首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Integrating cultivars that are partially resistant with reduced fungicide doses offers growers an opportunity to decrease fungicide input but still maintain disease control. To use integrated control strategies in practice requires a method to determine the combined effectiveness of particular cultivar and fungicide dose combinations. Simple models, such as additive dose models (ADM) and multiplicative survival models (MSM), have been used previously to determine the joint action of two or more pesticides. This study tests whether a model based on multiplicative survival principles can predict the joint action of fungicide doses combined with cultivars of differing partial host resistance. Data from eight field experiments on potato late blight (Phytophthora infestans) were used to test the model; the severity of foliar blight was assessed and scores used to calculate the area under the disease progress curve (AUDPC). A subset of data, derived from the most susceptible cultivar, King Edward, was used to produce dose–response curves from which parameter values were estimated, quantifying fungicide efficacy. These values, along with the untreated values for the more resistant cultivars, Cara and Sarpo Mira, were used to predict the combined efficacy of the remaining cultivar by fungicide dose combinations. Predicted efficacy was compared against observations from an independent subset of treatments from the field experiments. The analysis demonstrated that multiplicative survival principles can be applied to describe the joint efficacy of host resistance and fungicide dose combinations.  相似文献   

2.
For wheat, the optimum time to apply fungicide to control disease on a given leaf layer is usually at, or shortly after, full leaf emergence. Data from field experiments on barley were used to investigate whether the same relationship was applicable to control of leaf blotch on barley. Replicated plots of winter barley were sown in the autumns of 1991, 1992 and 1993 at sites in southwest England with high risk of Rhynchosporium secalis infection. Single fungicide treatments at four doses (0·25, 0·5, 0·75 or 1·0 times the label rate) were applied at one of eight different spray times, starting in mid-March in each year, with intervals of 10–11 days between spray timings. Disease was assessed every 10–11 days and area under the disease progress curve (AUDPC) values were used to construct fungicide dose by spray time response surfaces for each of the upper four leaves, for each year. Spray timings shortly before leaf emergence were found to minimize the AUDPC for each year and leaf layer, and also the effective dose (the dose required to achieve a specified level of control), similar to wheat. Fungicide treatments on barley were effective for a longer period before leaf emergence than afterwards, probably because treatments before emergence of the target leaf reduced inoculum production on leaves below. This partly explains why fungicides tend to be applied earlier in the growth of barley compared with wheat.  相似文献   

3.
A method is presented to quantify the net effect of disease management on greenhouse gas (GHG) emissions per hectare of crop and per tonne of crop produce (grain, animal feed, flour or bioethanol). Calculations were based on experimental and survey data representative of UK wheat production during the period 2004–06. Elite wheat cultivars, with contrasting yields and levels of disease resistance, were compared. Across cultivars, fungicides increased yields by an average of 1·78 t ha?1 and GHG emissions were reduced from 386 to 327 kg CO2 eq. t?1 grain. The amount by which fungicides increased yield – and hence reduced emissions per tonne – was negatively correlated with cultivar resistance to septoria leaf blotch (Mycosphaerella graminicola, anamorph Septoria tritici). GHG emissions of treated cultivars were always less than those of untreated cultivars. Without fungicide use, an additional 0·93 Mt CO2 eq. would be emitted to maintain annual UK grain production at 15 Mt, if the additional land required for wheat production displaced other UK arable crops/set aside. The GHG cost would be much greater if grassland or natural vegetation were displaced. These additional emissions would be reduced substantially if cultivars had more effective septoria leaf blotch resistance. The GHGs associated with UK fungicide use were calculated to be 0·06 Mt CO2 eq. per annum. It was estimated that if it were possible to eliminate diseases completely by increasing disease resistance without any yield penalty and/or developing better fungicides, emissions could theoretically be reduced further to 313 kg CO2 eq. t?1 grain.  相似文献   

4.
Grey leaf spot disease of maize (Cercospora zeaemaydis) has seriously decreased grain yields in the province of KwaZulu-Natal, South Africa, and has spread to infect maize in neighbouring provinces. No commercial hybrids, resistant to the disease have so far been identified, and fungicides have been shown to reduce disease severity. The response of sixty-four commercial hybrids to grey leaf spot under fungicide treatment were studied over two seasons. Overall, fungicides reduced disease severity and linear regression of gain in yield against disease severity enables the identification of hybrids with optimum responses to fungicides. Under low disease levels hybrids responded less to fungicides than under high disease levels. The most susceptible hybrids had the highest responses in control of leaf-blighting and gain in yield. Hybrids with lower-than-predicted leaf-blighting also had lower-than-predicted yield responses, indicating these to be less susceptible to grey leaf spot. These less susceptible hybrids are likely to require fewer fungicide treatments than more susceptible hybrids and are at lesser risk of serious yield losses.Abbreviations GLS grey leaf spot - AUDPC area under disease progress curve  相似文献   

5.
Leaf scald caused by Monographella albescens reduces the photosynthetic area, causing yield losses in rice. This study investigated the efficacy of the rhizobacteria Burkholderia pyrrocinia (BRM‐32113) and Pseudomonas fluorescens (BRM‐32111), combined with silicon (Si) fertilization, to reduce lesion size and the area under the disease progress curve (AUDPC), as well as to minimize the negative effects on gas exchange, chlorophyll a fluorescence, chlorophyll content and the activity of oxidative stress enzymes. The experiment used a completely randomized design with four replications and seven treatments. Compared with plants only fertilized with Si, plants fertilized with Si and treated with BRM‐32113 showed reductions of 22% in scald lesion expansion and 37% in AUDPC, a 27% increase in the rate of CO2 assimilation (A), a 33% decrease in the internal CO2 concentration (Ci), and a 40% increase in ascorbate peroxidase activity. It was therefore concluded that the combination of BRM‐32113 with Si fertilization reduces the severity of leaf scald, protecting the photosynthetic apparatus, thus representing a sustainable method of reducing the loss of income caused by leaf scald in rice.  相似文献   

6.
As the frequency of fungicide resistant strains increases in a pathogen population, there is a change in the shape of the response curve of disease severity to fungicide dose. We showed previously, in a theoretical analysis, that such changes can result in an increase or a decrease in the economically optimal dose of fungicide; this depends on how the response curve changes (which is determined jointly by the degree of insensitivity and frequency of a new strain) and the shape of the disease–yield loss relationship (which is a characteristic of the pathogen and crop). Here, we use field dose–response data to estimate economic optimum doses for the control of Zymoseptoria tritici on wheat over a 21-year period. Resistance to fungicide developed to varying degrees against three modes of action (MoA). Changes of optimal dose across years differed according to MoA, but there was an underlying pattern of initial increase in optimal dose, followed by a decrease (ultimately to zero dose at high levels of fungicide resistance). Fungicides are often applied in mixture and analysis shows that, provided the mixture partner is effective, the economic optimal dose increases less as resistance develops than when the fungicide is used as solo product; however, the subsequent decrease in optimal dose remains.  相似文献   

7.
Plant diversity can have a profound impact on disease dynamics, with important applications for enhancing sustainability. Disease is often reduced by intercropping, but variability can be high. This study investigated integration of several management approaches to stabilize this variability for early leaf spot (ELS) and late leaf spot (LLS) of groundnut, over seven seasons in three phases. In phase 1, monocrops and alternating row and strip intercrops with maize were artificially inoculated with ELS in an area with little groundnut production. Reductions in AUDPC of 37–73% in strip treatments compared to monocrops prompted testing of the efficacy of intercropping in intensive production areas for phases 2 and 3. Additional treatments included cotton strip intercrops, and integration of intercropping with reduced fungicide treatments and partial resistance to leaf spots. In phase 2, the use of cotton strip intercrops lowered natural ELS epidemics by 25–41% (AUDPC) through delayed disease onset, but maize had inconsistent effects. Intercropping was not effective against LLS, which dominated in phase 3. Reduced fungicide regimes and partial resistance lowered disease, and in one case interacted with intercropping to enhance disease suppression. Groundnut yields generally were inversely proportional to disease levels and not significantly reduced by intercropping. Separate studies to determine maize impacts on ELS infection implicated disruption of dispersal as the mechanism of disease reduction. This work demonstrates that intercropping may be most effective where low levels of ELS are present, using strip patterns with cotton, and combined with other tools such as resistance and reduced fungicide application.  相似文献   

8.
Soybean cultivar Samsoy 1, and the breeding lines TGx 849-313D and TGx 996-26E, grown in a field with a heavy epidemic of frogeye leaf spot caused byCercospora sojina, were treated with double foliar applications of the fungicide benomyl. The treatments were made using four application schedules at six different growth stages, starting from V3 (fully developed leaves, beginning with trifoliate nodes) to R5 (beginning seed_, to determine the effect of the fungucide timing on frogeye leaf spot severity, soybean grain yield and grain quality. Generally, applications at R1 (beginning bloom) and R3 (beginning pod) significantly (P<-0.05) reduced disease severity in the 2 susceptible genotypes, Samsoy 1 and TGx 849-313D. Plot yields of these genotypes were also significantly greater than the untreated controls when the fungicide applications were made at R1 and R3. There was no significant difference in diseave severity or grain yield, between the untreated control and the different times of application, on the resistant genotype TGx 996-26E. Improved seed germination and lower levels of seed infection byC. sojina occurred for all fungicide timings in the susceptible genotypes. The results suggest that fungicide spraying initiated at R1 and followed up at R3 is most effective in frogeye leaf spot control and can also result in higher grain yields, than applications made earlier or later in the season. Control of frogeye leaf spot, however, is best achieved by growing resistant cultivars.  相似文献   

9.
Two bioassay methods are described which use detached tobacco leaves to measure the sensitivity of Peronospora tabacina to systemic fungicides. Tobacco leaves (13–15 cm2), treated with fungicides before or after detachment from the plant, were inoculated with sporangia in water drops and, after incubation in beakers and Petri plates, the disease severity and/or production of sporangia was determined 4–7 days after treatment with the fungicides. Of 15 systemic fungicides applied to detached leaves, eight N-phenylamides at 0.066?1.0 μg ml?1 controlled blue mould; metalaxyl was the most effective fungicide. Isolates of P. tabacina, collected in the field from tobacco plants grown in soil treated with metalaxyl, were not resistant to the fungicide applied to detached leaves prior to inoculation. The fungicide, applied to leaves before detachment, was used to measure the efficacy of five systemic N-phenylamide fungicides sprayed on the basal and unsprayed distal portions of the leaves. Blue mould was controlled on the basal portion of the leaf by all the fungicides at 0.66?1.0 μg ml?1, but it required the application of 3–30 times more chemical on the basal portion to achieve comparable blue mould control on the distal part of the leaf.  相似文献   

10.
11.
BACKGROUND: Septoria leaf blotch is the most important disease of wheat in Europe. To control this disease, fungicides of the 14α‐demethylase inhibitor group (DMIs) have been widely used for more than 20 years. However, resistance towards DMIs has increased rather quickly in recent years. The objective of this study was to evaluate, on plants and under controlled conditions, the protective and curative efficacy of the DMI fungicide prothioconazole against three current isolates of M. graminicola, chosen to belong to different DMI‐resistant phenotypes. Fungicide efficacy was assessed by visual symptoms and by quantitative real‐time polymerase chain reaction (PCR). RESULTS: With a protective fungicide application, prothioconazole was always effective against each isolate. This was in accordance with the EC50 results. However, curative efficacy differed between the isolates. It remained at a good level, between 60 and 70% against one isolate, whereas it was strongly affected by late applications from 7 days post‐inoculation with the two other isolates. CONCLUSION: A protective application of prothioconazole in wheat crops could be the best strategy to keep a high efficacy against Septoria leaf blotch. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
The effect of fungicide spray droplet density (droplet cm-2), droplet size, and proximity of the spray droplet deposit to fungal spores was investigated with Mycosphaerella fijiensis ascospores on the banana (Musa AAA) leaf surface for two contact fungicides: chlorothalonil and mancozeb. When droplet size was maintained at a volume median diameter (VMD) of 250 μm while total spray volume per hectare changed, M. fijiensis ascospore germination on the leaf surface fell below 1% for both fungicides at a droplet deposit density of 30 droplet cm-2. At a droplet deposit density of 50 droplet cm-2, no ascospores germinated in either fungicide treatment. When both droplet size and droplet cm-2 varied while spray volume was fixed at 20 litre ha-1, ascospore germination reached 0% at 10 droplet cm-2 (VMD=602 μm) for both fungicides. At lower droplet densities (2–5 droplet cm-2 VMD=989 μm and 804 μm respectively), ascospore germination on the mancozeb-treated leaves was significantly lower than on the chlorothalonil-treated leaves. The zone of inhibition surrounding a fungicide droplet deposit (VMD=250 μm) on the leaf surface was estimated to extend 1·02 mm beyond the visible edge of the spray droplet deposit for chlorothalonil and 1·29 mm for mancozeb. The efficacy of fungicide spray droplet deposit densities which are lower than currently recommended for low-volume, aerial applications of protectant fungicides was confirmed in an analysis of leaf samples recovered after commercial applications in a banana plantation. Calibrating agricultural spray aircraft to deliver fungicide spray droplets with a mean droplet deposit density of 30 droplet cm-2 and a VMD between 300 and 400 μm will probably reduce spray drift, increase deposition efficiency on crop foliage, and enhance disease control compared to aircraft calibrated to spray finer droplets. © 1997 SCI.  相似文献   

13.
The effects of the photosystem II inhibitors metamitron and terbuthylazine on the shape of the Kautsky (chlorophyll fluorescence induction) curve were investigated in sugar beet grown in hydroponic culture. The objective of the study was to trace recovery processes following herbicide injury using Kautsky curve parameters. Metamitron is used for selective weed control in sugar beet because it is metabolized in this crop. In contrast, terbuthylazine is toxic to sugar beet. Two hours after treatment, various fluorescence induction curve parameters, such as maximum quantum efficiency (FV/Fm), the relative changes at the J step (Fvj) and area (the area between the Kautsky curve and maximum fluorescence, Fm), were affected by metamitron at concentration ranges of 70–280 mg active ingredient (a.i.) L?1 in plants treated at the four‐true‐leaf stage. Shortly after herbicide application, Fv/Fm was more affected by the hydrophilic metamitron [log(Kow) = 0.83] than by the lipophilic terbuthylazine [log(Kow) = 3.21], but these differences between compounds were alleviated as metamitron was metabolized and terbuthylazine was not. Terbuthylazine at 1 mg a.i. L?1 affected sugar beet at the four‐ and six‐true‐leaf stages to the same extent, whereas metamitron at a dose of 140 mg a.i. L?1 affected much more at four‐ than at the six‐true‐leaf stage. Sugar beet recovered from metamitron injury even at high doses (140 and 280 mg a.i. L?1). Fluorescence induction curve parameters were similarly affected by terbuthylazine and, although sugar beet recovered from terbuthylazine injury at low doses (<0.2 mg a.i. L?1), the Kautsky curve was irreversibly affected at higher doses (1–10 mg a.i. L?1), leading finally to plant death. Older plants were affected later, and recovered sooner, from both herbicides.  相似文献   

14.
Thirteen tomato (Solanum lycopersicum) accessions were tested for inducibility of resistance against two isolates of Phytophthora infestans using BABA (dl ‐3‐amino butyric acid) as the inducing agent. In a more detailed trial, six of the accessions were assessed for inducibility of resistance to six P. infestans isolates on three leaves of different age per plant. Plants were inoculated 1 week after treatment with BABA. Area under the disease progress curve (AUDPC), sporulation capacity (SC) and infection efficiency (IE) were all affected by treatment with BABA. On leaves of all ages AUDPC was most affected by induction (43–100% reduction on the youngest leaves) followed by SC (14–100%) and IE (0–100% reduction). Tomato genotypes varied significantly in inducibility of resistance against P. infestans and the degree of induction generally decreased with increasing leaf age, whilst the absolute susceptibility with respect to AUDPC and SC rarely changed. The level of induction was not always related to the resistance level of the tomato accession and it was significantly influenced by the pathogen isolate used for challenge inoculation. The results show that inducibility of resistance is a selectable trait that is, however, isolate‐specific.  相似文献   

15.
生物源杀菌剂与化学药剂协调防控番茄病害   总被引:3,自引:1,他引:2  
为了阐明化学药剂与生防菌剂及植物源杀菌剂交替使用对番茄病害发展的影响,田间试验检测了交替施药的防病效果及病害发展曲线下面积.结果表明,枯草芽孢杆菌BAB-1水剂及化学药剂交替喷施7次对番茄灰霉病、叶霉病、晚疫病和早疫病的防效分别为86.9%,61.0%,72.3%和77.2%.植物源杀菌剂1-氧-乙酰基大花旋覆花内酯(ABL)乳油与化学药剂及生防菌剂枯草芽孢杆菌BAB-1水剂交替喷施9次对上述病害的防效分别为88.6%,87.4%,85.4%和83.2%,相当于不同作用机制的化学药剂交替喷施9次的防效.此外,化学药剂与BAB-1水剂及ABL乳油交替喷施明显延缓了这4种病害的发展,减少了化学药剂施用次数.  相似文献   

16.
Wheat yellow rust (WYR), caused by Puccinia striiformis f. sp. tritici (PST), is a major disease of wheat, and deployment of a single cultivar often leads to disease epidemics. Effect of inoculum level, foliar fungicide spray, and wheat cultivar mixtures were evaluated on disease development in the field and greenhouse in Nepal. Treatments were arranged in a split–split plot design with three replications in both experiments. Two inoculum levels of PST (low and high) were main plot factors; nontreated control and foliar spray of fungicides (Mancozeb and Bayleton) were subplot factors; and two-component cultivar mixtures, composed of different ratios of a susceptible (S) and a resistant (R) cultivars (90:10, 80:20, and 50:50, 100:0, and 0:100) were sub–subplot factors. WYR severity was assessed at different time intervals, and disease development was calculated as area under the disease progress curve (AUDPC). Inoculum level did not cause significant differences in AUDPC in the field but did in the greenhouse. Foliar spray of fungicides reduced the AUDPC in the greenhouse and field. In both experiments, AUDPC values were low in cultivar mixtures compared with a pure stand of a susceptible cultivar. As the proportion of resistant cultivar increased compared with the susceptible cultivar in the S:R mixture component, disease severity decreased with a consequent increase in grain yield. The greater yield obtained with cultivar mixtures compared with only the susceptible cultivar, independent of inoculum level and fungicide spray in the field, revealed a promising strategy to manage WYR in Nepal.  相似文献   

17.
18.
Methods are described for the extraction and analysis by gas-liquid and high-pressure liquid chromatography of the fungicide imazalil, 1-(β-allyloxy-2, 4-dishlorophenethyl) imidazole, on potatoes. Before storage, over 80% was recovered from potatoes treated with 0.01–3.0 mg imazalil kg?1, with a detection limit of 2 μg kg?1. Imazalil applied to potatoes at 10 g t?1 before storage decreased the incidence of gangrene (Phoma exigua), silver scurf (Helminthosporium solani), skin spot (Polyscytalum pustulans) and black scurf (Rhizoctonia solani), and was at least as effective as thiabendazole applied at 40 g t?1. At 1 g t?1 it also decreased skin spot and silver scurf. Incidence of black dot (Colletotrichum coccodes) was unaffected by these fungicide treatments.  相似文献   

19.
The effects of sub‐lethal dose of herbicide and nitrogen fertilizer on crop–weed competition were investigated. Biomass increases of winter wheat and a model weed, Brassica napus, at no‐herbicide treatment with increasing nitrogen were successfully described by the inverse quadratic model and the linear model respectively. Increases in weed competitivity (β0) of the rectangular hyperbola and parameter B in the dose–response curve for weed biomass, with increasing nitrogen were also successfully described by the exponential model. New models were developed by incorporating inverse quadratic and exponential models into the combined rectangular hyperbola with the standard dose–response curve for winter wheat biomass yield and the combined standard dose—response model with the rectangular hyperbola for weed biomass, to describe the complex effects of herbicide and nitrogen on crop–weed competition. The models developed were used to predict crop yield and weed biomass and to estimate the herbicide doses required to restrict crop yield loss caused by weeds and weed biomass production to an acceptable level at a range of nitrogen levels. The model for crop yield was further modified to estimate the herbicide dose and nitrogen level to achieve a target crop biomass yield. For the target crop biomass yield of 1200 g m?2 with an infestation of 100 B. napus plants m?2, the model recommended various options for nitrogen and herbicide combinations: 140 and 2.9, 180 and 0.9 and 360 kg ha?1 and 1.7 g a.i. ha?1 of nitrogen and metsulfuron‐methyl respectively.  相似文献   

20.
Red leaf blotch of soybeans, caused by Dactuliochaeta glycines, was evaluated on soybean plants in field plots located in Zambia. Two experiments were conducted in each of two seasons. Experiment 1 had four cultivars that were either fungicide-sprayed or not sprayed. Disease severity was greatest on leaves at the lowest nodes from early vegetative through the reproductive growth stages. Area under the disease progress curve (AUDPC) values and percentage of nodes defoliated at growth stage R5 were significantly ( P  = 0.05) greater in unsprayed plots for all cultivars in both seasons. Yield losses ranged from 8 to 37% while reduced seed size ranged from 21 to 29% for the four cultivars. Number of pods per plant in fungicide-sprayed plots did not differ from those in unsprayed plots. However, the number of seeds per plant and seeds per pod were significantly ( P  = 0.05) greater in sprayed than unsprayed plots for some cultivars. In experiment 2, cultivar Tunia was either fungicide-sprayed at different times or not sprayed. The lowest attached leaf had the most variation in the amount of disease while ratings of the most median leaf in the canopy were generally less variable. The AUDPC values calculated from the lowest attached leaf, the mean of all attached leaves, and the median attached leaf differed significantly ( P  = 0.05) the number of times plants were sprayed with fungicide. Defoliation and vertical incidence of red leaf blotch from lower to higher nodes were significantly ( P  = 0.05) reduced in fungicide-sprayed plots in one season, but not the other. One thousand-seed weight and yield differed significantly ( P  = 0.05) with treatment as one application of triphenyltin acetate increased yields by 18% over unsprayed plots in season 1. One thousand-seed weight and yield, regressed on the AUDPC for the median leaf in the canopy, explained 92 and 72% of the variation, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号