首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究分析了饲料组成对银鲳(Pampus argenteus)幼鱼特定生长率(SGR)及肌肉氨基酸与脂肪酸组成的影响。实验共设4组不同的饲料组成,依次为饲料A(鱼肉糜)、饲料B(鱼肉糜+配合饲料)、饲料C(鱼肉糜+配合饲料+蛏子肉糜)和饲料D(鱼肉糜+配合饲料+蛏子肉糜+桡足类)。实验用银鲳幼鱼的平均体重为4.80±0.11 g,每组饲料设3重复,实验周期为9周。研究结果显示,不同饲料组成可显著影响银鲳的特定生长率,饲料A组的特定生长率最低,并显著低于其它各饲料组;饲料D组的特定生长率最高,且显著高于饲料B、C组的特定生长率(P<0.05);但饲料B、C组间银鲳特定生长率无显著性差异(P>0.05)。银鲳肌肉氨基酸与脂肪酸的分析结果显示,4组饲料组成对银鲳肌肉氨基酸的组成及含量并无显著性影响(P>0.05),但可显著影响肌肉脂肪酸的组成及含量(P<0.05)。饲料D组的多不饱和脂肪酸(PUFA)、高度不饱和脂肪酸(HUFA)及n-3HUFA含量均分别显著高于饲料A、B和C组(P<0.05),饲料B和C组的PUFA、HUFA及n-3HUFA均分别显著高于饲料A组(P<0.05),但饲料B、C组间并无显著性差异(P>0.05)。综合分析得出,丰富的饲料组成以及饲料中较高的HUFA含量均有利于银鲳幼鱼的生长。  相似文献   

2.
This study evaluated the nutritional value of dietary n‐3 and n‐6 polyunsaturated fatty acids (PUFA) such as linoleic (LOA) and linolenic (LNA) acids, and highly unsaturated fatty acids (HUFA) such as arachidonic (AA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids for juvenile Litopenaeus vannamei, based on their effects on growth, survival, and fatty acid composition of hepatopancreas and muscle tissue. Diets contained 5% total lipid. A basal diet contained palmitic and stearic acids each at 2.5% of diet. Five diets contained 0.5% dry weight of LOA, LNA, AA, EPA, or DHA. An additional diet evaluated HUFA in combination by supplementing at 0.5% of diet, a mixture of n‐3 HUFA. All HUFA showed higher nutritional value than PUFA for shrimp and produced significantly (P < 0.05) higher final weight, weight gain, and total lipid in shrimp muscle. Fatty acid profiles of shrimp tissues reflected the composition of the dietary lipids. In general, saturated fatty acids were more abundant in the neutral factions, while PUFA and HUFA were more abundant in the polar fractions of tissues. Under these experimental conditions, HUFA had much greater nutritional value than PUFA for juvenile L. vannamei; moreover, dietary requirements for PUFA were not demonstrated.  相似文献   

3.
A four‐and‐a‐half months study was conducted in nine earthen ponds to evaluate the addition of different supplemental feeds as a management tool for enhancing natural food availability and common carp growth, while maintaining optimal water quality in the semi‐intensive system. Three supplemental feeds were used: commercial extruded and pelleted feed with 25% protein and 7% fat and cereals. The type of supplemental feed did not influence water quality, except hardness, but significantly affected abundance of cyanobacteria, natural food availability and common carp growth. The use of pelleted feed was related to the lowest abundance of cyanobacteria in the ponds. For the two groups of large zooplankton, Cladocera and Copepoda, abundances were higher in the ponds with pelleted feed compared with the ponds where cereals and extruded feed were used. The abundance of benthic macroinvertebrates in the treatment with pelleted feed was three times higher than in the other two treatments. The results of this study indicate that pelleted feed can help farmers not only as a source of nutrients for carp growth but also indirectly as a management tool for maintaining ecological stability and control of cyanobacterial bloom in ponds.  相似文献   

4.
A 12‐week growth trial was conducted with gibel carp Carassius auratus gibelio (initial weight: 2.69 g) to evaluate the effects of dietary n‐3 highly unsaturated fatty acids (n‐3 HUFA) on growth performance and tissue fatty acid composition. Five diets of different n‐3 HUFA levels from 0 to 17 g kg?1 diet were supplemented at 80 g kg?1 dietary lipid by including fish oil (FO) at 0, 25, 50, 75 and 100% of supplemental lipid. The remainder was coconut oil. The results showed that fish fed FO25 and FO50 obtained highest specific growth rate and lowest with FO0. Feed efficiency was highest at FO100 and lowest at FO0. Apparent digestibility coefficient of lipid increased with increasing dietary n‐3 HUFA. The fish fed FO0 diet had the lowest thiobarbituric acid reactive substance in serum and muscle and highest moisture and lowest lipid content in viscera. Fatty acid compositions of muscle and liver were correlated with dietary fatty acids. Fish muscle concentration of 20:5n‐3 increased with increasing dietary n‐3 HUFA while the concentration of 22:6n‐3 was distinctly reduced in FO0 group. It suggested that 4 g kg?1 n‐3 HUFA in diet could permit gibel carp normal growth performance and provide considerable n‐3 HUFA in fish muscle. Excessive n‐3 HUFA showed impact on growth performance of gibel carp.  相似文献   

5.
A 10‐week trial was conducted to determine the response of juvenile jade perch Scortum barcoo on the replacement of dietary fish oil (FO) in a fishmeal free diet. Three iso‐nitrogenous, isocaloric and isolipidic diets were formulated, each containing a different primary fat source: FO, linseed oil (LO), and a mixture of Schizochytrium and LO. The substitution of FO with the mixture of Schizochytrium and LO did not cause a difference in growth. However, there was an 8% reduction in weight gain in fish fed dietary LO, indicating that juvenile jade perch do require a minimal concentration of dietary n‐3 highly unsaturated fatty acids (HUFA). Fish fed the Schizochytrium diet stored more efficient n‐3 HUFA and in particular DHA in their flesh, and retained a higher fillet recovery compared to fish fed FO. In addition, we demonstrated that jade perch are able to produce both n‐3 HUFA and n‐6 HUFA when dietary PUFA are present. Fish fed the LO diet for 10 weeks contained the lowest amount of n‐3 HUFA in fillets among dietary treatment groups. However, feeding these fish the Schizochytrium diet for an additional 4 weeks increased the n‐3 HUFA content towards the same concentration of n‐3 HUFA found in the flesh of fish fed FO, without affecting the sensory properties of the fillets. In contrary, feeding the Schizochytrium diet for a continuous period of 14 weeks lowered overall sensory property scores.  相似文献   

6.
This study aimed to investigate the effects of dietary crude palm oil (CPO) on fatty acid metabolism in liver and intestine of rainbow trout. Triplicate groups of rainbow trout for 10 weeks at 13 °C were fed on diets in which CPO replaced fish oil (FO) in a graded manner (0–100%). At the end of the trial, fatty acid compositions of flesh, liver and pyloric caeca were determined and highly unsaturated fatty acid (HUFA) synthesis and fatty acid oxidation were estimated in isolated hepatocytes and caecal enterocytes using [1‐14C]18:3n‐3 as substrate. Growth performance and feed efficiency were unaffected by dietary CPO. Fatty acid compositions of selected tissues reflected the dietary fatty acid composition with increasing CPO resulting in increased proportions of 18:1n‐9 and 18:2n‐6 and decreased proportions of n‐3HUFA, 20:5n‐3 and 22:6n‐3. Palmitic acid, 16:0, was also increased in flesh and pyloric caeca, but not in liver. The capacity of HUFA synthesis from 18:3n‐3 increased by up to threefold in both hepatocytes and enterocytes in response to graded increases in dietary CPO. In contrast, oxidation of 18:3n‐3 was unaffected by dietary CPO in hepatocytes and reduced by high levels of dietary CPO in enterocytes. The results of this study suggest that CPO can be used at least to partially replace FO in diets for rainbow trout in terms of permitting similar growth and feed conversion, and having no major detrimental effects on lipid and fatty acid metabolism, although flesh fatty acid compositions are significantly affected at an inclusion level above 50%, with n‐3HUFA reduced by up to 40%.  相似文献   

7.
This study was conducted to investigate the influence of dietary lipid source and n‐3 highly unsaturated fatty acids (n‐3 HUFA) level on growth, body composition and blood chemistry of juvenile fat cod. Triplicate groups of fish (13.2 ± 0.54 g) were fed the diets containing different n‐3 HUFA levels (0–30 g kg?1) adjusted by either lauric acid or different proportions of corn oil, linseed oil and squid liver oil at 100 g kg?1 of total lipid level. Survival was not affected by dietary fatty acids composition. Weight gain, feed efficiency and protein efficiency ratio (PER) of fish fed the diets containing squid liver oil were significantly (P < 0.05) higher than those fed the diets containing lauric acid, corn oil or linseed oil as the sole lipid source. Weight gain, feed efficiency and PER of fish increased with increasing dietary n‐3 HUFA level up to 12–16 g kg?1, but the values decreased in fish fed the diet containing 30 g kg?1 n‐3 HUFA. The result of second‐order polynomial regression showed that the maximum weight gain and feed efficiency could be attained at 17 g kg?1 n‐3 HUFA. Plasma protein, glucose and cholesterol contents were not affected by dietary fatty acids composition. However, plasma triglyceride content in fish fed the diet containing lauric acid as the sole lipid source was significantly (P < 0.05) lower than that of fish fed the other diets. Lipid content of fish fed the diets containing each of lauric acid or corn oil was lower than that of fish fed the diets containing linseed oil or squid liver oil only. Fatty acid composition of polar and neutral lipid fractions in the whole body of fat cod fed the diets containing various levels of n‐3 HUFA were reflected by dietary fatty acids compositions. The contents of n‐3 HUFA in polar and neutral lipids of fish increased with an increase in dietary n‐3 HUFA level. These results indicate that dietary n‐3 HUFA are essential and the diet containing 12–17 g kg?1 n‐3 HUFA is optimal for growth and efficient feed utilization of juvenile fat cod, however, excessive n‐3 HUFA supplement may impair the growth of fish.  相似文献   

8.
We explored how currently manufactured feeds, under real‐world conditions and across geographically distinct locations, promoted flesh n‐3 long‐chain polyunsaturated fatty acid (LC‐PUFA, i.e. 20:5n‐3 + 22:6n‐3) levels in various life stages of farmed Atlantic Salmon (Salmo salar). Potential effects on flesh LC‐PUFA included: (1) diet and fish weight at one Canadian east coast farm, (2) diet and farm location across six east coast farms, and (3) diet and farm location between east and west coast farms. For objectives 1 and 2, salmon were fed a currently manufactured feed (labelled as feeds A, B or C) and harvested at 1, 3 and 5 kg. LC‐PUFA levels in 5 kg (harvest size) fish were then compared to previously published values for west coast farmed Atlantic Salmon (Obj. 3). Combined results revealed that variability in LC‐PUFA levels was better explained by diet than by fish weight or farm location. Fish size, however, was also important for two reasons. First, feeding a high LC‐PUFA diet early in life appeared important for ensuring high LC‐PUFA levels at harvest size. Second, salmon flesh LC‐PUFA levels increased with fish size, but only when dietary LC‐PUFA was provided above an apparent threshold value (~3000 mg per 100 g or 10% of total fatty acids) that likely promoted LC‐PUFA incorporation and storage. Overall, our comparison makes new recommendations for feed manufacturers and demonstrates that farmed Atlantic Salmon reared under real‐world conditions on currently available salmon feeds were good sources of n‐3 LC‐PUFA to consumers.  相似文献   

9.
Fish such as Atlantic salmon (Salmo salar L.) are a natural source of n‐3 highly unsaturated fatty acids (HUFA) eicosapentaenate (EPA; 20:5n‐3) and docosahexaenoate (DHA; 22:6n‐3), which are essential for protecting humans against cardiovascular diseases. Thus, flesh n‐3 HUFA level is a trait of considerable importance in farmed fish, particularly now that the fishmeal and fish oil (FO) components of traditional aquaculture diets have to be replaced by more sustainable alternatives including plant meals and vegetable oils (VO). The present study aimed to characterize the inter‐individual variation in this trait in a single strain of Atlantic salmon. Fish were grown for 12 weeks on either an FO diet, or a diet with 100% of the FO replaced by a VO blend containing rapeseed, linseed and palm oils, flesh n‐3 HUFA content and composition determined, and the variation between individuals characterized. The results showed that, irrespective of diet, variation exists in the content of n‐3 HUFA in the flesh of individual salmon, showing that individual animals can display an enhanced ability to maintain high levels of n‐3 HUFA in their flesh. The pros and cons of defining the trait on a qualitative or quantitative basis are discussed.  相似文献   

10.
This study assessed the suitability and cost efficacy of an equal blend of canola oil (CO) and poultry fat (PF) as a supplemental dietary lipid source for juvenile Atlantic salmon. Quadruplicate groups of Atlantic salmon (~400 g) held in 4000 L outdoor fibreglass tanks supplied with running (35–40 L min?1), aerated (dissolved oxygen, 7.88–10.4 mg L?1), ambient temperature (8.6–10.9°C) sea water (salinity, 26–35 g L?1) were fed twice daily to satiation one of three extruded dry pelleted diets of equivalent protein (488–493 g kg?1 dry matter) and lipid (267–274 g kg?1 dry matter) content for 84 days. The diets were identical in composition except for the supplemental lipid (234.7 g kg?1) source viz., 100% anchovy oil (AO; diet COPF‐0), 70.2% AO and 29.8% CO and PF (diet COPF‐30), and 40.3% AO and 59.7% CO and PF (diet COPF‐60). Atlantic salmon growth rate, feed intake, feed efficiency, protein and gross energy utilization, percent survival and whole body and fillet proximate compositions were not affected by diet treatment. Cost per kilogram weight gain was about 10% less for fish fed diet COPF‐60 than for diet COPF‐0. Percentages of saturated fatty acids in dietary and fillet lipids varied narrowly. Moreover, percentages of 18:1n‐9, monounsaturated fatty acids, 18:2n‐6, n‐6 fatty acids, 18:3n‐3, and ratios of n‐6 to n‐3 fatty acids in the flesh lipids were directly related to the dietary level of CO and PF whereas 22:6n‐3, the total of 20:5n‐3 (eicosapentaenoic acid; EPA) and 22:6n‐3 (docosahexaenoic acid; DHA), and n‐3 fatty acids revealed the opposite trend. Percentages of 22:6n‐3, EPA and DHA, and n‐3 fatty acids were significantly depressed in fish fed diet COPF‐60 versus diet COPF‐0. We conclude that a 1:1 blend of CO and PF is an excellent cost‐effective dietary source of supplemental lipid for Atlantic salmon in sea water.  相似文献   

11.
To determine the effects of docosahexaenoic acid/eicosapentaenoic acid (DHA/EPA) ratios on grass carp, Ctenopharyngodon idellus, a 38‐d feeding trial was conducted using six isonitrogenous and isoenergetic semi‐purified diets containing constant n‐3 long‐chain polyunsaturated fatty acid (LC‐PUFA) (0.5% of dry matter), but varying ratios of DHA to EPA and a control diet (no n‐3 LC‐PUFA was included). The results revealed higher final weight and specific growth rate in the DHA/EPA 0.21 group. The n‐3 LC‐PUFA content increased in the CK (control) groups compared with that in the control diet. Lipoprotein lipase (LPL) activity increased in the treatment groups. Malate dehydrogenase showed lower activity in the DHA/EPA 1.08 group, as well as to the change in the level of glucose‐6‐phosphate dehydrogenase (G6PDH). The gene expressions of LPL increased in the treatment groups and that of peroxisome proliferator‐activated receptor α gene showed higher expressions in DHA/EPA 1.08, 0.49, and 0.21 groups. However, no remarkable differences were found among the six groups in the peroxisome proliferator‐activated receptor γ gene expression. Our findings indicated that dietary n‐3 LC‐PUFA affected fatty acid composition and lipid metabolism of grass carp. Further, fish achieved the best effect in decreasing the lipid accumulation when dietary DHA/EPA ratio was not greater than 1.  相似文献   

12.
The ability of shrimp Litopenaeus vannamei to utilize soy oil (SO) modified to contain stearidonic acid (SDA) in replacement of fish oil (FO) by converting SDA to highly unsaturated fatty acids (HUFA) was examined. Six diets with either supplemental modified SO or FO and three levels of fishmeal (FM) replacement (0%, 50% and 100%) by soybean meal (SBM) were fed to shrimp (1.7 g) for 12 weeks. The effect of oil source at the three SBM levels on growth and fatty acid profiles was examined by contrast analysis and sensory attributes by t‐tests (5% error rate). At 0% SBM inclusion, there was no effect of dietary oil source, while at the highest SBM inclusion level, shrimp fed the FO diet outperformed those fed the corresponding SO diet. Oil source had no effect on sensory attributes. The fatty acid profiles of the shrimp reflected that of the diets. SDA SO can replace supplemental FO in diets for shrimp with no reduction in growth when there is sufficient oil present from FM. At low FM, however, replacing FO with SDA SO reduces shrimp performance and tissue n‐3 HUFA levels. It is concluded that SDA is unable to meet the essential fatty acid needs of shrimp.  相似文献   

13.
This study investigated effects of linseed or fish oil–enriched finishing diets on the polyunsaturated fatty acids (PUFA) composition in dorsal muscle tissues of pond‐cultured common carp (Cyprinus carpio). After 180 days of dietary exposure to cereal diet containing vegetable oil (1%), carp were exposed to 7% linseed (LO) or 7% fish oil–enriched (FO) finishing diets for 30 days. FO supplied 17 and 20 mg fish?1 day?1, respectively, of the long‐chain n‐3 fatty acids eicosapentaenoic and docosahexaenoic acid for 30 days and doubled long‐chain PUFA concentrations in carp of the FO pond. The increased supply of short‐chain PUFA in LO resulted in higher short chain, but not long‐chain PUFA, showing that there was very little PUFA conversion. Thus, dietary short‐chain PUFA could not compensate for the low levels of dietary long‐chain PUFA in LO. However, moderate supply of dietary long‐chain PUFA in finishing diets for 30 days is very efficient in increasing nutritionally important long‐chain PUFA concentrations in carp.  相似文献   

14.
The possibility of increasing n‐3 and n‐6 long‐chain polyunsaturated fatty acids (PUFA) content in microalgal mixtures used to feed Tapes philippinarum larvae was explored by lowering culture temperature from 26 to 14 °C. Although fatty acid composition of different microalgal species has a genetic basis, the algal cultures grown at 14 °C significantly increased the content of long‐chain n‐3 PUFA in Isocrysis galbana and in Thalassiosira pseudonana, while in Tetraselmis tetrathelo, the PUFA increase only involved shorter chain PUFA, namely 16:4n‐3 and 18:4n‐3. However, larvae fed on the PUFA enriched microalgal mixture did not show improvements in growth and survival performances with respect to the control group fed the microalgal mixture grown at 26 °C. From a biochemical perspective, two key aspects emerged from the results: (i) clam larvae have adequate biotransformation and selection skills to adjust fatty acid profile to their requirements as they can even modulate the incorporation of essential long‐chain PUFA as 20:5n‐3 and 22:6n‐3 when the dietary supply exceeds the physiological requirements; (ii) bivalve can biosynthesize non‐methylene‐interrupted dienoic (NMID) fatty acids as confirmed by the constancy of relative proportion with larvae growth in spite of the NMID fatty acid absence in the diet.  相似文献   

15.
Replacement of fish oil with sustainable alternatives, such as vegetable oil, in aquaculture diets has to be achieved without compromising the nutritional quality, in terms of n-3 highly unsaturated fatty acid (HUFA) content, of the product. This may be possible if the level of replacement is not too high and oil blends are chosen carefully but, if high levels of fish oil are substituted, a fish oil finishing diet prior to harvest would be required to restore n-3HUFA. However, a decontaminated fish oil would be required to avoid increasing undesirable contaminants. Here we test the hypotheses that blending of rapeseed and soybean oils with southern hemisphere fish oil will have a low impact upon tissue n-3HUFA levels, and that decontamination of fish oil will have no major effect on the nutritional quality of fish oil as a feed ingredient for Atlantic salmon. Salmon (initial weight ~ 0.8 kg) were fed for 10 weeks with diets in which 60% of fish oil was replaced with blends of soybean, rapeseed and southern hemisphere fish oil (SVO) or 100% decontaminated northern fish oil (DFO) in comparison with a standard northern fish oil diet (FO). Decontamination of the oil was a two-step procedure that included treatment with activated carbon followed by thin film deodorisation. Growth performance and feed efficiency were unaffected by either the SVO or DFO diets despite these having lower gross nutrient and fatty acid digestibilities than the FO diet. There were also no effects on the gross composition of the fish. Liver and, to a lesser extent flesh, lipid levels were lower in fish fed the SVO blends, due to lower proportions of neutral lipids, specifically triacylglycerol. Tissue lipid levels were not affected in fish fed the DFO diet. Reflecting the diet, flesh eicosapentaenoic acid (EPA) and total n-3 fatty acids were higher, and 18:1n-9 lower, in fish fed DFO than FO, whereas there were no differences in liver fatty acid compositions. Flesh EPA levels were only slightly reduced from about 6% to 5% although docosahexaenoic acid (DHA) was reduced more severely from around 13% to about 7% in fish fed the SVO diets. In contrast, the liver fatty acid compositions showed higher levels of n-3 HUFA, with DHA only reduced from 21% to about 18% and EPA increased from under 8% to 9–10% in fish fed the SVO diets. The evidence suggested that increased liver EPA (and arachidonic acid) was not simply retention, but also conversion of dietary 18:3n-3 and 18:2n-6. Increased HUFA synthesis was supported by increased hepatic expression of fatty acyl desaturases in fish fed the SVO diets. Flesh n-3HUFA levels and desaturase expression was significantly higher in fish fed soybean oil than in fish fed rapeseed oil. In conclusion, partial replacement of fish oil with blends of vegetable oils and southern hemisphere fish oil had minimal impact on HUFA levels in liver, but a greater effect on flesh HUFA levels. Despite lower apparent digestibility, decontamination of fish oil did not significantly impact its nutritional quality for salmon.  相似文献   

16.
A 9‐week rearing trail was conducted to examine the effects of different dietary highly unsaturated fatty acid (HUFA) levels on the growth performance, fatty acid profiles, antioxidant activities, mucus immune responses and lipid metabolism‐related gene expressions of loach (Misgurnus anguillicaudatus) juveniles. Five test diets supplemented with 0%, 0.32%, 0.64%, 0.96% and 1.28% HUFA were used here. The loaches fed no HUFA diets had the lowest specific growth rate and survival rate. The loaches fed 0.32% HUFA diets had the lowest feed conversion rate and while no significant differences were found among the other four diet groups. Contents of hepatic eicosapentaenoic acid, docosahexaenoic acid and total polyunsaturated fatty acids were significantly increased with incremental dietary HUFA levels. Activities of hepatic superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) in 0% HUFA group were lowest, while malondialdehyde was just the opposite. The lysozyme activity was significantly increased with incremental dietary HUFA levels. However, the activities of alkaline phosphatase and acid phosphatase reached a peak in 0.32% HUFA group. Loaches fed diets with HUFA significantly up‐regulated expressions of SOD, GPx, CAT and two lipid metabolism related genes. In conclusion, the optimal dietary HUFA level for loach juveniles was 0.64%–0.96%.  相似文献   

17.
A 40‐day experiment was conducted to investigate the effects of two filamentous microalgae as feed ingredients on growth performance, tissue fatty acid profiles, pigmentation and immunity of gibel carp (204.83 ± 2.17 g, mean ± SD). Three diets (control, Oedocladium sp. and Tribonema sp.) were formulated. In the control diet, no microalgal meal was added and into the Oedocladium and Tribonema diets were added 40 g/kg Oedocladium sp. meal and 50 g/kg Tribonema sp. meal, respectively. Compared to the control, the addition of Oedocladium sp. and Tribonema sp. had significant effects on tissue fatty acid profiles, antioxidant capacity and immunity without compromising growth, body composition and pigmentation. The addition of Tribonema sp. and Oedocladium sp. significantly increased the EPA, DHA profiles and the ratio of n‐3/n‐6 polyunsaturated fatty acids, and simultaneously decreased the n‐6 polyunsaturated fatty acids profile in fish muscles. Moreover, addition of Tribonema sp. to the diet significantly increased muscle palmitoleic profile and EPA + DHA contents. Furthermore, the addition of either microalga significantly increased the total superoxide dismutase activity level and the complement 3 and immunoglobulin M contents in the plasma. These results demonstrate that Oedocladium sp. and Tribonema sp. can be used as feed ingredients to improve flesh quality and increase the immunity of fish.  相似文献   

18.
19.
Two 40-day feeding trials using extruded diets were conducted to assess the effect of a dietary phospholipid (PL) supplementation on growth, survival and fatty acid composition of European sea bass (Dicentrarchus labrax) and turbot (Scophthalmus maximus) from weaning onwards. Two dietary treatments (FO and PL) were tested; both had an identical extruded basis (92.5% total diet weight) coated with a different lipid fraction (7.5% total diet weight). Diet PL contained 2% egg yolk PL (69% pure). In diet FO the PL was replaced by hydrogenated coconut oil. The isolipidic diets contained an equal amount of fish oil ethyl esters providing 1.6% (% diet dry weight) of n-3 highly unsaturated fatty acids (HUFA). A diet water stability test showed no effect of the PL supplementation on the leaching of the dietary fatty acids. In both fish species weight, but not survival, significantly increased as a result of PL supplementation. Weaning onto the experimental diets resulted in similar changes in the relative percent levels of fatty acids in both species. In general, the percentage of saturated fatty acids levelled off after a rapid increase, while monoenes increased after an initial decrease. Total n-3 polyunsaturated fatty acids (PUFA) decreased and total n-6 PUFA remained almost constant. The major effect of the dietary PL on fish fatty acid composition was a 50% increase in n-6 and n-3 HUFAs compared to the PL-free FO diet. The rise in n-6 HUFA may have reflected the higher moiety in the dietary PL. On the other hand this was not the case for the n-3 HUFA since they represented only low levels in the PL fraction (0.1%) compared to that provided by the ethyl esters (1.6%) suggesting a more efficient incorporation of the PL n-3 HUFA than of the ethyl ester n-3 HUFA. A second hypothesis is that the dietary PL may have favored the incorporation of the dietary ethyl ester n-3 HUFA.  相似文献   

20.
The contents of three essential fatty acids, arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), from wild Penaeus monodon broodstock were evaluated in comparison with natural diet fed P. monodon. Spermatophores of wild male broodstock contained higher levels of AA than those of artificial diet fed males. Polychaetes had higher proportion of AA to EPA and DHA at 5.8:5.5:1 in mud polychaetes followed by 12:7:1 in sand polychaetes, while DHA was a preferential n‐3 highly unsaturated fatty acid (HUFA) in squids and fish. The experimental feed was constructed to simulate the HUFA profile of polychaetes (AA:EPA:DHA as 5:1:1) and then fed to farmed male black tiger prawn broodstock for 1 month. The results exhibited comparable reproductive characteristics to wild male suggesting the possibility of replacing wild males with pond‐reared males. Rearing farmed males in a test unit for a month did not reduce the quality of prawn sperm. Reproductive performance indices (sperm sac weight, total number of sperm, percentage of live sperm, percentage of abnormal sperm) from the males of all treatments were not statistically different except in males fed with pellets. Control (live feeds) and combined diet provided better reproductive performance in pond‐reared males. Analysis of AA, EPA and DHA in reproductive tissues, hepatopancreas and muscle of treated animals in each treatment revealed an accumulation of dietary HUFA into reproductive tissues. No evidence of transfer of HUFA from hepatopancreas or muscle to spermatophore was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号