首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grain processing effects on starch utilization by ruminants   总被引:3,自引:0,他引:3  
Starch utilization may be markedly enhanced by proper grain processing; however, extent of improvement is primarily dependent upon the ruminant species, grain source and method of processing. Grain processing has less impact on starch digestion by sheep than cattle. The magnitude of improvement is inverse to the starch digestion values for nonprocessed (or minimally processed) grains. Utilization of sorghum grain starch is improved most by extensive processing, and then corn, with little improvement in barley starch digestion. Studies comparing processing effects on barley or wheat starch utilization by cattle were not found. Steam-flaking consistently improves digestibility of starch by cattle fed corn- or sorghum grain-based diets over whole, ground or dry-rolled processes. Other extensive processing methods appear to enhance starch digestibility of corn and sorghum grain to a similar extent as steam-flaking, but comparative data are too limited to quantitate adequately effects of these methods. This improvement in starch utilization appears to be the primary reason for enhanced feed conversion of cattle fed diets high in these processed grains. The major site of cereal grain starch digestion is usually the rumen. Processing increases microbial degradation of starch in the rumen and decreases amounts of starch digested post-ruminally. Rates of in vitro amylolytic attack of starch in cereal grains by both ruminal microbial and pancreatic enzyme sources are improved by processing methods employing proper combinations of moisture, heat and pressure. In vitro and in situ studies suggest that much of the increase in ruminal starch fermentation with steam-flaking is due to changes in starch granular structure, which produces additive effects beyond those of decreasing particle size. Thus, efficiency of ruminal starch fermentation by cattle appears to be improved by proper processing of corn and sorghum grain. Processing and grain source studies both suggest that maximal total tract starch digestibility is positively related to the extent of digestion in the rumen.  相似文献   

2.
Six cannulated Salers steers (305 +/- 17 kg initial BW) were used in a double 3 x 3 Latin square design to compare the effects of the nature of the cereal (wheat vs corn) and the corn genotype (dent vs flint) on rate, site, and extent of digestion of high-concentrate diets. The cereals were coarsely cracked, and the diets were balanced to have the same percentage of starch (47.7 +/- 2.3%) and CP (14.6 +/- .7%). Differences in ruminal starch digestion were observed between wheat- and corn-based diets (86.6 vs 47.8%; P < .001) and between corn genotypes (60.8 vs 34.8% for dent and flint corns; P < .001). For flint corn, more than half the starch was digested in the hindgut. Total tract digestion of starch was greater (P < .001) by steers fed wheat than by those fed corn and did not differ (P > .1) between the two corn genotypes. Ruminal mean pH (P < .01) was lower and total VFA concentration (P < .1) was higher for wheat- than for corn-based diets. Ruminal acetate:propionate tended to increase with the decrease in the amount of starch degraded in the rumen, but differences were not significant (P > .1). When wheat replaced corn, nonammonia, nonmicrobial N duodenal flow decreased (P < .01), and microbial duodenal flow increased (P < .05), so there were no differences in the duodenal flow of nonammonia N duodenal flow (P > .1). The lower nonammonia N duodenal flow for the dent corn- than for the flint corn-based diet (P < .05) was related to a lower passage of nonammonia, nonmicrobial N into the duodenum. Efficiency of microbial protein synthesis was inversely correlated with the amount of starch degraded in the rumen. Nature of the cereal, wheat vs corn, and genotype of the corn, dent vs flint, alter the site and extent of starch digestion.  相似文献   

3.
Six Salers steers, fitted with ruminal and duodenal cannulas, were used in a double 3x3 Latin square design to assess the depressive effect of the nature of wheat, flint corn, and dent corn on fiber digestion in animals fed high-concentrate diets, and to determine the mechanisms involved in these negative digestive effects. Diets were balanced to be equal in starch content (47.7+/-2.3%). The three cereals were characterized by ruminal starch digestibilities of 86.6, 60.8, and 34.8% for the wheat, dent corn, and flint corn, respectively. Ruminal digestion of NDF was lower with wheat- than with corn-based diets (49.4 vs. 55.2%; P<.001), and with dent corn than with flint corn (53 vs. 57.3%; P<.01). Degradability of hay in nylon bags was not affected by the grain source in the diet (P>.1). The mean retention time of forage particles in the rumen was similar between wheat and corn diets (P>.1), but it was lower for steers fed dent corn than for those fed flint corn (P<.05). Most fibrolytic activities of the solid-associated microorganisms were lower (P<.05) in animals fed wheat than in those fed corn. Differences in fibrolytic activities of the solid-associated microorganisms between the two corn genotypes were not statistically significant (P>.1), but activities of all fibrolytic enzymes were lower (P<.05) with the dent than with the flint corn diet. Protozoal number in ruminal fluid was lower in animals receiving wheat than in those fed corn (177 vs. 789x10(3)/mL; P<.001) and was related to the high ruminal acidity (P<.01) of the wheat diet. Large modifications in the rumen microbial ecosystem between the two corn genotypes were not visible in protozoal numbers or pH. Total-tract digestion of NDF was the same for wheat and for corn diets, averaging 55% for the three diets. A postruminal compensation of NDF digestion (14% of the total tract NDF digestion) seemed to occur with the wheat diet. The lack of any postruminal NDF digestion (0%) with the two corn diets may suggest negative digestive interactions in the hindgut similar to those in the rumen.  相似文献   

4.
Wheat and potato are rich in starch but their starches differ in their rate of ruminal degradation. Kinetics of in sacco disappearance and profiles of ruminal fermentation were studied for these two concentrates in total mixed rations based on grass silage or corn silage. Wheat starch was more rapidly (34%/h) degraded by rumen microorganisms than potato starch (5%/h). The differences in starch degradation in sacco were found again in the VFA concentrations, mainly in grass silage-based diets. Overall ruminal pH, total VFA concentration, and proportions of acetate, propionate, and butyrate are more variable for wheat during the kinetic (amplitude and quickness) than for potato in grass silage-based diets. In these diets, risks of acidosis were more elevated with wheat than with potato but the VFA concentrations were also higher. These differences of fermentation profile were so reduced in corn silage-based diets that, in this case, wheat can be substituted by potato without any effect on digestion and no risk of acidosis.  相似文献   

5.
Three trials were conducted to evaluate the effects of degree of barley and corn processing on performance and digestion characteristics of steers fed growing diets. Trial 1 used 14 (328 +/- 43 kg initial BW) Holstein steers fitted with ruminal, duodenal, and ileal cannulas in a completely randomized design to evaluate intake, site of digestion, and ruminal fermentation. Treatments consisted of coarsely rolled barley (2,770 microm), moderately rolled barley (2,127 microm), and finely rolled barley (1,385 microm). Trial 2 used 141 crossbred beef steers (319 +/- 5.5 kg initial BW; 441 +/- 5.5 kg final BW) fed for 84 d in a 2 x 2 factorial arrangement to evaluate the effects of grain source (barley or corn) and extent of processing (coarse or fine) on steer performance. Trial 3 investigated four degrees of grain processing in barley-based growing diets and used 143 crossbred steers (277 +/- 19 kg initial BW; 396 +/- 19 kg final BW) fed for 93 d. Treatments were coarsely, moderately, and finely rolled barley and a mixture of coarsely and finely rolled barley to approximate moderately rolled barley. In Trial 1, total tract digestibilities of OM, CP, NDF, and ADF were not affected (P > or = 0.10) by barley processing; however, total tract starch digestibility increased linearly (P < 0.05), and fecal starch output decreased linearly (P < 0.05) with finer barley processing. In situ DM, CP, starch disappearance rate, starch soluble fraction, and extent of starch digestion increased linearly (P < 0.05) with finer processing. In Trial 2, final BW and ADG were not affected by degree of processing or type of grain (P > or = 0.13). Steers fed corn had greater DMI (P = 0.05) than those fed barley. In Trial 3, DMI decreased linearly with finer degree of processing (P = 0.003). Gain efficiency, apparent dietary NEm, and apparent dietary NEg increased (P < 0.001) with increased degree of processing. Finer processing of barley improved characteristics of starch digestion and feed efficiency, but finer processing of corn did not improve animal performance in medium-concentrate, growing diets.  相似文献   

6.
Eight cannulated Holstein steers (average BW: 251 kg) were used in 2 simultaneous 4 x 4 Latin squares in a split-plot arrangement to test the effects of processing method [dry-rolled (DR) vs. steam-flaked (SF); main plot] and vitreousness (V, %; subplot) of yellow dent corn (V55, V61, V63, and V65) on site of digestion of diets containing 73.2% corn grain. No vitreousness x processing method interactions were detected for ruminal digestion, but ruminal starch digestion was 14.4% lower (P < 0.01) for DR than for SF corn. Interactions were detected between vitreousness and processing method for postruminal (P < 0.10) and total tract digestion (P < 0.05). With DR, vitreousness tended to decrease (linear effect, P < 0.10) postruminal OM and starch digestion. With SF, vitreousness did not affect (P > or = 0.15) postruminal digestion of OM and starch. Postruminal N digestion tended to decrease (linear effect, P = 0.12) as vitreousness increased. Postruminal digestion was greater for SF than for DR corn OM (25.7%, P < 0.05), starch (94.3%, P < 0.10), and N (10.7%, P < 0.01). Steam flaking increased total tract digestion of OM (11%, P < 0.05), starch (16%, P < 0.01), and N (8.4%, P < 0.05) but decreased total tract ADF digestion (26.7%, P < 0.01). With DR, total tract starch digestion was lower for V65 (cubic effect, P < 0.10) than for the other hybrids. With SF, total tract starch digestion was not affected (P > or = 0.15) by vitreousness. Fecal starch and total tract starch digestion were inversely related (starch digestion, % = 101 - 0.65 x fecal starch, %; r2 = 0.94, P < 0.01). Ruminal pH was greater for steers fed DR than for steers fed SF corn (6.03 vs. 5.62, P < 0.05). Steam flaking decreased (P < 0.01) the ruminal molar proportion of acetate (24%), acetate:propionate molar ratio (55%), estimated methane production (37.5%), and butyrate (11.3%, P < 0.05). There was a vitreousness x processing interaction (P < 0.01) for acetate:propionate. For DR, acetate:propionate tended to increase (linear effect; P < 0.10) with increasing vitreousness. With SF, acetate:propionate was greater (cubic effect, P < 0.01) for V65. Starch from more vitreous corn grain was less digested when corn grain was DR, but this adverse effect of vitreousness on digestion was negated when the corn grain was SF. Of the 19% advantage in energetic efficiency associated with flaked over rolled corn grain, about 3/4 can be attributed to increased OM digestibility, with the remaining 1/4 ascribed to reduced methane loss.  相似文献   

7.
Grain sorghum grown in 38-cm (high-density) or 76-cm rows (normal-density) was steam-flaked, harvested as high-moisture grain followed by rolling and ensiling, or dry-rolled. Chemical composition, enzymatic starch availability, CP insolubility, and IVDMD in a reduced-strength buffer were evaluated. High-density planting increased (P < .10) OM and starch concentration and decreased (P < .0001) CP concentration but did not affect (P > .10) P concentration, enzymatic starch availability, or CP insolubility. High-density planting resulted in lower (P < .10) in vitro ruminal culture pH at 6, 12, and 18 h of incubation when grain sorghum was processed by steam flaking, and lower (P < .10) IVDMD at 6, 12, and 18 h of digestion when grain sorghum was processed by dry rolling. Steam flaking decreased (P < .10) CP concentration and solubility and increased (P < .10) OM concentration. High-moisture ensiling decreased (P < .10) the insolubility of CP but did not otherwise seem to alter the chemical composition of grain sorghum relative to dry rolling. Starch was more available (P < .10), and DM was digested more rapidly and extensively (P < .10) in vitro, in steam-flaked sorghum followed by high-moisture sorghum. Based on these data, it seems that planting density primarily affected chemical composition of grain sorghum, whereas processing primarily affected CP insolubility and rate and extent of starch fermentation.  相似文献   

8.
Five Holstein steers (235 kg of BW) fitted with ruminal, duodenal, and ileal cannulas were used in a 5 x 5 Latin square design experiment to determine the effects of supplemental fat source on site and extent of nutrient digestion and ruminal fermentation. Treatments were diets based on steam-flaked corn containing no supplemental fat (control) or 4% (DM basis) supplemental fat as tallow, dried full-fat corn germ (corn germ), corn oil, or flax oil. Fat supplementation decreased (P < 0.08) ruminal starch digestion but increased (P < 0.03) small intestinal starch digestion as a percentage of intake. Feeding corn germ decreased (P < 0.09) ruminal starch digestion and increased (P < 0.03) large intestinal starch digestion compared with steers fed corn oil. Large intestinal starch digestion was less (P < 0.04), and ruminal NDF digestion was greater (P < 0.09) for steers fed tallow compared with steers fed other fat sources. Small intestinal (P < 0.08) and total tract NDF digestibilities were greater (P < 0.02) for steers fed corn germ than for those fed corn oil. Feeding tallow increased total ruminal VFA (P < 0.03) and NH(3) (P < 0.07) concentrations compared with steers fed the other fat sources. Feeding corn germ led to a greater (P < 0.02) rate of ruminal liquid outflow compared with corn oil. A diet x hour interaction (P < 0.04) occurred for ruminal pH, with steers fed corn oil having the greatest ruminal pH 18 h after feeding, without differences at other time points. Fat supplementation increased (P < 0.09) ruminal concentrations of Fusobacterium necrophorum. Duodenal flow of C18:3n-3 was greater (P < 0.01) for steers fed flax oil compared with those fed corn oil. Feeding corn germ led to less (P < 0.01) ruminal biohydrogenation of fatty acids compared with corn oil. Steers fed tallow had greater small intestinal digestibility of C14:0 (P < 0.02) and C16:1 (P < 0.04) than steers fed the other fat sources. Fat supplementation decreased (P < 0.06) small intestinal digestibility of C18:0. Feeding corn germ decreased (P < 0.10) small intestinal digestibility of C18:1 compared with corn oil. It appears that source of supplemental fat can affect the site and extent of fatty acid and nutrient digestion in steers fed diets based on steam-flaked corn.  相似文献   

9.
To determine the effect of dry (D); reconstituted and ensiled (R); reconstituted and acid-treated (A); and urea-treated, high-moisture (U) sorghum grain on starch digestibility, four Angus x Hereford steers (means BW = 350 kg) with duodenal and ileal cannulas were used in a 4 x 4 Latin square design. Diets consisting of 69% ground sorghum grain were fed every 2 h in equal portions (8.2 kg/d). Diets averaged 46.5% starch and 12% CP, except for U, which averaged 14% CP due to urea treatment. Ytterbium attached to sorghum was used as a particulate marker. Duodenal, ileal, and fecal samples were taken 1 h postfeeding after a 14-d adaption to diets. Whole samples were analyzed. Preduodenal starch digestion (%) was 89, 83, 76, and 70, and starch digestion over the total tract was 99, 97, 95 and 91 for R, U, A, and D, respectively. Starch digestion proximal to each site (duodenum and ileum) was enhanced (P less than .05) by R and U compared with D. Within the small intestine, there was a linear relationship (P less than .003) between starch digestion and daily starch supply. However, digestibility of starch in the small intestine (mean = 45%) was not different among diets. Apparent digestibility of starch in the large intestine was not significantly different from digestibility in the small intestine. Urea-treated sorghum grain was equivalent to reconstituted, ensiled sorghum in digestion characteristics and was superior to dry sorghum.  相似文献   

10.
Hanwoo (Korean native) steers (274.8 ± 4.6 kg) with ruminal and duodenal cannulae were used in a 4 × 4 Latin square design experiment to examine the effects of dietary treatments on starch disappearance in the gastrointestinal tract. Dietary treatments consisted of concentrate that were based on ground corn with soybean meal (C‐SBM), ground corn with corn gluten meal (C‐CGM), ground barley with soybean meal (B‐SBM) and ground barley with corn gluten meal (B‐CGM). Although the intakes of starch and protein for steers fed experimental diets were different, it did not change ruminal pH and total volatile fatty acid concentrations. Average duodenal CP flow and quantity of CP apparently digested post‐ruminally was higher (P = 0.001) for CGM‐based diets than SBM‐based diets. There were increases in quantity (P < 0.001) and percentage (P < 0.001) of corn starch digested post‐ruminally compared to barley starch. Synchronized diets showed higher percentages (P = 0.03) of starch apparently digested post‐ruminally than asynchronization. Hanwoo steers fed a corn‐based diet with a large quantity of starch reaching the duodenum and fed C‐CGM supplying great amounts of protein to the small intestine may have contributed to increased post‐ruminal starch digestion.  相似文献   

11.
Five ruminally fistulated 3-yr-old mature Holstein steers (average BW 691+/-23 kg) were used in a 5 x 5 Latin square experiment with a 2 x 2 + 1 fact orial arrangement of treatments. Effects of protein concentration and protein source on nutrient digestibility, excretion of DM and fecal N, ruminal fluid volume and dilution rate, ruminal characteristics, and in situ DM disappearance of whole shelled corn, ground corn, and orchardgrass hay were measured in steers limit-fed high-concentrate diets at 1.5% of BW. A negative control basal diet (NC; 9% CP) was supplemented to achieve either 11 or 14% CP; supplemental CP was either from soybean meal (11 and 14% SBM) or a 50:50 ratio of CP from urea and soybean meal (11 and 14% U). Dry matter and OM digestibilities were 5% greater (P < .07) for steers fed the SBM diets than for those fed the U diets. Starch digestibility did not differ (P > .10) among steers fed any of the diets. Nitrogen source did not affect (P > .10) apparent N digestibility or fecal N excretion; however, steers fed the NC diet had the lowest (P < .10) apparent N digestibility compared with those fed all other diets. Ruminal fluid volume was lower (P < .06) when steers were fed the NC diet compared with all other diets; there were no differences (P > .74) among diets for ruminal fluid dilution rate. In general, ruminal ammonia N and VFA molar proportions were not affected by protein source or concentration. Although CP concentration affected (P < .06) in situ DM disappearance of ground corn, CP concentration did not (P > .48) affect total tract digestion of DM or OM. This indicates that CP concentration may have affected site of digestion, but not extent of digestion. When mature ruminants were limit-fed a corn-based diet to meet primarily a maintenance function, protein source and concentration had little effect on measures of nutrient digestion.  相似文献   

12.
Four diverse sorghum hybrids (yellow, cream, hetero-yellow and red) and corn grain were dry-rolled and fed in an 85% grain diet to Angus-Hereford steers (241 kg) equipped with ruminal and double L-type duodenal and ileal cannulas to compare the effects of grain source on site and extent of digestion. Yellow (yel) has a homozygous yellow endosperm, with a yellow seed coat, whereas cream and hetero-yellow (het-yel) have a heterozygous yellow endosperm with white and red seed coats, respectively. Red has a homozygous white endosperm with a red seed coat. Diets were fed at 2% of initial BW (DM basis) in a 5 x 5 Latin square. Total digestive tract starch digestibility (%) was greater (P less than .05) for corn (92.5) than for red (84.3), yel (84.3) and het-yel (82.9) but not greater (P greater than .10) than for cream (87.9). Ruminal starch digestibility (%) was greater (P less than .10) for corn (85.8) than for sorghum hybrids (69.1). Pre-cecal starch digestibility (%) was greater (P less than .05) for corn (90.6) than for het-yel (76.2), red (74.8) and yel (74.1). Ruminal escape (%) of grain N was greater (P less than .10) for red (79.9) than for het-yel (69.2), cream (66.5) and yel (66.1), with corn (53.6) being less (P less than .10) than sorghum hybrids. Pre-cecal and total tract non-NH3 N digestibilities (%) were not altered (P greater than .10) by grain source. Hybrid of sorghum altered site and extent of starch digestion and ruminal escape of grain N; hybrids had estimated gain:feed ratios that were 81 to 93% of those of rolled corn grain.  相似文献   

13.
Five steers (385 kg) fitted with permanent abomasal cannulae were used to compare Ca source (limestone or dicalcium phosphate) and corn level on site and extent of digestion. Diets contained 50, 70 or 90% corn, with corn silage and supplement to provide .70% Ca from either limestone or dicalcium phosphate. Limestone did not affect ruminal digestion, but postruminal starch and neutral detergent fiber (NDF) digestion were higher (P less than .05) for limestone compared with dicalcium phosphate, which suggests that starch utilization may be increased postruminally by a compound with buffering capacity. As a percentage of total starch intake, total tract and ruminal starch digestion increased (linear, P less than .01) while postruminal starch digestion decreased (linear, P less than .01) with corn level. Neutral detergent fiber digested in the rumen decreased (linear, P less than .01) and postruminal NDF digestion increased (linear, P less than .01) when level of corn in the diet increased. Effects of corn level were not different when organic matter and starch intake were included as covariates.  相似文献   

14.
以3头安装有永久性瘤胃瘘管的泌乳前期荷斯坦奶牛为试验动物,在精粗比为55:45的日粮条件下,采用Insacco法测定了奶牛常用饲料瘤胃内干物质和淀粉的降解规律。试验结果表明。不同饲料干物质和淀粉的降解率不同。能量饲料中,麸皮干物质和淀粉的瘤胃降解率高于玉米:蛋白质饲料中,干物质和淀粉的降解率由高到低顺序依次是豆粕〉胡麻饼〉棉粕:常用粗料中,玉米青贮干物质和淀粉的降解率均高于青干草。  相似文献   

15.
The potential interaction between grain (starch) and protein sources with varying ruminal degradation rates on N utilization in growing lambs was evaluated. Three grain sources with varying ruminal degradation rates, (barley greater than steam-flaked sorghum [SFSG] greater than dry-rolled sorghum [DRSG]) and three protein sources (urea greater than a 50:25:25 mixture of urea: blood meal:corn gluten meal [N basis, U/BC] greater than 50:50 mixture of meal:corn gluten meal [N basis, BC]), were evaluated in a 3 x 3 factorial arrangement. Supplemental protein sources provided 33% of dietary N (CP = 11.0%). For each grain-protein combination, a 3 x 3 Latin square metabolism trial was conducted using two sets of three lambs and three periods. Within-square treatments were 1.4, 1.7 and 2.0 times maintenance intake levels. No interactions were observed (P greater than .2) between dietary treatments and intake level. Grain sources did not differ (P greater than .2) in N balance or the proportion of N retained. Lambs fed urea diets retained less N (3.6 vs 4.2 and 4.1 g/d for urea vs U/BC and BC, respectively; linear, P = .07; quadratic, P = .12) and utilized N less efficiently (43.1 vs 51.9 and 52.5%, respectively; linear, P less than .001; quadratic, P = .10) than lambs fed BC diets. The grain x protein interaction was significant for most variables. Nitrogen utilization was most efficient (24 to 27% of N intake retained) when rapidly degraded sources (barley and urea) and slowly degraded sources (sorghum and BC) were fed together or when U/BC was the supplemental protein source (interaction P less than .08). An advantage was found for selection of starch and protein sources with similar ruminal degradation rates.  相似文献   

16.
The objectives of this study were to investigate the effect of a saponin-based surfactant, Grain Prep surfactant (GP), and hot flake aging time on starch characteristics and ruminal DM and starch degradability of steam-flaked corn grain. In 2 experiments, the moisture content of incoming corn was automatically adjusted using the Grain Prep Auto Delivery System to 19.8% (Exp. 1) and 18.5% (Exp. 2). The application rate of GP was 22 mg/kg (as-is basis). Control corn was treated with water alone. Processed corn in Exp. 2 was stored in insulated containers for 0, 4, 8, or 16 h. Flaked corn samples were incubated in the rumen of lactating dairy cows for 0, 2, 4, 6, 16, or 24 h. In Exp. 1, GP increased, compared with the control, the soluble fraction and effective degradability (ED) of DM by 17.2 and 8.6%, respectively. The ED of cornstarch was increased by 6.7%. In Exp. 2, the concentration of soluble DM and starch were increased by GP by 15 and 24% compared with the control. The ED of DM and starch were also increased by 3 and 4%, respectively. No differences in gelatinization temperatures were observed due to treatment, except that GP-treated grain had a slightly greater mean gelatinization enthalpy in Exp. 2. In a pilot study, DM degradability parameters were not affected by germination of the corn kernels. Aging of the hot flakes for up to 16 h resulted in a quadratic decrease in DM and starch ruminal degradability. The aging process affected starch gelatinization enthalpy values of flaked grain in a manner opposite to that observed for ruminal DM and starch degradation. This phenomenon was most likely explained by increased starch intramolecular associations or crystallinity associated with starch annealing, or both. This study confirmed our previous observations that Grain Prep surfactant increases flaked corn DM and starch degradability in the rumen. Because the rate of degradation was not affected by the surfactant, the increase in degradability was attributed mainly to increases in DM and starch solubility.  相似文献   

17.
Two experiments were conducted to determine the influence of dietary roughage concentration and feed intake on finishing steer performance and ruminal metabolism. In Exp. 1, 126 steers (334 kg) were used in a completely randomized design and fed (120 d) diets of steam-rolled wheat without roughage or containing 5, 10 or 15% roughage (50% alfalfa hay:50% corn silage). Steers fed 5 or 10% roughage gained faster (quadratic, P less than .05) and were more efficient (quadratic, P less than .05) than steers fed 15% or no roughage. In Exp. 2, six ruminally cannulated steers (447 kg) were used in a 6 x 6 latin square design and fed (twice daily) diets of steam-rolled wheat without roughage or containing 5 or 15% alfalfa hay at twice or three times NE required for maintenance. Increasing dietary roughage increased (linear, P less than .01) ruminal liquid passage 38%, indigestible ADF passage 63%, Yb-labeled wheat passage 75% and fiber fill 31%. The rate of in situ starch digestion tended to increase (linear, P = .16), and ruminal VFA concentration was 40 mM higher (P less than .01) at 4 h after feeding with increased roughage. Increased feed intake increased (P less than .05) ruminal starch fill, fiber fill, liquid fill and liquid passage 23%, Yb-labeled wheat passage 50% and Dry-labeled hay passage 20%. It reduced protozoa five- to sixfold (P less than .01) but doubled total bacterial counts (P less than .01). Ruminal NH3N was lower (P less than .01) and total VFA concentration was 50 mM higher (P less than .01) at 4 h after feeding. The acetate:propionate ratio was reduced from 2.3 to 1.3 (P less than .01) with increased intake. Adding roughage to a steam-rolled wheat diet increased passage and tended to increase rate of starch digestion; increased feed intake with its associated effects on ruminal fill and passage dramatically shifted the microbial population and fermentation end products.  相似文献   

18.
Twelve ruminally cannulated Jersey steers (BW = 534 kg) were used in an incomplete Latin square design experiment with a 2 x 2 factorial arrangement of treatments to determine the effects of wet corn gluten feed (WCGF) and total DMI level on diet digestibility and ruminal passage rate. Treatments consisted of diets formulated to contain (DM basis) steam-flaked corn, 20% coarsely ground alfalfa hay, and either 0 or 40% WCGF offered once daily for ad libitum consumption or limited to 1.6% of BW (DM basis). Two consecutive 24-d periods were used, each consisting of 18 d for adaptation, 4 d for collection, and a 2-d in situ period. Rumens of all steers were evacuated once daily at 0, 4, 8, and 12 h after feeding. Chromic oxide (10 g/[steer*d]) was fed as a digestibility marker, and steers were pulse-dosed with Yb-labeled alfalfa hay to measure ruminal particulate passage rate. Dacron bags containing 5 g of steam-flaked corn, WCGF, or ground (2-mm screen) alfalfa hay were placed into the rumens of all steers and removed after 3, 6, 12, or 48 h. Wet corn gluten feed increased percent apparent total-tract digestion of OM (P < 0.01), NDF (P < 0.01), and starch (P < 0.03), decreased (P < 0.01) ruminal total VFA concentration, increased (P < 0.01) ruminal NH3 concentration, and increased (P < 0.01) ruminal pH. Wet corn gluten feed also increased (P < 0.01) ruminal passage rate of Yb. Limit feeding decreased (P < 0.01) percent apparent total-tract digestion of both OM and NDF, ruminal total VFA concentration (P < 0.01), and ruminal fill (P < 0.01), but increased (P < 0.01) ruminal NH3 concentration. Apparent total-tract digestion of starch was not affected (P = 0.70) by level of DMI. A DMI level x hour interaction (P < 0.01) occurred for ruminal pH. Limit feeding increased ruminal pH before and 12 h after feeding, but decreased ruminal pH 4 h after feeding compared with diets offered ad libitum. A diet x DMI level interaction (P < 0.02) occurred for in situ degradation of alfalfa hay, with dietary addition of WCGF increasing (P < 0.02) the extent of in situ alfalfa hay degradation in steers fed for ad libitum consumption. This study suggests that WCGF increases OM and NDF digestion, and that limit feeding diets once daily might depress OM and NDF digestion, possibly due to decreased stability of the ruminal environment.  相似文献   

19.
Four Slovakian Black-and-white bulls (LW 410 +/- 12 kg; Exp. 1) and four Slovakian Black-and-white non lactating dairy cows (LW 475 +/- 14 kg; Exp. 2) with permanent ruminal cannulas, duodenal T-cannulas and ileal re-entrant cannulas were used in a 4 x 4 Latin square design to determine the postruminal capacity of starch digestion. In Exp. 1 bulls received 5.4 kg DM from corn silage and 3.6 kg DM from alfalfa hay, in Exp. 2 cows consumed only 2.1 kg DM corn silage and 1.9 kg DM alfalfa hay. Additionally, either 750 or 1500 g (Exp. 1) or resp. 1000 or 2000 g (Exp. 2) gelatinized corn or wheat starch per animal and day were applied as pulse doses or as infusion into the proximal duodenum. In both experiments the duodenal and ileal nutrient flow, as well as the faecal excretion without starch application, were measured in a pre-period. After starting starch application ileal digesta and faeces were sampled over 120 h after 9 or 23 days of adaptation respectively. Cr2O3 was used as a flow marker. It was shown, that the capacity of starch utilisation in the small intestine was limited. The effect of different doses of bypass-starch was more pronounced than the effect of different starch sources. Starch digestibility decreased with increasing amounts of starch in the intestine (Exp. 1: corn starch: from 74.3 to 68.0%, P < 0.001; wheat starch: from 76.7 to 67.4%, P < 0.001; Exp. 2: corn starch: from 71.4 to 50.3%. P < 0.001; wheat starch: from 73.8 to 53.1%, P < 0.001). Corn starch was 0.6 to 2.4% units (P < 0.05) and 2.4 to 2.8% units (P < 0.001) less digested than wheat starch in Exp. 1 and Exp. 2, respectively.  相似文献   

20.
To determine the effects of blends of high-moisture harvested sorghum grain (HMS) and dry-rolled corn (DRC) on site and extent of digestion, high-grain diets were fed to Angus-Hereford heifers (315 kg) in a 5 x 5 latin square. The grain portion consisted of ratios (HMS:DRC) of 0:100, 25:75, 50:50, 75:25 and 100:0. Heifers were equipped with ruminal, duodenal and ileal T-type cannulas. Digestibilities of OM (P less than .05) and non-ammonia nitrogen (NAN; P less than .01) in the total tract declined linearly as HMS replaced DRC. Chyme flow (liters/d) through the duodenum increased linearly (P less than .01), and true ruminal OM disappearance tended to decline linearly (P less than .10) as HMS replaced DRC. A quadratic response (P less than .05) in extent of starch disappearance (g/d) in the rumen was noted; blends were lower than either individual grain. Ruminal escape of feed N tended to be quadratic (P less than .10); values for individual grain types were greater than blends. Microbial efficiency increased linearly (P less than .05) as HMS replaced DRC. Extent of starch digestion in the rumen averaged 82.7% compared to only 2.9% in the small intestine and 5.7% in the large intestine. Altering the ratio of HMS to DRC appeared to have more effect on ruminal fermentation than on digestion in the small intestine; most starch and nitrogen responses were quadratic. Increases in ruminal pH and chyme flow, potentially caused by increased salivary flow, may cause non-linear changes in the solubility of proteins in HMS and DRC, when fed as blends, altering the digestibility of protein and starch from values predicted from the individual grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号