首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different levels of dietary chitosan on growth performance, survival and stress tolerance to air exposure was studied in tiger shrimp, Penaeus monodon. Shrimp (mean initial wet weight about 1.16 g) were fed with six different diets (C0, C0.05, C0.1, C0.2, C0.3 and C0.4) containing six level of chitosan (0%, 0.05%, 0.1%, 0.2%, 0.3% and 0.4% respectively) in triplicate for 60 days. Growth performance [final body wet weight (FBW); weight gain (WG); biomass gain (BG)] of shrimp fed chitosan‐containing diets were higher (< 0.05) than that of shrimp fed the basal diet, shrimp fed C0.1 diet showed the highest value of growth performance. Survival of shrimp in C0.1 and C0.2 diet groups were higher (< 0.05) than that of shrimp in C0, C0.05 and C0.4 diet groups but without statistical difference (> 0.05) in shrimp fed C0.3 diet group. Whole body and muscle lipid contents decreased with increasing dietary chitosan levels. Plasma total cholesterol and triglyceride contents of shrimp fed C0 diet was significantly higher (< 0.05) than that of shrimp fed chitosan‐containing diets. Plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities of shrimp fed C0 diet were higher than those of shrimp fed chitosan‐containing diets. Digestive gland malondialdehyde (MDA) and carbonyl protein contents of shrimp fed chitosan‐containing diets were lower (< 0.05) than that of shrimp fed C0 diet. Total haemocyte count of shrimp fed C0 diet was lower (< 0.05) than that of shrimp fed chitosan‐containing diets. On the contrary, the haemolymph clotting time of shrimp fed C0 diet was higher (< 0.05) than that of shrimp fed chitosan‐containing diets. In conclusion, all results suggested that dietary intake containing 0.1% and 0.2% chitosan enhanced the growth of shrimp, whereas a higher level than 0.3% and 0.4% decreased growth of shrimp. Second‐degree polynomial regression analysis of WG and BG indicated that the optimum supplement of dietary chitosan level should be 0.19–0.21%.  相似文献   

2.
A 30‐day feeding trial was conducted to investigate the effects of dietary lipid levels on growth performance, activities of digestive enzymes, fatty acid composition and some lipogenesis‐related gene expression of half‐smooth tongue sole (Cynoglossus semilaevis) larvae. Five isoproteic diets were formulated with graded lipid levels (6.68%, 9.84%, 13.47%, 17.89% and 21.88% dry weight) using fish oil as the main lipid source. Each diet was randomly allocated to triplicate groups of 150 larval tongue sole (35 DAH, 54 ± 1 mg). Fish were fed five times daily to apparent satiation during the feeding experiment. Results showed that, the survival rate (SR) of larvae increased significantly firstly, and thereafter decreased significantly. The specific growth rates (SGR) of larvae fed the diet with 13.47% lipid were significantly higher than other treatments. Larvae fed 9.84% or 13.47% dietary lipid showed higher trypsin, lipase, leucine aminopeptidase and alkaline phosphatase (AP) activities than other treatments, whereas amylase activity nearly showed reverse trend with them. The fatty acid composition of the tongue sole larvae was well correlated with dietary fatty acid profile. Expression of acetyl‐CoA carboxylase alpha (ACC1) was found to be slightly negatively correlated with dietary lipid level, and high dietary lipid level depressed the expressions of acetyl‐CoA carboxylase beta (ACC2) and fatty acid synthase (FAS) mRNA expression significantly, implying that larvae may cope with high dietary lipid mainly through down‐regulating lipogenesis‐related gene expression of FAS and ACC2. Besides, on the basis of SGR, the optimal dietary lipid level for larval tongue sole was estimated to be 13.56% using second‐order polynomial curve.  相似文献   

3.
An 8‐week feeding trial was conducted to quantify the dietary l ‐lysine requirement of juvenile Chinese sucker with an initial weight of 1.81 ± 0.04 g reared in indoor flow‐through and aerated tanks. Six isonitrogenous and isoenergetic practical diets were formulated to contain graded levels of lysine (1.23%, 1.80%, 2.39%, 2.98%, 3.56% and 4.18% dry matter) at 0.6% increments from dietary ingredients and crystalline l ‐lysine. Each diet was randomly assigned to triplicate groups of 30 fish each and was fed to apparent satiation by hand three times a day (09:00, 13:00 and 17:00 hours) for 8 weeks. There were significant differences in growth performance and feed utilization among the treatments. Weight gain (WG), specific growth rate and protein efficiency ratio (PER) significantly increased with increasing lysine levels up to 2.39% of diet (< 0.05) and remained nearly the same thereafter (> 0.05). Feed efficiency was the poorest for fish fed the lowest lysine diet (< 0.05) and showed no significant differences when dietary lysine level increased from 2.39% to 4.18%. The N retention (% N intake) significantly increased with dietary lysine level but did not attain a plateau (< 0.05). Survival could not be related to dietary treatments. Whole body protein increased (< 0.05) and whole body lipid decreased (< 0.05) with increasing dietary lysine level. The condition factor and hepatosomatic index were significantly affected by dietary lysine levels, however, viscersomatic index, whole body moisture and ash did not differ significantly among dietary treatments. Broken‐line analysis on the basis of WG and PER showed that dietary lysine requirements of juvenile Chinese sucker were 2.43% and 2.40% dry diet (5.52% and 5.45% dietary protein) respectively. Based on the ideal protein approach and the A/E ratios determined from muscle amino acid profile an estimation of the EAA requirements of Chinese sucker juveniles were calculated.  相似文献   

4.
We evaluated the effects of dietary lipid levels on the growth, whole body composition and fatty acid composition of juvenile gibel carp (Carassius auratus gibelio). Triplicate groups of 120 juvenile Carassius auratus gibelio (average weight: 2.05 g) were fed four isonitrogenic diets formulated with lipid levels of 1.4% (low), 6.1% (control), 11.6% (medium) and 21.1% (high) for 60 days. Weight gain in the 11.6% lipid group was significantly higher than that in the other groups (P < 0.05). The feed conversion ratio decreased and protein efficiency ratio increased (P > 0.05) as dietary lipid levels increased. N‐3 polyunsaturated fatty acids (PUFA) were not detected in faeces. The whole body lipid contents of 11.6% and 21.1% lipid level groups were significantly higher than that of the 1.4% and 6.1% lipid level groups (P < 0.05). The content of whole body n‐3 PUFA in the 21.1% lipid level group enhanced significantly (P < 0.05). The whole body contents of eicosapntemacnioc acid (EPA) and docosahexaenoic acid (DHA) in the 21.1% lipid level group were the highest (P < 0.05). These results indicated that high dietary lipid levels (21.1%) inhibit weight gain and promoted fat and n‐3 PUFA deposition in juvenile Carassius auratus gibelio, which led to liver damage. A dietary lipid level of 11.6% was determined to be optimal for growth performance of juvenile Carassius auratus gibelio.  相似文献   

5.
Four iso‐nitrogenous and iso‐lipidic diets were designed to investigate the effects of dietary phospholipids (PL) levels (with 0%, 1%, 2%, and 4% PL supplementation) on growth performance, lipid metabolism, and antioxidant capacity in early juvenile green mud crab (Scylla paramamosain). There were three replicates of 28 crabs (initial body weight from 42.02 to 42.44 mg) for each diet treatment, and growth trial lasted for 8 weeks. At the end of the growth trial, there was no significant difference in survival among all treatments. Crabs fed diet with 2% PL obtained highest weight gain (WG) and specific growth rate than other crabs. The molting frequency was not affected by different dietary PL addition. Besides, the contents of whole body lipid and long chain highly unsaturated fatty acids significantly increased with elevating dietary PL levels. In the hepatopancreas, crabs fed diet with 0% PL had significantly higher malondialdehyde concentration than other crabs. And crabs fed diet with 2% PL obtained significantly higher superoxide dismutase activity than crabs fed diets with 0% and 4% PL. Moreover, the mRNA expression of Na+/K+‐ATPase was significantly down‐regulated with dietary PL supplementation over 2%. Based on the second order polynomial regression analysis of WG, 2.37% dietary PL level was the optimal demand for early juvenile S. paramamosain. Moreover, we found crabs fed diet with 2% PL obtained better antioxidant capacity than other crabs.  相似文献   

6.
This study was conducted to determine effects of dietary Fe levels on growth performance, hepatic lipid metabolism and antioxidant response for juvenile yellow catfish Pelteobagrus fulvidraco. Yellow catfish were fed six isonitrogenous and isolipidic diets containing Fe levels of 16.20, 34.80, 54.50, 76.44, 100.42 and 118.25 mg/kg for 8 weeks. Weight gain (WG) and specific growth rate (SGR) increased with dietary Fe levels from 16.20 to 54.50 mg/kg diet and then plateaued over the level. Feed conversion rate (FCR) was highest and protein efficiency rate (PER) was lowest for fish fed the lowest Fe levels of diet. Fe contents in whole body and liver increased with increasing dietary Fe levels. Hepatic lipid content was lowest, but mRNA levels of carnitine palmitoyltransferase (CPT‐1) and peroxisome proliferator‐activated receptor α (PPARα) were highest for fish fed 54.50 mg Fe/kg diet. Fish fed adequate dietary Fe levels reduced hepatic malondialdehyde (MDA) level and increased activities of antioxidant enzymes Superoxide dismutase (SOD), Catalase (CAT) and GS. Based on the broken‐line regression analysis of WG against dietary Fe levels, optimal dietary Fe requirement for yellow catfish was 55.73 mg Fe/kg diets. Fe‐induced changes in MDA levels and antioxidant enzymatic activities paralleled with the change in hepatic lipid content, suggesting the potential relationship between oxidative stress and hepatic lipid accumulation in yellow catfish.  相似文献   

7.
A 50‐day feeding trial was conducted to examine the effects of dietary protein and lipid levels on growth, feed utilization, body composition and swimming performance of giant croaker, Nibea japonica. Fish (initial body weight 44.6 g ind−1) were fed ten test diets which were formulated at 5 crude protein levels (360, 400, 440, 480 and 520 g kg−1) and 2 crude lipid levels (90 and 150 g kg−1). In addition, a raw fish diet (fillet of small yellow croaker) served as the reference. The weight gain (WG) increased, whereas the feed intake (FI) and feed conversion ratio (FCR) decreased, with increasing dietary protein level from 360 to 520 g kg−1. At the same dietary protein level, no significant difference was found in the WG between fish fed the diets containing 90 or 150 g kg−1 crude lipid. Fish fed the diet containing 480 g kg−1 crude protein and 90 g kg−1 crude lipid exhibited higher WG, nitrogen retention efficiency (NRE) and energy retention efficiency (ERE) but lower nitrogen wastes output (TNW). At the end of the feeding trial, the hepatosomatic index (HSI) and viscerosomatic index (VSI) decreased, whereas the body protein content increased, with increase in dietary protein level. The body lipid content was higher in fish fed at the 150 g kg−1 lipid level than in fish fed at the 90 g kg−1 lipid level. No significant difference was found in the maximum sustained swimming speed (MSS) between fish fed at different dietary protein and lipid levels. The WG, NRE, ERE and condition factor (CF) were higher, whereas the FI, FCR, HSI, VSI and TNW were lower, in fish fed the raw fish diet than in fish fed the diet containing 480 g kg−1 crude protein and 90 g kg−1 crude lipid. No significant difference was detected in the MSS between fish fed the raw fish diet and diet containing 480 g kg−1 crude protein and 90 g kg−1 crude lipid. The results of this study suggest that the suitable dietary crude protein and crude lipid levels are 480 g kg−1 and 90 g kg−1 for giant croaker reared in net pens.  相似文献   

8.
Two, 8‐week feeding trials were conducted to compare protein‐sparing capability of dietary lipid in herbivorous grass carp (Ctenopharyngodon idella) and omnivorous tilapia (Oreochomis niloticus × O. aureus). Utilizing a 2 × 3 factorial design, experimental diets containing two levels of crude protein (380 and 250 g kg−1) and three levels of lipid (0, 40 and 100 g kg−1) were formulated for use in both feeding trials. Growth performances showed better response of both fish fed 380 g kg−1 protein diet than those fed 250 g kg−1 protein diet. Despite the dietary protein level, weight gain (WG), specific growth ratio (SGR), feed conversion ratio (FCR) and protein efficiency ratio were much higher (P < 0.05) for grass carp fed 40 g kg−1 lipid diet than those fed 100 g kg−1 lipid diet; however, there were no significant differences in tilapia fed the two diets. The feed intake of grass carp fed lipid‐free diet was the lowest, but it tended to decrease with increase in dietary lipids in tilapia. Lipid retention (LR) was negatively correlated with dietary lipid concentration of both fish. Viscerosomatic index (VSI), hepatosomatic index (HSI), intraperitoneal fat ratio (IPF) and whole‐body and liver lipid content positively correlated with dietary lipid concentration of both fish. Plasma parameters and liver enzymes activities were also positively correlated with dietary lipid concentration of both fish. Liver lipid contents were higher and enzymes activities were lower in grass carp when compared with tilapia. These data suggested that there was no evidence of a protein‐sparing effect of dietary lipids in grass carp. Tilapia has relatively higher capacity to endure high dietary lipid level compared to grass carp.  相似文献   

9.
Yeast fermentation integrated with water soaking was applied as a method to reduce the levels of some anti‐nutritional factors in canola meal. The procedure completely eliminated glucosinolates and it reduced phytic acid content by 18%. It also led to increase of 9% of crude protein and 8–32% of some minerals in the meal. A 60‐day feeding trial was conducted to evaluate replacement of dietary soybean meal protein with yeast‐fermented canola meal for Nile tilapia at ratios of 0, 25, 50, 75 and 100% respectively. Three groups of fish with an initial weight of 10 g were fed with each diet twice a day to an apparent satiation. The results showed that there were non‐significant differences (P > 0.05) in growth, survival rate, feed intake and feed conversion ratio for all fish fed with the test diets. However, replacement with 75 and 100% levels significantly reduced (P < 0.05) protein efficiency ratio and nutrient digestibility of protein, lipid, ash, Ca, Mg and P of fish compared with the lower levels. The low retention of protein, lipid, ash, Ca, Mg and P were also observed. These effects seemed to be related to an increased dietary phytic acid.  相似文献   

10.
This study was conducted to evaluate the effects of extruded diets and pelleted diets with varying dietary lipid levels on growth performance and nutrient utilization of tilapia. Six diets, containing three levels of lipid at 40, 60 or 80 g kg?1 (with the supplemental lipid of 0, 20 or 40 g kg?1, respectively), were prepared by extruding or pelleting and then fed to tilapia juveniles (8.0 ± 0.1 g) in cages (in indoor pools) for 8 weeks. The results indicated that the fish that were fed the diet with 60 g kg?1 of lipid had a higher weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER), lipid retention (LRE), energy retention (ERE), apparent protein digestibility, apparent dry matter digestibility and a lower feed conversion ratio (FCR) than those fed the diet with 40 g kg?1 lipid in both the extruded diet and pelleted diet (P < 0.05). As the dietary lipid level increased from 60 to 80 g kg?1, these parameters were not further improved, even digestibilities of the crude protein and dry matter decreased (P < 0.05). With the dietary lipid level increased, whole‐body lipid content significantly increased (P < 0.05), serum aspartate aminotransferase, alkaline phosphatase, total cholesterol and low‐density lipoprotein cholesterol (LDL‐C) tended to increase (P > 0.05), whereas whole‐body protein content, serum triglyceride (TG), high‐density lipoprotein cholesterol (HDL‐C) and HDL‐C/LDL‐C tended to decrease (P > 0.05). Fish fed with the extruded diets had a higher WG, SGR, hepatosomatic index (HSI), PER, protein retention (PRE), LRE, ERE, TG, apparent digestibility of protein and dry matter, as well as a lower FCR, than those fed with the pelleted diets at the same dietary lipid level (P < 0.05). These results suggested that tilapia fed with the extruded diets had a better growth and higher nutrient utilization than fish fed with the pelleted diets, when dietary lipid level ranged from 40 to 80 g kg?1 and at dietary crude protein level was 280 g kg?1. The optimum dietary lipid level was 60 g kg?1 in both the pelleted and extruded diets, and extrusion did not affect dietary lipid requirement of the tilapia.  相似文献   

11.
12.
The main objective of this investigation was to study the lipid requirements of the early juvenile (C1) swimming crab (Portunus trituberculatus) based on growth performance, survival, moulting and fatty acid profile. Four test diets were formulated with graded lipid levels (3.63%, 6.70%, 10.72% and 13.91%). Each diet was fed to 4 replicates of crabs (30 crabs per replicate initial weight (8.4 ± 0.1 mg). In this study, crabs fed diets with 13.91% lipid had significantly (< 0.05) higher survival than crabs fed with 3.63% lipid, but no significant (> 0.05) improvement of survival was observed when dietary lipid increase from 6.70% to 13.91%. Crabs fed diets with 10.72% and 13.91% lipid had significant higher weight gain(WG) than crabs fed with 3.63% lipid. While crabs fed with diets containing 6.70%, 10.72% and 13.91% lipid showed no significant (> 0.05) difference in weight gain(WG). Moreover, the lowest moulting number was observed in crabs fed diets with 3.63% lipid, but there was no significant difference (> 0.05) among other groups. The content of LC‐PUFA and DHA in the crabs fed diets with 3.63% lipid was significant (< 0.05) lower compared to other groups. But there was no significant (> 0.05) difference in EPA and ARA content among all groups. The activity of lipase increased as dietary lipid level increased (from 6.70% to 10.72%). However, beyond 10.72%, a significant (< 0.05) decreased in lipase activity was observed. The regression analysis of weight gain data indicated that crab fed diet containing 10.47% lipid level is considered as optimum lipid level for its maximum growth and moulting process.  相似文献   

13.
A 25‐day experiment was conducted to evaluate the optimal lipid level for postlarval Litopenaeus vannamei. Shrimp (1.7 mg) were fed five isonitrogenous diets containing grade levels of lipid (96.6, 114.3, 128.5, 136.5 and 154.5 g/kg diet, respectively). Each diet was assigned to four tanks (500 shrimp), and shrimp were fed six times a day. Weight gain was increased with the increasing dietary lipid levels, and the highest weight gain was observed in shrimp fed diet with 154.5 g/kg lipid (p < 0.05). On the contrary, the survival was lowest in shrimp fed the L15.45 and highest in shrimp fed the L11.43. Triglyceride in hepatopancreas was increased, and cholesterol was decreased with the increasing dietary lipid. Pyruvate kinase and AMPK mRNA expression were highest in shrimp fed the L12.85. Malondialdehyde in whole body was positively correlated with the dietary lipid levels. The mRNA expression of SOD and Caspase 3 was highest in shrimp fed the L12.85. After hypoxia stress, shrimp fed the L12.85 showed highest survival. The mRNA expression of superoxide dismutase and Akirin was highest in shrimp fed the L11.43 and L15.45, respectively. Based on the survival after 25‐day feeding trail and after the hypoxia stress, the optimal dietary lipid for postlarval L. vannamei should be 118–124 g/kg.  相似文献   

14.
Six experimental diets were designed with two phospholipid (PL; 0% and 1.5%) and three fish oil levels (0%, 1% and 3%) to evaluate the effects of dietary fish oil and PL levels on growth, survival and fatty acid composition of juvenile swimming crab, Portunus trituberculatus. Diets were iso‐energetic and iso‐nitrogenous and each diet was fed to triplicate groups (initially weight, 24.88 ± 0.04 g per crab) for 59 days. Weight gain (WG) and specific growth rate (SGR) increased with dietary PL addition to 0% fish oil‐supplemented diets (P < 0.05). On the other hand, WG and SGR decreased with dietary PL addition to 3% fish oil diets (P < 0.05). Crabs fed PL supplemented diets had higher haemolymph low‐density lipoprotein cholesterol concentrations and muscle crude lipid levels (P < 0.05) than crabs fed a none PL supplemented diet. The percentage of highly unsaturated fatty acids (HUFA; % total FA) in both polar and neutral lipids fractions of muscle tissue only increased in case of PL addition to 0% and 1% fish oil‐supplemented diets (P < 0.05). HUFA levels in the neutral lipids fraction of the hepatopancreas increased by dietary PL addition at each dietary fish oil level (P < 0.05). In this study, both dietary fish oil and PL addition contributed to a high n‐3/n‐6 ratio in muscle and hepatopancreas of P. trituberculatus. In conclusion, PL addition is only meaningful with fish oil‐deficient diets, in which case it enhanced lipid transport and HUFA absorption efficiency, hence improving the nutritional value of the diet.  相似文献   

15.
Six isoproteic diets were designated to evaluate the effects of dietary lipid levels (from 70 to 270 g/kg) on the growth performance, feed utilization, digestive tract enzyme activity and lipid deposition of juvenile Brachymystax lenok (average initial weight 0.54 ± 0.04 g). Each diet was fed to triplicate tanks (30 fish per tank) in an indoor closed recirculating system for 9 weeks. Final body weight and weight gain were highest in fish fed 190 g/kg diet and lowest in fish fed the 70 g/kg diet. Specific growth rate of fish fed with 190 g/kg diet was significantly higher than those fed with 70 and 270 g/kg diets (< .05). Protein efficiency ratio of fish fed with 70 g/kg diet was significantly lower than the 110–230 g/kg treatments and was not significantly different from the 270 g/kg treatment. Fish fed with 270 g/kg diet had significantly higher hepatosomatic index and viscerosomatic index than those fed with 70–190 g/kg diets (< .05). Intraperitoneal fat ratio and the whole‐body lipid content had a trend to increase with increase in dietary lipid level. Muscle crude lipid content increased up to 190 g/kg with increase in dietary lipid level. Lipid retention decreased with increase in dietary lipid level, while no significant differences in protein intake and retention levels were observed in fish among all treatments. Lipase activity of the mixture of pyloric caeca and foregut in fish fed 190 and 230 g/kg diets was significantly higher than those fed 70 and 110 g/kg diets. Midgut and hindgut lipase activities of fish were significantly higher than those fed the 190 and 230 g/kg diets. In conclusion, based on the second‐order polynomial model of WG and FCR, this study suggested that 173.8–195.0 g/kg dietary lipid levels were appropriated for B. lenok.  相似文献   

16.
An 8‐week feeding experiment was conducted to determine the effect of dietary betaine levels on the growth performance and hepatic intermediary metabolism of genetically improved farmed tilapia (GIFT) strain of Nile tilapia Oreochromis niloticus (mean initial body weight: 78.3 ± 1.3 g, means ± SD). Six practical diets were formulated with the incorporation of betaine at the levels of 0 (control), 5, 10, 15, 20 and 25 g kg−1. Survival showed no significant differences among the treatments (P > 0.05). The highest and lowest weight gain (WG) and specific growth rate (SGR) were observed for fish fed the diets containing 5 and 0 g kg−1 (control) betaine, respectively. Feed intake showed similar trend with WG and SGR. In contrast, feed conversion ratio was the lowest when dietary betaine level was 5 g kg−1. In general, dietary betaine supplementation showed no significant effect on hepatic composition of tilapia. Condition factor and viscerosomatic index tended to increase with increasing dietary betaine levels from 0 to 5 g kg−1 and then decline when dietary betaine levels further increased from 5 to 25 g kg−1. In contrast, hepatosomatic index declined with increasing dietary betaine levels (P < 0.05). Dietary betaine levels significantly influenced several hepatic enzymatic activities, including succinate dehydrogenase, lactate dehydrogenase, malic dehydrogenase, lipoprotein lipase and hepatic lipase, suggesting that dietary betaine addition had significant effects on nutrient metabolism in the liver. Based on the second‐order polynomial regression analysis of WG, 12.5 g kg−1 of dietary betaine level seemed optimal for genetically improved farmed tilapia strain of O. niloticus.  相似文献   

17.
Pacific white shrimp Litopenaeus vannamei (1050 individuals with initial weight of 1.01 ± 0.001 g) were fed either control diet or one of six dietary astaxanthin (AX) concentration (25, 50, 75, 100, 125 and 150 mg kg−1) diets for 56 days in 35 tanks (30 shrimp per tank). After 56 days of culture, shrimp‐fed AX125 and AX150 diets had higher (< 0.05) weight gain, specific growth rate, total antioxidant status and lower (< 0.05) superoxide dismutase (SOD), catalase (CAT) than shrimp fed control diet. After low dissolved oxygen stress for 1 h, survival rate of shrimp fed AX75, AX100, AX125 and AX150 diets was higher (< 0.05) than that of shrimp fed control diet. Hypoxia inducible factor‐1α (HIF‐1α), cytosolic manganese superoxide dismutase (cMnSOD) and CAT mRNA expression levels of shrimp fed seven diets were significantly down‐regulated under hypoxia than under normoxia, but their expression levels were higher under hypoxia in shrimp fed AX‐supplemented diets than in shrimp fed control diet. About 70‐kDa heat‐shock protein (Hsp70) mRNA expression level of shrimp fed seven diets was significantly up‐regulated under hypoxia than under normoxia, but its expression level was lower under hypoxia in shrimp fed AX‐supplemented diets than in shrimp fed control diet.  相似文献   

18.
Six purified diets were formulated to contain three lipid sources, fish oil (FO), linseed oil (LO) and soybean oil (SO), at 6% diet lipid crossing two levels of vitamin E (100 and 300 mg α‐tocopheryl acetate/kg diet) for each lipid source (FO100, FO300, LO100, LO300, SO100, SO300). The juvenile Chinese mitten crab, Eriocheir sinensis, respectively, fed on these diets with four replicates for 6 weeks. The crab weight gain (WG) and specific growth rate (SGR) were significantly affected by dietary lipid sources. No difference was found between the crabs fed two levels of vitamin E, but the WG and SGR were numerically higher in crab fed 300 mg/kg vitamin E than those fed the other level of vitamin E. The lipid source and vitamin E level could affect fatty acid composition in the hepatopancreas. The contents of saturated fatty acids (SAFA) and n‐3HUFA were significantly higher in the crab‐fed fish oil. The highest contents of n‐6PUFA and n‐3PUFA were found in the crab‐fed soybean oil and linseed oil respectively. The contents of SAFA, n‐3HUFA and n‐3PUFA were higher in the 300 mg/kg vitamin E treatment. A lower malondialdehyde (MDA) content and higher phenoloxidase (PO) activity were observed in the crab fed 300 mg/kg vitamin E. The results of this study indicate that the Chinese mitten crab fed the diet with 6% fish oil and 300 mg/kg vitamin E showed better growth, antioxidant capacity and resistance to Aeromonas hydrophila.  相似文献   

19.
A 9‐week feeding experiment was conducted to investigate the effects of dietary bile acids (BAs) on juvenile genetically improved farmed tilapia (GIFT) (Oreochromis niloticus) based on the evaluations of growth performance and parameters relevant to lipid metabolism. Each of five vegetable protein‐based diets containing BAs at a level of 0, 0.05, 0.15, 0.45 or 1.35 g/kg diet was fed to three replicates with 40 fish (8.2 g per fish). The results showed that weight gain (WG) increased significantly with the increase in BAs from 0 to 0.15 g/kg diet and then decreased significantly at a higher BA supplementation. Dietary BAs significantly reduced the crude lipid content in the whole body, muscle and liver tissue of GIFT. Fish fed diet with 1.35 g BAs/kg diet developed serious nuclear migration and vacuolization in hepatocytes. Gall bladder appeared to contain white solid and has fragile capsules. Dietary BA supplementation had significant effects on serum biochemical indices and activities of lipid metabolism enzymes in liver and intestine. In conclusion, dietary bile acid supplementation (0.15 g/kg) can facilitate the lipid metabolism and therefore promote the growth of tilapia. However, overdosed dietary BAs induced gallstone development, disrupted lipid metabolism and depressed the growth performances of GIFT.  相似文献   

20.
An 8‐week feeding trial was conducted to determine the dietary leucine requirement for juvenile swimming crabs reared in cement pools. Six isonitrogenous and isolipidic practical diets (430 g/kg crude protein and 70 g/kg crude lipid) were formulated to contain graded leucine levels which ranged from 16.7 to 26.7 g/kg (dry weight). Each diet was randomly assigned to triplicate groups of 60 juvenile swimming crabs (initial average weight 3.75 ± 0.12 g) that were stocked in rectangle plastic baskets. The results of the present study indicated that dietary leucine levels significantly influenced weight gain (WG) and specific growth ratio (SGR) (< .05), crab fed the diet containing 22.7 g/kg leucine had significantly higher WG and SGR than those fed the other diets. Feed efficiency and protein efficiency ratio were not significantly affected by the dietary leucine levels (> .05). Total protein, cholesterol, triglyceride and glucose in serum were significantly affected by the dietary leucine levels. Aspartate aminotransferase (AST) and alanine aminotransferase activities in hemolymph, AST and superoxide dismutase activities in hepatopancreas were significantly affected by dietary leucine levels; moreover, crab fed the 16.7 g/kg leucine diet had higher malondialdehyde in hemolymph and hepatopancreas than those fed the other diets. Crab fed the diet containing 24.9 g/kg leucine had higher phenoloxidase activity in hemolymph than those fed the other diets. Based on two‐slope broken‐line model of SGR against dietary leucine levels, the optimal dietary leucine requirement for growth was estimated to be 22.1 g/kg of the dry diet (corresponding to 51.4 g/kg of dietary protein on a dry weight basis). In summary, findings of this study indicated that dietary leucine could improve growth performance and antioxidant status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号