首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
An 11‐week feeding trial was conducted to evaluate the effect of dietary methionine on the growth, antioxidant status, innate immune response and disease resistance to Aeromonas hydrophila of juvenile yellow catfish. Six isonitrogenous and isolipidic practical diets were formulated to contain different graded methionine levels ranging from 6.1 to 16.4 g kg?1 of dry weight. The results indicated that growth performance and feed utilization were significantly influenced by the dietary methionine levels; fish fed the diet containing 6.1 g kg?1 methionine level had lower specific growth rate, percentage weight gain (PWG), feed efficiency and protein efficiency ratio than those fed the other diets (P < 0.05). Fish fed the diet containing 16.4 g kg?1 methionine level had lowest protein contents in whole body and muscle among all treatments. Triacylglycerols, cholesterol, aspartate aminotransferase, alanine aminotransferase and haemoglobin (Hb) in plasma or whole blood were significantly affected by dietary methionine levels. Fish fed the diet containing 6.1 g kg?1 methionine level had higher superoxide dismutase, glutathione peroxidase activities and malondialdehyde values than those fed other diets. Fish fed diets containing 9.7 and 11.8 g kg?1 methionine levels had higher lysozyme activity, total immune globulin, phagocytic activity and respiratory burst than those fed other diets. The lowest survival after A. hydrophila challenge was observed in fish fed a diet containing 6.1 g kg?1 methionine. Quadratic regression analysis of PWG against dietary methionine levels indicated that the optimal dietary methionine requirement for the maximum growth of juvenile yellow catfish was estimated to be 11.5 g kg?1 of the diet in the presence of 4.0 g kg?1 cystine (corresponding to 23.5 g kg?1 of dietary protein on a dry weight basis).  相似文献   

2.
Two 8‐week growth trials were conducted in indoor recirculation system to evaluate the protein requirements for juvenile (3.70 ± 0.20 g) and pre‐adult (85.2 ± 0.70 g) gibel carp, Carassius auratus gibelio var. CAS III. Six isoenergetic diets were formulated for each trial using fish meal and casein as protein sources, and protein level was 250–450 g kg?1 in Trial 1 and 200–450 g kg?1 in Trial 2. With the increasing dietary protein, feeding rate (FR) and feed conversion ratio (FCR) significantly decreased (< 0.05). Weight gain (WG) increased first and then reached a plateau in 330–450 g kg?1 in Trial 1 (> 0.05), while decreased after the maximum value in 350 g kg?1 in Trial 2 (< 0.05). Productive protein values (PPVs) were lower in 370–450 g kg?1 in Trial 1 and 400–450 g kg?1 in Trial 2 (< 0.05). Increasing dietary protein level increased protein content and decreased lipid content in whole fish body and white muscle (< 0.05). Apparent digestibility coefficient of dry matters (ADCd) decreased, while apparent digestibility coefficient of protein (ADCp) increased in 370–450 g kg?1 in Trial 1 and 250–450 g kg?1 in Trial 2 (< 0.05). Trypsin activity significantly increased in 370–450 g kg?1 in Trial 1 (< 0.05) and was not affected in Trial 2 (> 0.05). Hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in both trials increased when dietary protein was above 400 g kg?1 (< 0.05). Based on quadratic regression of WG, it was estimated that dietary protein requirement for maximum growth was 414 g kg?1 (digestible protein of 376 g kg?1) and 365 g kg?1 (digestible protein of 324 g kg?1) for juvenile (3.70 g) and pre‐adult gibel carp (85.2 g).  相似文献   

3.
A study was conducted to estimate the optimum requirement of dietary phosphorus (P) for Channa argus × Channa maculata. Effects of dietary P levels on the tissue composition, serum biochemical parameters and antioxidant status were also examined. Five practical diets were formulated to contain graded levels (4.8 g kg?1, 6.4 g kg?1, 7.9 g kg?1, 9.4 g kg?1 and 11.0 g kg?1) of available P from dietary ingredients and monocalcium phosphate (MCP). Each diet was randomly assigned to triplicate groups of 30 juvenile fish (initial body weight, 20.50 ± 0.53 g) for 8 weeks. The results showed that the specific growth rate (SGR) and weight gain (WG) were all significantly improved by dietary P up to 9.4 g kg?1 (< 0.05) and then levelled off beyond this level. Broken‐line analysis showed maximum weight gain (WG) was obtained at dietary available P concentrations of 9.6 g kg?1. With the increase in dietary P level, protein efficiency rate (PER) increased significantly and reached a plateau, while the feed conversion ratio (FCR), the mesenteric lipid somatic index (MSI) and the whole‐body lipid content significantly reduced (< 0.05). Dietary P levels also affected the mineralization (ash and P) of whole body, vertebrae and scale (< 0.05). Quadratic analysis based on P contents in whole body, vertebrae, scale and ash content in vertebra indicated that the available P requirements were 10.4, 9.8, 10.0 and 10.3 g kg?1, respectively. However, no differences were found in the whole‐body moisture, crude protein, serum calcium (Ca) contents or Ca/P value, as well as the viscerosomatic index (VSI) and hepatosomatic index (HSI) among all the treatments (> 0.05). Triglyceride (TG), total cholesterol (TC), high‐density lipoprotein cholesterol (HDL‐C) and low‐density lipoprotein cholesterol (LDL‐C) decreased significantly, while serum P content, HDL‐C/TC and HDL‐C/LDL‐C value increased significantly with dietary available P levels (< 0.05). No significant changes in superoxide dismutase activity and malondialdehyde (MDA) content were observed (> 0.05), but serum catalase (CAT) and glutathione peroxidase (GPx) activities and the ratio of CAT/SOD and GPx/SOD increased significantly with increasing dietary P levels (< 0.05). In conclusion, the optimal P requirement of juvenile snakehead in practical feed was 9.6 g kg?1. Signs of P deficiency were characterized by poor growth, slightly reduced mineralization and the antioxidant capacity and an increase in body lipid content.  相似文献   

4.
A feeding trial was conducted to evaluate the optimum requirement of dietary available phosphorus (AP) for juvenile walking catfish, Clarias leather. Six practical diets were formulated to contain graded levels (2.2, 3.9, 5.5, 7.1, 8.8 and 10.4 g kg?1) of AP from dietary ingredients and monocalcium phosphate. Each diet was randomly fed to triplicate groups of fish with initial mean weight of 7.94 ± 0.08 g in floating cages (1.5 × 1.5 × 2.0 m) suspended in an earthen pond, and each cage was stocked initially with 60 fish. Fish were fed thrice daily (07:30, 13:00 and 17:30) to apparent satiation for 10 weeks. Both specific growth rate (SGR) and protein efficiency ratio significantly increased with increasing AP from 2.2 to 5.5 g kg?1 (< 0.05) and then levelled off. Dietary AP levels significantly influenced whole‐body protein, lipid and ash contents as well as condition factor and hepatosomatic index (< 0.05). Whole‐body and vertebrae phosphorus contents showed similar patterns as SGR in response to dietary AP content. Broken‐line analyses based on SGR, phosphorus contents in the vertebrae and whole‐body indicated the AP requirements were 5.8, 7.2 and 7.5 g kg?1, respectively.  相似文献   

5.
A study was conducted to estimate the optimum requirement of dietary available phosphorus for GIFT strain of Nile tilapia Oreochromis niloticus. Six purified diets were formulated to contain graded levels (0 (control diet), 2.9, 4.8, 7.6, 9.1 and 10.9 g kg?1 diet) of available phosphorus. Each diet was fed to triplicate groups of 12 fish with initial average weight (46.03 ± 2.14) g for 8 weeks. The results showed that fish fed the three lowest phosphorus diets (0, 2.9 and 4.8 g kg?1) had significantly lower weight gain rate, specific growth rate (SGR) and feed efficiency than those fed the other diets (< 0.05). The survival rate of fish fed the control diet was significantly lower than that of the fish fed the other diets (< 0.05). Whole body viscerosomatic index and crude lipid content decreased significantly with increasing dietary available phosphorus levels (< 0.05), while the contents of crude ash, calcium, phosphorus in the whole body and vertebrae showed the opposite trend (P < 0.05). The blood chemistry analysis showed that dietary available phosphorus had significant effects on serum phosphorus concentration, enzyme activities of alkaline phosphatase and parathyroid hormone level. Quadratic curve analysis based on SGR indicated that the minimum dietary requirement of available phosphorus for maintaining optimal growth of tilapia was 8.6 g kg?1.  相似文献   

6.
A total of 630 juvenile Chinese sucker, with an average initial weight of 1.72 ± 0.05 g, were fed seven diets for 56 days to study the effect of dietary methionine levels on growth, feed utilization, body composition and haematological parameters on juvenile Chinese sucker. Diet 1 using fish meal as the sole protein source and diets 2–7 using fish meal and fermented soybean meal as intact protein sources supplemented with crystalline amino acids contained six levels of l ‐methionine ranging from 6.4 to 18.9 g kg?1 of dry diet at a constant dietary cystine level of 3.7 g kg?1. Each diet was randomly assigned to three aquaria. Results indicated that the highest weight gain, specific growth rate (SGR), feed efficiency ratio, protein efficiency ratio and protein productive value occurred at 13.9 g methionine kg?1 diet among the methionine supplemented dietary groups, beyond which they showed declining tendency. The whole body and muscle protein contents of juvenile Chinese sucker were positively correlated with dietary methionine level, while muscle lipid content was negatively correlated with it. The total essential amino acids content of muscle was increased significantly with increasing dietary methionine level from 6.4 to 13.9 g kg?1 (< 0.05). Apparent digestibility coefficients of dietary protein were significantly affected by dietary treatments. Serum protein, cholesterol and triacylglycerol increased with increasing dietary methionine levels, but showed a relatively lower value for fish fed the 18.9 g methionine kg?1 diet. Quadratic regression analysis of SGR against dietary methionine level indicated that optimal dietary methionine requirement for juvenile Chinese sucker was 14.1 g kg?1 of the diet in the presence of 3.7 g kg?1 cystine (corresponding to 32.0 g kg?1 of dietary protein on a dry‐weight basis).  相似文献   

7.
A feeding trial was conducted to evaluate the effect of replacing soybean meal (SBM) with cottonseed meal (CSM) for juvenile black carp. The inclusion levels of CSM were 0 (control), 96.6, 193.3, 289.8 and 386.5 g kg?1, in which 0, 25, 50, 75 and 100% of protein from SBM were replaced with that from CSM respectively. The results showed that up to 75% of SBM could be replaced by CSM without significant reduction in growth. The apparent digestibility coefficients of dry matter and protein, red blood cell and white blood cell count were significantly decreased with the increase in dietary CSM levels (< 0.05). The activities of serum catalase (CAT), lysozyme (LSZ) and complement C3 were significantly lower than that of control group when dietary CSM level were increased to 386.5 g kg?1, 96.6 g kg?1 and 289.8 g kg?1 or higher respectively. The alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum were significantly higher than that of control group when dietary CSM levels were increased to 289.8 g kg?1 or higher (< 0.05). These results suggested that growth of black carp was not affected when CSM levels up to 289.8 g kg?1; however, negative influence on immune and liver function was found when CSM levels up to 96.6 g kg?1 and 289.8 g kg?1 respectively.  相似文献   

8.
An 8‐week feeding trial was conducted to investigate the optimum dietary protein and lipid levels for growth, feed utilization and body composition of Pseudobagrus ussuriensis fingerlings (initial weight: 3.40 ± 0.01 g). Twelve diets containing four protein levels (350, 400, 450 and 500 g kg?1 crude protein) and three lipid levels (50, 100 and 150 g kg?1 crude lipid) were formulated. Fish were randomly allotted to 36 aquaria (1.0 × 0.5 × 0.8 m) with 25 fish to each glass aquarium. Fish were fed twice daily (08:00 and 16:00) to apparent satiation. The results showed that weight gain and specific growth rate (SGR) decreased with increasing dietary lipid level from 50 to 150 g kg?1 at the same dietary protein level. Fish fed the diets containing 150 g kg?1 lipid exhibited higher feed conversion ratio (< 0.05), lower protein efficiency ratio (PER) and nitrogen retention efficiency (NRE) relative to fish fed the diet containing 50 and 100 g kg?1 lipid. Weight gain and SGR significantly increased with increasing dietary protein from 350 to 450 g kg?1 at the same dietary lipid level, and even a little decline in growth with the further increase in dietary protein to 500 g kg?1. Daily feed intake, NRE and PER were significantly affected by both dietary protein and lipid levels (P < 0.05) and tended to decrease with increasing dietary protein and lipid levels. Whole‐body protein content increased as protein levels increased and lipid levels decreased. Whole‐body lipid and muscle lipid content increased with increasing dietary lipid level, and decreased with increasing dietary protein at each lipid level. There was no significant difference in condition factor and viscerosomatic index among fish fed the diets. Hepatosomatic index was affected by dietary lipid level (P < 0.05), and increased with increasing dietary lipid level at the same protein level. These results suggest that the diet containing 450 g kg?1 protein and 50 g kg?1 lipid with a P/E ratio of 29.1 mg protein kJ?1 is optimal for growth and feed utilization of P. ussuriensis fingerlings under the experimental conditions used in the study.  相似文献   

9.
Recent studies in terrestrial animals have shown that feeding the oxidized lipids led to a reduction in triacylglycerols (TAG) and total cholesterol (TC) in liver and plasma. However, limited information is available on the effect of oxidized lipids on lipid metabolism in fish. In this study, four diets containing 0 g kg?1 (control: fresh fish oil), 30 g kg?1 (low‐oxidized oil, LOO), 60 g kg?1 (medium‐oxidized oil, MOO) and 90 g kg?1 (high‐oxidized oil, HOO) graded oxidized oil levels with the same dietary lipid level were fed to channel catfish for 86 days. The tissue lipid metabolism and fatty acid composition of the fish were investigated after this period. The results showed that plasma and liver concentrations of TAG and TC decreased with increasing dietary oxidized oil level (< 0.05). Decreasing liver lipoprotein lipase and hepatic lipase activities were observed with increasing dietary oxidized fish oil inclusion (< 0.05). The liver C22:6n?3 concentrations significantly decreased with increasing dietary oxidized oil level (< 0.05), while muscle lipid had a high proportion of polyunsaturated fatty acids. It suggests that the adverse effects of dietary oxidized oil may be induced by inhibiting lipid metabolism enzymes and, consequently, inhibition of cholesterol homoeostasis and fatty acid synthesis.  相似文献   

10.
The experiment was conducted to determine the leucine requirement of juvenile Pacific white shrimp Litopenaeus vannamei (Boone) in low‐salinity water (0.50–1.20 g L?1). Six diets were formulated to contain 410 g kg?1 crude protein with fish meal, peanut meal and precoated crystalline amino acids with different concentration of l ‐leucine (16.72, 19.60, 22.06, 24.79, 27.28 and 30.16 g kg?1 dry diet). Each diet was randomly assigned to triplicate groups of 30 shrimps (0.38 ± 0.002 g), and the feed trial lasted for 8 weeks. The results indicated that the maximum weight gain was observed at 24.95 g kg?1 dietary leucine group, whereas the diets containing higher leucine concentration conversely reduced the growth performance (P < 0.05). Moreover, the highest body protein content and body protein deposition and the lowest haemolymph AST and ALT activities were also found at 24.95 g kg?1 dietary leucine group. With the increase in leucine in diets, a dose‐dependent increase was found in body lipid content and haemolymph urea concentration. The polynomial regression calculated using weight gain, feed efficiency and body protein deposition indicated that the optimal dietary leucine requirement for L. vannamei reared in low‐salinity water was 23.73 g kg?1 leucine of dry diet, correspondingly 57.88 g kg?1 of dietary protein.  相似文献   

11.
A 4‐week feeding trial was conducted to determine the effects of oxidized fish oil (OFO, POV: 234.84 meq kg?1) on growth performance and oxidative stress of Litopenaeus vannamei. Five diets containing various OFO levels (0, 25, 50, 75 and 100 g kg?1) with the same dietary lipid level were fed to L. vannamei. The results showed that the body weight gain and the specific growth rate of the shrimp fed with 50, 75 and 100 g kg?1 of OFO diets decreased significantly (< 0.05), whereas the hepatosomatic index increased significantly (P < 0.05). The malondialdehyde concentrations in the serum and muscle of the shrimp fed with 50, 75 and 100 g kg?1 of OFO diets were significantly higher than that of the shrimp fed with fresh fish oil (P < 0.05). The total antioxidant competence decreased significantly compared with the control group. Therefore, dietary OFO affects the growth performance and increases the oxidative stress of shrimp.  相似文献   

12.
Effect of various dietary protein levels on growth and nutrient utilization were studied in fringe‐lipped carp, Labeo fimbriatus fingerlings for 60 days. Five practical diets containing graded protein levels of 200, 250, 300, 350 and 400 g kg?1 with respective digestible protein (DP) contents of 192.4, 244.5, 291.6, 339.4 and 391.4 g kg?1 were evaluated as five treatments, T1, T2, T3, T4 and T5, respectively, in triplicate. Each experimental tank (80‐L) contained eight fingerlings (4.9 ± 0.1 g) and was subjected to continuous aeration and 25% water replenishment daily. The fish were fed two times daily at 8:00 and 14:00 h to satiation. Significantly higher (< 0.05) absolute growth and thermal growth coefficient, and lower feed conversion ratios (FCR) were observed in T2–T4 than T1 and T5. Protein efficiency ratio (PER) and protein productive values (PPV) were highest in T2 and lowest in T5. Significantly higher (< 0.05) apparent protein digestibility was perceptible in T2–T4. While specific amylase activity declined linearly with increasing DP : DE, the protease, trypsin, aspartate aminotransferase and alanine aminotransferase established polynomial relationship. Based on live weight gain, PER and PPV fitted to quadratic model optimum DP levels were estimated as 301.4, 260.0 and 273.0 g kg?1, respectively.  相似文献   

13.
This study investigated the effects of phenylalanine on growth, digestive and absorptive ability and antioxidant status of young grass carp (Ctenopharyngodon idella). Young grass carp were fed diets containing 3.4 (basal diet), 6.1, 9.1, 11.5, 14.0 and 16.8 g phenylalanine kg?1 diet with a fixed of 10.7 g tyrosine kg?1 diet for 8 weeks. Percent weight gain (PWG), feed efficiency and feed intake of fish were the lowest in fish fed the basal diet (< 0.05). Trypsin, lipase and amylase activities in the hepatopancreas, and antioxidants including glutathione contents and glutathione reducase activities in the hepatopancreas and intestine were all the highest in fish fed 11.5 g phenylalanine kg?1 diet (< 0.05). Trypsin, chymotrypsin and amylase activities in whole intestine, and creatine kinase, Na+, K+‐ATPase and alkaline phosphatase activities in the proximal intestine, and superoxide dismutase activities in the hepatopancreas and intestine were all the highest when phenylalanine at level of 9.1 g kg?1 diet (< 0.05). In conclusion, phenylalanine improved growth, digestive and absorptive ability, and antioxidant capacity of young grass carp. The phenylalanine requirement of young grass carp (256–629 g) based on PWG was 10.4 g kg?1 diet or 3.44 g 100 g?1 protein.  相似文献   

14.
A growth trial was conducted to estimate the optimum concentration of dietary potassium (K) for grass carp (Ctenopharyngodon idella). Triplicate groups of grass carp (3.96 ± 0.06 g) were fed diets containing graded levels (0.87, 2.90, 5.37, 7.54, 9.87 and 12.4 g kg?1) of K for 8 weeks. Final body weight, weight gain and feed efficiency and gill Na+‐K+ ATPase activity were highest in fish fed with 9.87 g kg?1 dietary K and lowest in fish fed the basal diet (P < 0.05). The K contents in whole body and muscle were linearly increased up to the 9.87 g kg?1 dietary K and then levelled off beyond this level, whereas in scales and vertebrae up to the 7.54 g kg?1 dietary K (P < 0.05). However, dietary K levels had no significant effect on ash, Ca, P and Mg contents in whole body, scales, vertebrae or muscle. Analysis using polynomial regression of weight gain and gill Na+‐K+ ATPase activity and using the broken‐line regression of whole body K concentrations indicated that the adequate dietary K concentration for grass carp is about 9.45–9.99 g kg?1 diet.  相似文献   

15.
The study was to evaluate the effects of dietary fish meal (FM) partially replaced by housefly maggot meal (HMM) on growth, fillet composition and physiological responses of juvenile barramundi, Lates calcarifera. HMM at 100, 150, 200 and 300 g kg?1 was supplemented in the basal diet to replace dietary FM protein. Basal diet without HMM supplementation was used as control. Total of five experimental diets were fed to triplicate groups of juvenile barramundi (initial weight: 9.66 ± 0.22 g) in a flow‐through rearing system for 8 weeks. Fish fed all experimental diets showed no effects (> 0.05) on weight gain and whole body protein, lipid and moisture content. Fish fed control diet and 100 g kg?1 HMM diet had the highest (< 0.05) hepatic superoxide dismutase (SOD) activity, followed by 150 g kg?1 HMM group, the lowest in 200 and 200 g kg?1 HMM groups. Hepatic thiobarbituric acid reactive substance (TBARS) value was the highest in fish fed 150–300 g kg?1 HMM diets, followed by 100 g kg?1 HMM group and the lowest in fish fed the control diet. Fish fed the 300 g kg?1 HMM diet had lower plasma lysozyme activity than fish fed other diets. The results indicated that up to 300 g kg?1 HMM can be used to substitute dietary FM protein without negative effect on growth. Although physiological responses were also considered, up to 100 g kg?1 HMM in barramundi diet was recommended.  相似文献   

16.
To investigate the effect of dietary sodium chloride (NaCl) on meat quality of white shrimp (Litopenaeus vannamei) reared in low‐salinity (2 g L?1) water, shrimp were distributed into four groups (treatments T‐1, T‐2, T‐3 and control) with three replicates. All shrimps were completely randomised stocked into 12 tanks at an initial density of 40 shrimps per tank. Diets for the control, T‐1, T‐2 and T‐3 groups consisted of the basal diet supplemented with 0 g kg?1, 10 g kg?1, 20 g kg?1 and 40 g kg?1 of NaCl respectively. After 50 days, shrimps in T‐3 showed significantly better (< 0.05) moisture, crude protein and ash than those of the control and T‐1. Higher muscle Na content was observed (< 0.05) in T‐3 than that of the control. Significant increases (< 0.05) in contents of inosinic acid, total free amino acid (TFAA) and essential free amino acid (EFAA) were also found in T‐3. Texture assays showed significant differences (< 0.05) in hardness, adhesiveness and springiness between group T‐3 as compared with those of T‐1 and control. It indicated that dietary supplementation of NaCl appeared to be a promising practice to improve meat quality of white shrimp reared in low‐salinity waters.  相似文献   

17.
The aim of this experiment was to determine the effects of dietary inclusion with mannan oligosaccharide (Bio‐Mos, Alltech, Nicholasville, KY, USA) on growth, survival, physiological and immunological conditions and gut morphology of the black tiger prawn (Penaeus monodon). Five diets supplemented with MOS at 0 g kg?1 (control diet), 1, 2, 4 and 8 g kg?1 were fed to the prawn juveniles (0.4 ± 0.06 g, total weight) for the duration of 63 days. Growth was the highest (< 0.05) when the prawns were fed the 1 g kg?1 MOS included diet. Wet tail muscle index (Tw/B), dry tail muscle index (Td/B) and tail muscle protein (Tmp) were higher (< 0.05) in the prawns fed MOS included diets MOS compared with the prawns fed the control diet. Total haemocyte counts (THCs) of the prawns fed MOS included diets were higher (< 0.05) than THCs of the prawns fed the control diet. Epithelium layer and epidermal cell density of the gut of the prawns fed 1 g kg?1 and 2 g kg?1 MOS diets were better than the prawns fed the control and other MOS diets. The results imply a positive effect of dietary supplementation of 1–2 g kg?1 MOS in the culture of black tiger prawns.  相似文献   

18.
This study aimed to investigate the effects of dietary choline supplementation on growth, lipid deposition and intestinal enzyme activities of Megalobrama amblycephala. Fish were fed four diets with two lipid levels (50 and 150 g kg?1) and two choline supplementations (600 and 1600 mg kg?1) for 8 weeks. Feed conversion ratio (FCR), viscerosomatic index (VSI), hepatosomatic index (HSI), intraperitoneal fat (IPF) ratio, whole‐body and muscle lipid contents, intestinal lipase activities and lipoprotein lipase (LPL) activities all increased significantly (< 0.05) as lipid levels increased, whereas the opposite was true for whole‐body and muscle moisture contents and intestinal amylase activities. VSI, IPF ratio and whole‐body lipid contents all decreased significantly (< 0.05) with increasing dietary choline supplementations. Weight gain, muscle moisture content all increased significantly (< 0.05) with increasing dietary choline supplementations when dietary lipid levels reached 150 g kg?1, whereas the opposite was true for FCR, IPF ratio, IPF and liver LPL activities. In addition, abnormal hepatocytes were found in the liver of fish fed 150 g kg?1 lipid with 600 mg kg?1 choline supplementation. The result of this study indicated that extra choline supplementation can improve growth performance, intestinal enzymes activities and reduce excessive lipid deposition of M. amblycephala fed high lipid.  相似文献   

19.
A 10‐week feeding trial with four dietary protein levels (400, 450, 500 and 550 g kg?1 crude protein) and two dietary lipid levels (80 and 160 g kg?1 crude lipid) was conducted to assess optimum dietary protein and lipid levels for the growth, feed utilization and body composition of juvenile Manchurian trout (initial weight 11.80 ± 0.15 g). Fish were fed twice daily (08:30 and 16:30 h) to apparent satiation. The results showed that fish fed the diet with 500 g kg?1 protein and 80 g kg?1 lipid had the highest growth and feed efficiency. However, fish fed the diet with 450 g kg?1 protein and 160 g kg?1 lipid showed comparable growth to that of the fish fed diet 5 (500/80) and had higher protein efficiency ratio (PER), nitrogen retention (NR) and energy retention (ER) than other groups (< 0.05). Growth, PER, NR and ER of fish fed the 160 g kg?1 lipid diet was significantly higher (< 0.05) than that of fish fed the 80 g kg?1 lipid diet at 400 and 450 g kg?1 protein diet, whereas these values showed an opposite trend at 500 and 550 g kg?1 protein diet, and the lowest PER, NR and ER was found by fish fed the 400 g kg?1 protein diet with 80 g kg?1 lipid. Fish fed diets with 400 g kg?1 protein had lower feed intake (FI) than that of other groups. Feed intake of fish fed 80 g kg?1 lipid level was significantly lower than that of fish fed 160 g kg?1 lipid diet at 400 g kg?1 protein (< 0.05), while no significant differences were observed at 450, 500 and 550 g kg?1 protein‐based diets. Contrary to moisture content, lipid content of whole body and muscle increased significantly (< 0.05) with increasing lipid levels. The results of this study indicated that the diet containing 450 g kg?1 protein and 160 g kg?1 lipid, with a P/E ratio of 23.68 g protein MJ?1 would be suitable for better growth and feed utilization of juvenile Manchurian trout under the experimental conditions and design level used in this study.  相似文献   

20.
This study evaluated the effects of diets containing 0, 25, 50, 75 and 100 g kg?1 Spirulina platensis on proximate composition, fatty acid profile and lipid peroxidation of rainbow trout (Oncorhynchus mykiss). Supplementation of S. platensis did not change moisture and protein contents, but fish fed 50 and 100 g kg?1 S. platensis had lower muscle lipid content than those fed control diet (< 0.05). Fish fed 100 g kg?1 of S. platensis contained lower percentages of saturated and monounsaturated fatty acid and a higher percentage of polyunsaturated fatty acid than those fed control diet (< 0.05). The n‐3/n‐6 ratio of the fatty acid increased and muscle atherogenic and thrombogenic indices were significantly decreased as the dietary supplement of S. platensis increased. Furthermore, lipid peroxidation of the fillet significantly decreased with increasing dietary S. platensis at 4 °C and at ?20 °C (< 0.05). The results of this study show that supplementation of S. platensis to the diet improves muscle quality of the rainbow trout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号