首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Many studies of land-cover and structural changes in cultural landscapes have used historical maps as a source for information about past land-cover. All transformations of historical maps onto modern coordinate systems are however burdened with difficulties when it comes to accuracy. We show that a detailed land survey of the present landscape may enable transformation of an old cadastral map directly onto the present terrain with very high accuracy. The detailed resulting map enabled us to locate remnants of semi-natural grasslands and man-made structures with continuity from 1865 and to test hypotheses about relationships between landscape changes and landscape characteristics. The main land-cover change 1865–2002 was decrease of arable fields, and addition of three new land-cover classes: horticultural, orchard and abandoned areas. Of the 330 man-made structures present in 1865, only 58 remained in 2002, while 63 new structures had been built after 1865. We found that semi-natural grasslands with continuity since 1865 were situated on ground with significantly lower production capacity than mean 1865 production capacity. The man-made structures with continuity since 1865 were also associated with areas with significantly lower production capacity than the 1865 mean, situated in significantly steeper terrain but not further from the hamlet. Our study illustrates the potential of digitised and accurately transformed historical cadastral maps combined with detailed field surveys for analysis of land-cover and structural changes in the cultural landscape.  相似文献   

2.
Cousins  Sara A.O.  Lavorel  Sandra  Davies  Ian 《Landscape Ecology》2003,18(3):315-332
Semi-natural grasslands in Sweden are threatened by land-use change and lack of management with attendant risk to their biodiversity. We present a model to explore the effects of grazing frequency and intensity on plant species persistence, and the relative effects of grassland size and pattern. We used a landscape modelling platform, LAMOS (LAndscape MOdelling Shell), to design a landscape model of vegetation dynamics incorporating the effects of local succession, dispersal and grazing disturbance. Five plant functional groups (PFG), representing various combinations of persistence and dispersal character, light requirements and disturbance responses, were defined to model species dynamics. Based on old cadastral maps three different landscapes were designed representing specific time-layers, i.e., a historical (17th to 18th century), a pre-modern (1940s) and a present-day landscape. Simulations showed that a threshold was crossed when grasslands decreased in area to about 10–30% of the modelled area, and as a consequence the biomass of grassland-specific PFGs was strongly reduced. These competition sensitive groups did not persist in the model even with intense grazing in the present-day landscape, where grasslands occupy 11% of the total area. However, all grassland species would have been able to persist in the historical landscape, where grasslands occupied 59% of the total area, even without grazing. Our results suggest that continuous but low-intensity grazing is more positive for grassland PFGs than discontinuous but highly intensive grazing. This effect was particularly strong when the frequency and/or intensity of grazing dropped below a threshold of 20%. Simulations using three landscape maps designed to explore effects of further fragmentation and habitat loss showed that the spatial pattern of remaining grasslands is important for the persistence of grassland-specific PFG. The model presented here is an advance towards more realistic grazing models to explore the effects of prescribed grazing and landscape fragmentation on the persistence species or plant functional groups.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

3.
Habitat loss and fragmentation of natural and semi-natural habitats are considered as major threats to plant species richness. Recently several studies have pinpointed the need to analyse past landscape patterns to understand effects of fragmentation, as the response to landscape change may be slow in many organisms, plants in particular. We compared species richness in continuously grazed and abandoned grasslands in different commonplace rural landscapes in Sweden, and analysed effects of isolation and area in three time-steps (100 and 50 years ago and today). Old cadastral maps and aerial photographs were used to analyse past and present landscape patterns in 25 sites. Two plant diversity measures were investigated; total species richness and species density. During the last 100 years grassland area and connectivity have been reduced by about 90%. Present-day habitat area was positively related to total species richness in both habitats. There was also a relationship to habitat area 50 years ago for continuously grazed grasslands. Only present management was related to species density: continuously grazed grasslands had the highest species density. There were no relationships between grassland connectivity, present or past, and any diversity measure. We conclude that landscape history is not directly important for present-day plant diversity patterns in ordinary landscapes, although past grassland management is a prerequisite for the grassland habitats that can be found there today. It is important that studies are conducted, not only in very diverse landscapes, but also in managed landscapes in order to assess the effects of fragmentation on species.  相似文献   

4.
Protecting semi-natural grasslands may through spill-over benefit species richness and abundance of flower-visiting insects in linear habitats, such as uncultivated field boundaries, in agricultural landscapes. However, whether local diversity increases both with decreasing distance from potential source habitats and increasing landscape heterogeneity is poorly known due to a general lack of studies replicated at the landscape scale. We analysed if local assemblages of bumblebees, butterflies and hoverflies in linear uncultivated habitats increased with increasing distance to the nearest semi-natural grassland in 12 replicated landscapes along a gradient of landscape heterogeneity in Scania, Southern Sweden. Species richness and abundance of bumblebees and butterflies, but not hoverflies, decreased with increasing distance to semi-natural grasslands, but none of these groups were related to increasing landscape heterogeneity. Further analyses on trait-specific groups revealed significant decreases in the abundance of sedentary and grassland specialist butterflies with increasing distance to assumed source populations, whereas this was not the case concerning mobile species and grassland generalists. The abundance of all bumblebee trait groups decreased with increasing distance to semi-natural grasslands, but only some species (those nesting above ground, with long colony cycles and with small colony sizes) also increased with increasing landscape heterogeneity. We conclude that local species assemblages of flower-visiting insects in linear habitat elements were mainly affected by the occurrence of nearby semi-natural grasslands. In order to conserve diverse assemblages of flower-visiting insects, including the ecological services they provide, it is important to conserve semi-natural grasslands dispersed throughout agricultural landscapes.  相似文献   

5.

Context

Anthropogenic landscape simplification and natural habitat loss can negatively affect wild bees. Alternatively, anthropogenic land-use change may diversify landscapes, creating complementary habitats that maintain overall resource continuity and diversity.

Objectives

We examined the effects of landscape composition, including land-cover diversity and percent semi-natural habitat, on wild bee abundance and species richness within apples, a pollinator-dependent crop. We also explored whether different habitats within diverse landscapes can provide complementary floral resources for bees across space and time.

Methods

We sampled bees during apple bloom over 2 years within 35 orchards varying in surrounding landscape diversity and percent woodland (the dominant semi-natural habitat) at 1 km radii. To assess habitat complementarity in resource diversity and temporal continuity, we sampled flowers and bees within four unique habitats, including orchards, woodlands, semi-natural grasslands, and annual croplands, over three periods from April–June.

Results

Surrounding landscape diversity positively affected both wild bee abundance and richness within orchards during bloom. Habitats in diverse landscapes had different flower communities with varying phenologies; flowers were most abundant within orchards and woodlands in mid-spring, but then declined over time, while flowers within grasslands marginally increased throughout spring. Furthermore, bee communities were significantly different between the closed-canopy habitats, orchards and woodlands, and the open habitats, grasslands and annual croplands.

Conclusions

Our results suggest that diverse landscapes, such as ones with both open (grassland) and closed (woodland) semi-natural habitats, support spring wild bees by providing flowers throughout the entire foraging period and diverse niches to meet different species’ requirements.
  相似文献   

6.

Context

Loss and fragmentation of semi-natural grasslands has critically affected many butterfly species in Europe. Habitat area and isolation can have strong effects on the local biodiversity but species may also be strongly affected by the surrounding matrix.

Objectives

We explored how different land cover types in the landscape explained the occurrence of butterfly species in semi-natural grasslands.

Methods

Using data from 476 semi-natural grasslands in Sweden, we analysed the effect of matrix composition on species richness and occurrence. Additionally, we analysed at which spatial scales butterflies responded to matrix types (forests, semi-natural grasslands, arable land and water).

Results

Forest cover showed the strongest positive effect on species richness, followed by semi-natural grasslands. Forest also had a positive effect on red-listed species at local scales. Responses to matrix composition were highly species-specific. The majority of the 30 most common species showed strong positive responses to the amount of forest cover within 200–500 m. There was a smaller group of species showing a positive response to arable land cover within 500–2000 m. Thirteen species showed positive responses to the amount of semi-natural grasslands, generally at larger scales (10–30 km).

Conclusions

Our study showed that surrounding forest is beneficial for many grassland butterfly species and that forests might mitigate the negative effects of habitat loss caused by agricultural intensification. Also, semi-natural grasslands were an important factor for species richness at larger spatial scales, indicating that a landscape consisting mainly of supporting habitats (i.e. forests) are insufficient to sustain a rich butterfly fauna.
  相似文献   

7.
Pärtel  Meelis  Mändla  Riina  Zobel  Martin 《Landscape Ecology》1999,14(2):187-196
The landscape history of the largest calcareous seminatural alvar site (ca. 700 ha) in Estonia, is described with the help of a historical map from 1705 and aerial photographs from 1951, and recent vegetation mapping from 1994–1996. The seminatural, species rich alvar grasslands originate and are maintained by grazing of domestic animals. Three hundred years ago the area was mainly open grassland with sparse shrubs and some fields. Forty years ago the vegetation pattern was similar, with some smaller forests and forest clear-cut areas present. Now, since grazing has ceased for ca. 40 years, only 30% of the area remains as open grassland and 70% as forest. Identification of clusters of field layer vegetation using the program TABORD resulted in 8 clusters, which agreed with the empirically determined community types. The field layer within the young pine forest (up to 20 year old pines) is similar to the open alvar grassland. In older forests, the field layer has already changed. There were no phytosociological differences found between ancient grasslands and grasslands on former arable fields or forest clear-cut areas. Decrease in species richness, compared to open grassland, was most drastic in forests of age 20–40 years where the canopy was most closed. Forests have spread more extensively in areas with deeper soil. The continuation of traditional management (grazing and tree cutting) in alvar grasslands is urgently needed in order to keep seminatural alvar grasslands open. The possibility to restore open grasslands remains as long as there is a pool of grassland species available, especially in younger forests.  相似文献   

8.
The increase in the speed of land-cover change experienced worldwide is becoming a growing concern. Major socio-economic transitions, such as the breakdown of socialism in Europe, may lead to particularly high rates of landscape transformations. In this paper we examined the loss of semi-natural grasslands in Hungary between 1987 and 1999. We studied the relationship between 9 potential driving forces and the fate of grasslands using logistic GLMs. Grassland loss was found to be very high (1.31 % per year), which is far higher than either before or after this period. The most influential predictors of grassland loss were environmental and landscape characteristics (soil type, area of remnant grassland patches), and the socio-economic context (distance to paved road, and nearest settlement, human population density). Several processes and relationships can only be understood from a historical perspective (e.g. large extent of afforestation, strong decrease of soil water table). Grassland loss during the study period emerged as a consequence of survival strategies of individual farmers seeking adaptation to the changing environmental and socio-economic conditions, and not urbanization and agricultural intensification which are the main underlying drivers for the ongoing landscape transformations in most parts of the developed world. Though globalization increasingly influences local land use decisions, reconstructing and modelling recent landscape changes cannot be done without a proper understanding of local history and culture. Our analysis shows the importance of large-area yet high resolution landscape change research, which may reveal unexpected patterns of land cover change, undetected at coarser scales.  相似文献   

9.
The objective of this paper is to identify land-cover types where fire incidence is higher (preferred) or lower (avoided) than expected from a random null model. Fire selectivity may be characterized by the number of fires expected in a given land-cover class and by the mean surface area each fire will burn. These two components of fire pattern are usually independent of each other. For instance, fire number is usually connected with socioeconomic causes whereas fire size is largely controlled by fuel continuity. Therefore, on the basis of available fire history data for Sardinia (Italy) for the period 2000–2004 we analyzed fire selectivity of given land-cover classes keeping both variables separate from each other. The results obtained from analysis of 13,377 fires show that for most land-cover classes fire behaves selectively, with marked preference (or avoidance) in terms of both fire number and fire size. Fire number is higher than expected by chance alone in urban and agricultural areas. In contrast, in forests, grasslands, and shrublands, fire number is lower than expected. In grasslands and shrublands mean fire size is significantly larger than expected from a random null model whereas in urban areas, permanent crops, and heterogeneous agricultural areas there is significant resistance to fire spread. Finally, as concerns mean fire size, in our study area forests and arable land burn in proportion to their availability without any significant tendency toward fire preference or avoidance. The results obtained in this study contribute to fire risk assessment on the landscape scale, indicating that risk of wildfire is closely related to land cover.  相似文献   

10.
Hietel  Elke  Waldhardt  Rainer  Otte  Annette 《Landscape Ecology》2004,19(5):473-489
Land-use and land-cover changes affect ecological landscape functions and processes. Hence, landscape ecologists have a central interest in a comprehensive understanding of such changes. Our study focuses on the relationships between environmental conditions and agricultural land-cover changes. We present a method to (i) characterise the major spatial-temporal processes of land-cover changes, (ii) identify the correlations between environmental attributes and land-cover changes and (iii) derive potential environmental drivers of land-cover changes in a German marginal rural landscape. The method was applied to study land-cover dynamics from 1945 to 1998 in the districts of Erda, Steinbrücken and Eibelshausen, situated in the marginal rural landscape of the Lahn-Dill Highlands, Germany. We employed land-cover data gained by the interpretation of multi-temporal aerial photographs. Various environmental variables were introduced into the analyses. We identified physical landscape attributes (elevation, slope, aspect, available water capacity and soil texture) and structural landscape dimensions (patch size, patch shape and distance between patch and nearest settlement). With the aid of GIS, K-means partitioning and canonical correspondence analysis, we investigated land-cover trajectory types, land-cover transitions at individual time intervals and their relationships to these environmental variables. Our results show that, between 1945 and 1998, land-cover changes correlated with the physical attributes of the underlying landscape. On the other hand, the structural landscape dimensions correlated with land cover only in periods of minor land-cover changes (1972–98). Greater diversity of physical landscape attributes is correlated with greater land-cover dynamics. Besides the important influence of socio-economic factors, land-cover changes in the study areas took place within the relatively stable physical constraints of the underlying landscape.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

11.
Semi-natural habitats provide essential resources for pollinators within agricultural landscapes and may help maintain pollination services in agroecosystems. Yet, whether or not pollinators disperse from semi-natural habitat elements into the adjacent agricultural matrix may to a large extent depend on the quality of this matrix and the corresponding pollinator-specific life history traits. To investigate the effects of matrix quality on the distance decay of wild bees and hoverflies, six transects along vegetated field tracks originating at a large semi-natural main habitat and leading into the adjacent agricultural matrix were established in the Wetterau Region, central Hesse, Germany. Species richness of wild bees did not change with distance from the main habitat in landscapes with sufficient grassland cover in the surrounding landscape, but significantly declined when semi-natural grasslands where scarce and isolated in the adjacent agricultural matrix. Abundance of wild bees declined with distance regardless of matrix quality. Species richness of hoverflies did not decline with increasing distance in any landscape. Abundance even increased with distance to the main habitat independently of matrix quality. Thus, our data show that taxa of the pollinator guild may perceive landscapes quite differently. Because of their differing dispersal modes and resource requirements as compared to wild bees, hoverflies may play an important role in maintaining pollination services in agricultural landscapes unsuitable for bee species. Our results highlight the need for considering these taxon-specific differences when predicting the effect of landscape structure on pollinators. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Context

Functional connectivity is vital for plant species dispersal, but little is known about how habitat loss and the presence of green infrastructure interact to affect both functional and structural connectivity, and the impacts of each on species groups.

Objectives

We investigate how changes in the spatial configuration of species-rich grasslands and related green infrastructure such as road verges, hedgerows and forest borders in three European countries have influenced landscape connectivity, and the effects on grassland plant biodiversity.

Methods

We mapped past and present land use for 36 landscapes in Belgium, Germany and Sweden, to estimate connectivity based on simple habitat spatial configuration (structural connectivity) and accounting for effective dispersal and establishment (functional connectivity) around focal grasslands. We used the resulting measures of landscape change to interpret patterns in plant communities.

Results

Increased presence of landscape connecting elements could not compensate for large scale losses of grassland area resulting in substantial declines in structural and functional connectivity. Generalist species were negatively affected by connectivity, and responded most strongly to structural connectivity, while functional connectivity determined the occurrence of grassland specialists in focal grasslands. Restored patches had more generalist species, and a lower density of grassland specialist species than ancient patches.

Conclusions

Protecting both species rich grasslands and dispersal pathways within landscapes is essential for maintaining grassland biodiversity. Our results show that increases in green infrastructure have not been sufficient to offset loss of semi-natural habitat, and that landscape links must be functionally effective in order to contribute to grassland diversity.

  相似文献   

13.

Context

Traditionally, studies of habitat fragmentation have focused on spatial isolation of habitats. Meanwhile, the role of fragmentation of land ownership and hence of parcelization of habitats remains, particularly in relation to management of semi-natural grasslands, not well understood.

Objective

We propose that, especially in a Danish context, fragmentation of land ownership leads to parcelization of semi-natural grassland habitats. This results in small parcel sizes, obstructing cost effective management in terms of grazing and mowing and consequently leads to encroachment of scrubs, threatening biodiversity.

Methods

We applied national, spatially explicit information about land ownership, management, semi-natural grasslands and vegetation height to examine the relationships between parcel size, management and the proportion of scrubs on semi-natural grasslands.

Results

Results from a regression analysis show that parcel size is significantly negatively related to proportion of scrubs; i.e. small parcels are associated with higher proportions of scrubs compared to large parcels. The results also show that the size of ownership parcels has a stronger explanatory power for the proportion of scrub compared to the size of habitat parcels, where ownership boundaries are not taken into account. Furthermore, parcels, with legal obligations for management, have significantly lower proportion of scrubs compared to parcels without management obligations.

Conclusions

Efforts for conservation of and improvement of biodiversity on semi-natural grassland should pay increasing attention towards the importance of fragmentation of land ownership and parcelization of habitats. Our results point at the need for cross-farm cooperation to secure continuous grassland management to prevent scrub encroachment.
  相似文献   

14.
Subtropical forest loss resulting from conversion of forest to other land-cover types such as grassland, secondary forest, subsistence crop farms and small forest patches affects leaf nitrogen (N) stocks in the landscape. This study explores the utility of new remote sensing tools to model the spatial distribution of leaf N concentration in a forested landscape undergoing deforestation in KwaZulu-Natal, South Africa. Leaf N was mapped using models developed from RapidEye imagery; a relatively new space-borne multispectral sensor. RapidEye consists of five spectral bands in the visible to near infra-red (NIR) and has a spatial resolution of 5 m. MERIS terrestrial chlorophyll index derived from the RapidEye explained 50 % of the variance in leaf N across different land-cover types with a model standard error of prediction of 29 % (i.e. of the observed mean leaf N) when assessed on an independent test data. The results showed that indigenous forest fragmentation leads to significant losses in leaf N as most of the land-cover types (e.g. grasslands and subsistence farmlands) resulting from forest degradation showed lower leaf N when compared to the original indigenous forest. Further analysis of the spatial variation of leaf N revealed an autocorrelation distance of about 50 m for leaf N in the fragmented landscape, a scale corresponding to the average dimension of subsistence fields (2,781 m2) in the region. The availability of new multispectral sensors such as RapidEye thus, moves remote sensing closer to widespread monitoring of the effect of tropical forest degradation on leaf N distribution.  相似文献   

15.
Researchers have emphasized the value of linking observed patterns of land-cover change to the processes driving changes in land-use to explain the dynamics of a land change system. The association of pattern and process requires an accurate quantification of the spatial characteristics of land-cover change. The objective of this research is to assess the impact of error on the accuracy of landscape pattern analyses performed on maps of change. Simulation was used to develop of a series of error-free and error-perturbed change maps, which varied with respect to the pattern of change occurring between the time-1 and time-2 land-cover maps and the patterns of error associated with the time-1 and time-2 land-cover maps. A variety of change and error patterns were examined. The error-free and error-perturbed change maps were compared by calculating landscape pattern metrics, which revealed the degree to which error altered the pattern of change. The introduction of error notably changed the structure of the persistent and transitioning classes, with metrics indicating a more fragmented and variable landscape under error. Agreement between the error-free and error-perturbed maps improved when a greater amount of change occurred within the time-series, change was concentrated at the boundaries of land-cover classes and when time-2 errors were increasingly correlated to their time-1 counterparts. These results have several implications for change pattern analyses given the fundamental nature of land-cover change.  相似文献   

16.
Natural reforestation of European mountain landscapes raises major environmental and societal issues. With local stakeholders in the Pyrenees National Park area (France), we studied agricultural landscape colonisation by ash (Fraxinus excelsior) to enlighten its impacts on biodiversity and other landscape functions of importance for the valley socio-economics. The study comprised an integrated assessment of land-use and land-cover change (LUCC) since the 1950s, and a scenario analysis of alternative future policy. We combined knowledge and methods from landscape ecology, land change and agricultural sciences, and a set of coordinated field studies to capture interactions and feedback in the local landscape/land-use system. Our results elicited the hierarchically-nested relationships between social and ecological processes. Agricultural change played a preeminent role in the spatial and temporal patterns of LUCC. Landscape colonisation by ash at the parcel level of organisation was merely controlled by grassland management, and in fact depended on the farmer’s land management at the whole-farm level. LUCC patterns at the landscape level depended to a great extent on interactions between farm household behaviours and the spatial arrangement of landholdings within the landscape mosaic. Our results stressed the need to represent the local SES function at a fine scale to adequately capture scenarios of change in landscape functions. These findings orientated our modelling choices in the building an agent-based model for LUCC simulation (SMASH–Spatialized Multi-Agent System of landscape colonization by ASH). We discuss our method and results with reference to topical issues in interdisciplinary research into the sustainability of multifunctional landscapes.  相似文献   

17.
18.
The urban matrix was recently shown to be a mosaic of heterogeneous dispersal habitats. We conducted a playback experiment of mobbing calls to examine the probabilities of forest birds to cross a distance of 50 m over urban matrix with different land-cover types in an urban area. We treated the reciprocal of the crossing probabilities as a movement resistance for forest birds. We drew resistance surfaces based on the land-cover maps of urban Sapporo. We applied a circuit theory to examine the relative role of a detour route consisting of a riparian corridor and urban matrix for dispersing forest bird individuals from continuous forest to an isolated green space in the midst of an urban area. Our results showed that wood cover had the highest crossing probability, while open land (grassland and pavement) had the lowest probabilities. Buildings and water surface displayed an intermediate probability. Resistance surfaces and flow maps at 25- and 50-m resolutions were very similar and suggested that dispersing individuals are likely to use the intervening building areas that dominate the urban matrix rather than detour through riparian corridors. Our results showed the useful combination of experimental approaches and circuit theory, and the importance of the spatial configuration of corridors, as well as the composition and management of dispersal habitats, to landscape connectivity.  相似文献   

19.
Petit  C.C.  Lambin  E.F. 《Landscape Ecology》2002,17(2):117-132
Historical reconstructions of land-use/cover change often require comparing maps derived from different sources. The objective of this study was to measure land-use/cover changes over the last 225 years at the scale of a Belgian landscape, Lierneux in Ardennes, on the basis of a heterogeneous time series of land cover data. The comparability between the land-cover maps was increased following a method of data integration by map generalisation. Two types of time series were built by integrating the maps either by reference to the initial map of the time series or by pair of successive maps. Land-cover change detection was performed on the initial time series without data integration and on the two types of integrated time series. Results reveal that land cover and landscape structure have been subject to profound changes in Lierneux since 1775, with an annual rate of change at the landscape level of up to 1.40%. The major land-cover change processes observed are expansion of grasslands-croplands and reforestation with coniferous species, leading to amore fragmented landscape structure. The annual rates of land-cover change estimated from integrated data are significantly different from the annual rates of change estimated without a prior integration of the data. There is a trade-off between going as far back in time as possibleversus performing change detection as accurately as possible. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The Norwegain mountains have had a central role in the subsistence agroecosystems by providing vast biological resources for humans and their livestock since 4000–3500 BP as indicated by paleoecological records. Later with the development of the summer farming system the use of the mountains was intensified. This long-term use of the mountains has shaped a montane cultural landscape by livestock grazing, mowing for hay, fuel collection and a variety of other uses. The result is a significant increase of the grassland areas at the expense of the forest. Those semi-natural grasslands and heathlands with specific biological diversity have until recently dominated the mountains but are today decreasing due to forest invasion – which in turn is a result of changes in human land use. The present paper focuses on changes in landscape pattern and differences in landscape development in two mountain valleys with summer farming activities, in Mid-Norway, over the period 1960s–1990s, and seeks to interpret the changes in relation to differential land use and environmental factors. This study contributes examples from human shaped ecosystems in mountains where the fragmentation of semi-natural habitats is addressed. A set of landscape pattern indices commonly used in landscape ecological studies is also used here, and their ecological relevance in the present context is dealt with. The implications of changed land use for biodiversity conservation in those mountains and the relationships to future sustainable agriculture is also briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号