilization and growth among sea urchins in this study. The average digestible energy intake was approximately 70 kcal kg?1 body weight day?1, suggesting daily caloric intake of juvenile Lytechinus variegatus is lower than in shrimp and fish.  相似文献   

11.
Protein and energy are two of the main limiting factors for sea urchin growth. However, the requirement of daily protein and energy to maximize gonadal production is still unknown. Paracentrotus lividus were fed three experimental diets: Ulva lactuca, Gracilaria conferta and a prepared diet for 2 months in the fall of 1999 and spring of 2000. Sea urchins from a laboratory‐cultured population of equal age, weight and test diameter were used. Apparent digestibility coefficients (ADC%) for protein and energy, using acid‐insoluble ash as a marker, were measured for all experimental diets. Apparent digestibility coefficients for protein was high (>75%) for all diets. Energy digestibility varied among the diets and was lowest for G. conferta (50–62%). The three diets contained varying digestible protein (DP) to digestible energy (DE) ratios of 25, 26 and 12 mg kJ?1 for U. lactuca, G. conferta and the prepared diet respectively. Digestible protein intake was similar for all treatments, but DE intake was greater for sea urchins fed the prepared diet in both seasons. As a result, the gonad production was significantly higher for urchins fed the prepared diet, suggesting that energy was limiting in the algal diets. Paracentrotus lividus spawned during the spring experiment, resulting in protein loss in all treatments. Protein loss was lowest in the sea urchins fed the prepared diet. Enhanced gonadal growth and gamete development of P. lividus resulted from the higher dietary energy content of the prepared diet.  相似文献   

12.
Supplying juvenile sea urchins with an abundant supply of resources and essential nutrients for growth will facilitate somatic growth and, hence, improve the success of the sea urchin aquaculture industry. Lipids are essential in physical processes such as membrane production and are a concentrated source of energy. This study, using prepared diets, tested the effects of lipid sources containing different major fatty acids (i.e., n‐3 and/or n‐6) (Part 1) and lipid concentration (i.e., 1, 3, 7, and 10%) (Part 2) on the somatic (i.e., test or shell) growth of two size cohorts (7.0‐ and 15.3‐mm average initial test diameter [TD]) of juvenile green sea urchins, Strongylocentrotus droebachiensis. The growth of the sea urchins fed prepared diets was compared to the growth of sea urchins fed a kelp reference diet, Laminaria longicruris. After both feeding trials, the kelp‐fed sea urchins had superior test growth and were more similar in physical appearance to wild sea urchins (i.e., test color, spine length, and gonad color). The sea urchins fed the prepared diets had pale test color, short, stubby spines, and large, pale‐colored gonads compared to wild sea urchins. The smaller cohort of sea urchins grew at a faster rate, but growth patterns for both cohorts were similar. The juveniles fed the prepared diets (in both feeding trials) had high initial growth rates that decreased after approximately 100 d compared to the kelp‐fed juveniles. Differences in test growth were not shown to be affected by sea urchin size (i.e., similar results for both cohorts) or by differences in dietary lipid sources (i.e., the presence of n‐3 and/or n‐6 fatty acids). However, the sea urchins fed diets with lower lipid concentration (≤3%) had larger average TDs than those fed diets with higher lipid concentrations (≥7%). Differences in test growth and physical appearance among those fed the prepared diets and kelp may have been because of nutritional deficiencies in the prepared diets.  相似文献   

13.
Three formulated diets were tested to evaluate their effects on gonad quality in Paracentrotus lividus. Experiments were conducted in parallel by the Consiglio Nazionale delle Ricerche (CNR) of Taranto (trial 1) and the University of Genoa (trial 2), in land-based systems. In both trials, somatic and gonadsomatic index (GSI) were measured and the nutritional profile of the sea urchins has determined significant variations in the biochemical composition. Sea urchins fed the experimental diets contained higher levels of nutrients (protein and lipid and carbohydrate) compared to wild sea urchins. However, total polyunsaturated fatty acids (PUFAs), especially EPA and DHA, and the n-3/n-6 ratio were lower in urchins fed with formulated diets. In both trials, sea urchins fed with diet 2 (SABS) showed a similar profile with PUFAs higher than SAFAs and MUFAs, the highest UNS/SAT ratio, although the highest n3/n6 ratio was observed in the group fed diet 3 (CNR). Atherogenicity, thrombogenicity, and hypocholesterolemic/hypercholesterolemic indices showed the best values in sea urchins fed diet 2 in both trials.  相似文献   

14.
We compared the gonad-enhancing effects of two diets (NIWA and NIFA diets) in two size classes of sea urchins (Evechinus chloroticus): small and large urchins with a test diameter of 75.6 ± 1.2 mm and 93.8 ± 0.5 mm, weighing 174.8 ± 7.9 g and 315 ± 5.6 g, respectively. After eight weeks being fed prepared diets, urchin gonad index (GI) had significantly surpassed that of the initial and final samples of wild urchins. Urchins in the NIWA/small treatment had a larger GI than the NIFA/small and NIFA/large treatments. The NIWA/large treatment had a larger GI than the NIFA/large treatment. The overall percentage increase in GI for the NIWA/small, NIWA/large, NIFA/small and NIFA/large treatments were 183%, 135%, 132% and 85%, respectively. In terms of gonad colour (CIELAB), there were no significant differences in gonad redness (a*) or yellowness (b*) between experimental treatments, but there was a significant difference in gonad lightness (L*) with small urchins fed both diets having lighter-coloured gonads than the large urchins fed both diets. Sensory assessment of gonads revealed that gonads from small urchins fed both diets were rated as being of better colouration and more uniform in colour than gonads from large urchins. Gonads of urchins fed the NIFA diet were rated as being less bitter and of better overall taste than gonads from urchins fed the NIWA diet. This study shows that feeding prepared diets to E. chloroticus can significantly increase gonad yield but that different diets can affect the magnitude of GI increase and the taste of gonads, and that smaller urchins appear more suitable for gonad enhancement.  相似文献   

15.
16.
This study investigated growth and gonad production of Tripneustes gratilla fed four protein‐rich artificial diets supplemented with varying amounts (0%, 5%, 15% and 20% weight/weight (w/w); designated 0, 5, 15 and 20U, respectively) of the macroalga Ulva over a 12‐week period. Gonad size, texture, colour and a number of production performance parameters were quantified and compared with urchins fed fresh Ulva (FU) and a combination of FU and artificial feed (FB). All artificial diets significantly ( 0.05) increased gonad somatic indices (GSI) compared with the FU treatment. The 20U treatment increased GSI by 205% by week 9, compared with a 57% increase in the GSI of urchins fed FU. Gonad colour was calculated using three colour parameters, namely L* (lightness), a* (redness) and b* (yellowness). Whereas L* and a* values did not differ significantly between treatments, b* values for all treatments, with the exception of the 20U and FB treatments, were significantly ( 0.05) lower or less yellow than the FU treatment by week 12. These results show that we have successfully formulated a feed (20U) which can produce commercially acceptable gonads in terms of both size and colour, indicating the potential for this artificial feed to support commercial echinoculture.  相似文献   

17.
Different levels of dietary chitosan on growth performance, survival and stress tolerance to air exposure was studied in tiger shrimp, Penaeus monodon. Shrimp (mean initial wet weight about 1.16 g) were fed with six different diets (C0, C0.05, C0.1, C0.2, C0.3 and C0.4) containing six level of chitosan (0%, 0.05%, 0.1%, 0.2%, 0.3% and 0.4% respectively) in triplicate for 60 days. Growth performance [final body wet weight (FBW); weight gain (WG); biomass gain (BG)] of shrimp fed chitosan‐containing diets were higher (< 0.05) than that of shrimp fed the basal diet, shrimp fed C0.1 diet showed the highest value of growth performance. Survival of shrimp in C0.1 and C0.2 diet groups were higher (< 0.05) than that of shrimp in C0, C0.05 and C0.4 diet groups but without statistical difference (> 0.05) in shrimp fed C0.3 diet group. Whole body and muscle lipid contents decreased with increasing dietary chitosan levels. Plasma total cholesterol and triglyceride contents of shrimp fed C0 diet was significantly higher (< 0.05) than that of shrimp fed chitosan‐containing diets. Plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities of shrimp fed C0 diet were higher than those of shrimp fed chitosan‐containing diets. Digestive gland malondialdehyde (MDA) and carbonyl protein contents of shrimp fed chitosan‐containing diets were lower (< 0.05) than that of shrimp fed C0 diet. Total haemocyte count of shrimp fed C0 diet was lower (< 0.05) than that of shrimp fed chitosan‐containing diets. On the contrary, the haemolymph clotting time of shrimp fed C0 diet was higher (< 0.05) than that of shrimp fed chitosan‐containing diets. In conclusion, all results suggested that dietary intake containing 0.1% and 0.2% chitosan enhanced the growth of shrimp, whereas a higher level than 0.3% and 0.4% decreased growth of shrimp. Second‐degree polynomial regression analysis of WG and BG indicated that the optimum supplement of dietary chitosan level should be 0.19–0.21%.  相似文献   

18.
The sea urchins Psammechinus miliaris and Paracentrotus lividus were fed three macroalgal diets with varying protein content over a 90-day period. These diets were the red alga Palmaria palmata, which had been grown in seawater enriched with two levels of ammonia-N and contained a protein content of either 41% (High-N) or 32% (Low-N) and the brown alga Laminaria saccharina (23% protein). A significantly different response to the macroalgal diets by the two sea urchin species was found in terms of food consumption rate, food conversion efficiency, gonadal growth and gonad nutritional composition. P. miliaris was able to efficiently utilise the High-N P. palmata, whereas P. lividus exhibited a higher food conversion efficiency (FCE) and specific growth rate (SGR) when fed the Low-N compared with the High-N P. palmata. P. miliaris had a significantly higher food consumption rate and higher gonad index (GI) compared with P. lividus, irrespective of diet type. The lowest FCE, SGR and GI were shown by both species fed L. saccharina. No interspecific difference in gonadal nitrogen content was observed, although a positive relationship was shown between dietary and gonadal nitrogen content for both species. All three macroalgal diets produced bright orange or yellow orange gonad colour in P. lividus. High-N and Low-N P. palmata improved gonad colouration in P. miliaris compared with L. saccharina. The results suggest that P. miliaris can efficiently assimilate high protein plant-based diet, whereas P. lividus is less capable of benefiting from high dietary protein levels and this should be taken into consideration when culturing this species either in land-based or sea-based polyculture systems.  相似文献   

19.
An 8‐week growth trial was conducted to evaluate the effects of different levels of tributyrin supplementation in a high‐soya bean meal diet on juvenile black sea bream (11.30 ± 0.16 g). The positive control (PC) diet contained 45% fishmeal and 20% soya bean meal, while the negative control (NC) contained 12% fishmeal and 45% soya bean meal. Graded levels of tributyrin were added to the NC diet at 0.05% (TB 0.05), 0.1% (TB 0.1), 0.2% (TB 0.2), 0.4% (TB 0.4) and 0.8% (TB 0.8). Ultimately, the fish fed the PC diet had a higher weight gain and specific growth rate than the fish fed other diets. The fish fed the NC diet had the lowest growth, and TB 0.05–TB 0.2 diets increased growth performance while TB 0.4–TB 0.8 diets caused reduction in growth. Dietary tributyrin supplementation improved protease activity and enhanced antioxidant capacity. Compared with the fish fed the NC diet, the fish fed the tributyrin‐supplemented diets had improved gut morphology and structure, and the results were similar to those of the fish fed the PC diet. Furthermore, the analysis of the dose response with second‐order polynomial regression indicated that the optimum tributyrin supplementation for juvenile black sea bream is 2.24 g/kg in the 45% soya bean meal diet.  相似文献   

20.
The aim of this work was to assess the potential use of different dried macroalgae as food in the rearing of Paracentrotus lividus. Growth, consumption and food conversions were compared in adult sea urchins fed with fresh or dried thalli of four macroalgae species. Six experimental diets were tested: (a) fresh Palmaria palmata; (b) fresh Saccharina latissima; (c) dry P. palmata; (d) dry S. latissima; (e) dry Laminaria digitata and (f) dry Grateloupia turuturu. Linear growth rates were similar for all treatments. Specific growth rate was higher in sea urchins fed with fresh P. palmata, but no difference was found between animals fed with fresh S. latissima and those fed with dried diets. Regarding daily food consumption (DFC), sea urchins consumed the same amount of dried macroalgae as fresh but exhibited a higher food conversion efficiency (FCE) when fed with fresh P. palmata. However, this FCE was only significantly higher when compared to sea urchins fed with dry L. digitata. Dried G. turuturu is not a suitable diet due to its rapid degradation after rehydration. The results suggest that P. lividus adults can be reared on dried macroalgae thalli without detriment to their somatic growth, especially over short periods. The low cost of feeding sea urchins with this diet could help small shellfish farmers to diversify their production into echinoculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号