首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Coffee has been an important and heavily used beverage in many cultures over a long period of time. Although sulfur species have been found to be abundant constituents, no work to date has explored the presence of selenium analogues. Investigation of volatile selenium species from green coffee beans, roasted beans, and brewed coffee drink was performed using solid phase microextraction (SPME) sample preconcentration in conjunction with GC/ICP-MS. Several volatile selenium species at trace levels were detected from roasted coffee beans as well as in the steam from brewed coffee drinks. No detectable selenium (and sulfur) species, however, were found in the headspace of green beans, indicating that selenium-containing volatiles are formed during roasting, as is the case for the sulfur volatiles. Matching standards were prepared and used to identify the compounds found in coffee. Artificial supplementation of the green coffee beans with selenium before roasting was performed to further characterize the selenium-containing volatiles formed during the coffee-roasting process.  相似文献   

2.
Coffee brew is a widely consumed beverage with multiple biological activities due both to naturally occurring components and to the hundreds of chemicals that are formed during the roasting process. Roasted coffee extract possesses antibacterial activity against a wide range of microorganisms, including Staphylococcus aureus and Streptococcus mutans, whereas green coffee extract exhibits no such activity. The naturally occurring coffee compounds, such as chlorogenic acids and caffeine, cannot therefore be responsible for the significant antibacterial activity exerted by coffee beverages against both bacteria. The very low minimum inhibitory concentration (MIC) found for standard glyoxal, methylglyoxal, and diacetyl compounds formed during the roasting process points to these alpha-dicarbonyl compounds as the main agents responsible for the antibacterial activity of brewed coffee against Sa. aureus and St. mutans. However, their low concentrations determined in the beverage account for only 50% of its antibacterial activity. The addition of caffeine, which has weak intrinsic antibacterial activity, to a mixture of alpha-dicarbonyl compounds at the concentrations found in coffee demonstrated that caffeine synergistically enhances the antibacterial activity of alpha-dicarbonyl compounds and that glyoxal, methylglyoxal, and diacetyl in the presence of caffeine account for the whole antibacterial activity of roasted coffee.  相似文献   

3.
In a roasted Arabica coffee brew, the potent roasty odor quality compound was identified as 3-mercapto-3-methylbutyl acetate by comparison of its Kovats gas chromatography retention index, mass spectrum, and odor quality to those of the synthetic authentic compound. 3-Mercapto-3-methylbutyl acetate has been identified for the first time in the coffee, and according to the results of the aroma extract dilution analysis, the contribution of this compound to the flavor of the roasted coffee brew varied depending on the degree of the coffee bean roasting. The concentration of this compound in the coffee brews as with 3-mercapto-3-methylbutyl formate increased with an increase in the degree of roasting. However, the slope of the amount of both esters was different, and 3-mercapto-3-methylbutyl acetate hardly increased with a low degree of roasting at more than a 21 luminosity (L)-value, but it rapidly increased when the roasting degree of the coffee beans reached the L-value of 18. These results suggested that the contribution of 3-mercapto-3-methylbutyl acetate to the overall flavor is peculiar to the flavor of the highly roasted coffee.  相似文献   

4.
Glyoxal, methylglyoxal, and diacetyl formed as Maillard reaction products in heat-treated food were determined in coffee extracts (coffee brews) obtained from green beans and beans with different degrees of roast. The compounds have been reported to be mutagenic in vitro and genotoxic in experimental animals in a number of papers. More recently, alpha-dicarbonyl compounds have been implicated in the glycation process. Our data show that small amounts of glyoxal and methylglyoxal occur naturally in green coffee beans. Their concentrations increase in the early phases of the roasting process and then decline. Conversely, diacetyl is not found in green beans and forms later in the roasting process. Therefore, light and medium roasted coffees had the highest glyoxal and methylglyoxal content, whereas dark roasted coffee contained smaller amounts of glyoxal, methylglyoxal, and diacetyl. For the determination of coffee alpha-dicarbonyl compounds, a reversed-phase high performance liquid chromatography with a diode array detector (RP-HPLC-DAD) method was devised that involved the elimination of interfering compounds, such as chlorogenic acids, by solid phase extraction (SPE) and their derivatization with 1,2-diaminobenzene to give quinoxaline derivatives. Checks of SPE and derivatization conditions to verify recovery and yield, respectively, resulted in rates of 100%. The results of the validation procedure showed that the proposed method is selective, precise, accurate, and sensitive.  相似文献   

5.
Coffee beans are rich in nondigestible polysaccharides (dietary fiber), which may partially pass into brewed coffee; however, to the authors' knowledge, there is not enough literature on dietary fiber in brewed coffee. A specific method to determine dietary fiber in beverages (enzymatic treatment plus dialysis) was applied to the coffees brewed by the most common methods (espresso, filter, soluble); results showed that brewed coffee contained a significantly higher amount of soluble dietary fiber (0.47-0.75 g/100 mL of coffee) than other common beverages. Coffee dietary fiber contains a large amount of associated antioxidant phenolics (8.7-10.5 mg/100 mL of brewed coffee).  相似文献   

6.
Screening for aflatoxins (Afs), isolation and identification of Aspergillus flavus, and the effect of decaffeination and roasting on the level of contamination in coffee beans are studied. The percent frequency of A. flavus ranged between 4 and 80% in green coffee beans (GCB), whereas in ground roasted coffee beans (GRCB), it ranged between 1 and 71%. Aflatoxins were detected in 76.5 and 54.6% of the infected samples with averages of 4.28 and 2.85 microg/kg of GCB and GRCB, respectively. Roasting was demonstrated to lower the concentration of Afs in GCB. The Afs levels were reduced by approximately 42.2-55.9% depending on the type and temperature of roasting. The highest yields of Afs were detected in the decaffeinated green coffee beans (24.29 microg/kg) and roasted coffee beans (16.00 microg/kg). The growth of A. flavus in liquid medium containing 1 or 2% caffeine was reduced by 50%, and the level of aflatoxin in the medium was undetectable.  相似文献   

7.
Melanoidins formed at the last stage of the Maillard reaction have been pointed out to possess certain functional properties. Potential antihypertensive activity of food melanoidins (coffee, beer, and sweet-wine) has been evaluated according to in-vitro ACE-inhibitory activity. Precision of the assay (3.2% of coefficient of variation, n = 10) for melanoidins is similar to those reported of well-known antihypertensive peptides. Assay was applied on food melanoidins obtained from coffee (three roasting degrees), beer, and sweet-wine. All samples showed in-vitro ACE-inhibitory activity. The activity in coffee melanoidins was significantly higher at more severe heating conditions. These experiments demonstrate that food melanoidins could inhibit ACE activity. In-vitro ACE-inhibitory activity of coffee melanoidins is likely located within the melanoidin structure. But ACE-inhibitory activity is also partly due to the low-molecular-weight compound nonchemically bound to the melanoidin structure, then melanoidins can act as carrier-protecting agents. These compounds could be naturally phenolic compounds present in the green beans or intermediary Maillard reaction products with antihypertensive activity.  相似文献   

8.
The impact of time-temperature combinations of roasting processes on the kinetics of aroma formation in coffee was investigated. The development of 16 aroma compounds and the physical properties of coffee beans was followed in a commercial horizontal drum roasting process and in laboratory scale fluidizing-bed roasting processes at high temperature-short time and low temperature-long time conditions. All trials were run to an equal roast end point as defined by the lightness of coffee beans. In addition, the effect of excessive roasting on aroma composition was studied. Compared to low temperature-long time roasting, high temperature-short time roasting resulted in considerable differences in the physical properties and kinetics of aroma formation. Excessive roasting generally led to decreasing or stable amounts of volatile substances, except for hexanal, pyridine, and dimethyl trisulfide, whose concentrations continued to increase during over-roasting. When the drum roaster and the fluidizing bed roaster were operated in the so-called temperature profile mode, that is, along the identical development of coffee bean temperature over roasting time, the kinetics of aroma generation were similar in both processes.  相似文献   

9.
In this study different Arabica and Robusta coffee beans from different regions of the world were analyzed for acrylamide after roasting in a laboratory roaster. Due to the complex matrix and the comparably low selectivity of the LC-MS at m/ z 72, acrylamide was analyzed after derivatization with 2-mercaptobenzoic acid at m/ z 226. Additionally, the potential precursors of acrylamide (3-aminopropionamide, carbohydrates, and amino acids) were studied. The highest amounts of acrylamide formed in coffee were found during the first minutes of the roasting process [3800 ng/g in Robusta ( Coffea canephora robusta) and 500 ng/g in Arabica ( Coffea arabica)]. When the roasting time was increased, the concentration of acrylamide decreased. It was shown that especially the roasting time and temperature, species of coffee, and amount of precursors in raw material had an influence on acrylamide formation. Robusta coffee contained significantly larger amounts of acrylamide (mean = 708 ng/g) than Arabica coffee (mean = 374 ng/g). Asparagine is the limiting factor for acrylamide formation in coffee. 3-Aminopropionamide formation was observed in a dry model system with mixtures of asparagine with sugars (sucrose, glucose). Thermal decarboxylation and elimination of the alpha-amino group of asparagine at high temperatures (>220 degrees C) led to a measurable but low formation of acrylamide.  相似文献   

10.
Roasting is a critical process in coffee production as it enables the development of flavor and aroma. At the same time, roasting may lead to the formation of nondesirable compounds, such as polycyclic aromatic hydrocarbons (PAHs). In this study, Arabica green coffee beans from Cuba were roasted under controlled conditions to monitor PAH formation during the roasting process. Roasting was performed in a pilot spouted bed roaster, with the inlet air temperature varying from 180 to 260 degrees C, using both dark (20 min) and light (5 min) roasting conditions. Several PAHs were determined in both roasted coffee samples and green coffee samples. Also, coffee brews, obtained using an electric coffee maker, were analyzed for final estimation of PAH transfer coefficients to the infusion. Formation of phenanthrene, anthracene, and benzo[a]anthracene in coffee beans was observed at temperatures above 220 degrees C, whereas formation of pyrene and chrysene required 260 degrees C. Low levels of benzo[g,h,i]perylene were also noted for dark roasting under 260 degrees C, with simultaneous partial degradation of three-cycle PAHs, suggesting that transformation of low molecular PAHs to high molecular PAHs occurs as the roasting degree is increased. The PAH transfer to the infusion was quite moderate (<35%), with a slightly lower extractability for dark-roasted coffee as compared to light-roasted coffee.  相似文献   

11.
ApV is a brownish polymer with zinc-chelating activity in brewed coffee. We investigated in this study the effects of roasting on the zinc-chelating, reducing, and antioxidative activities of ApV from light-, medium-, and dark-roasted coffee. We also discuss the effect on the zinc-chelating activity of adding milk to the brewed coffee. The chelating activities of ApVs were evaluated by the tetramethyl murexide method. As the intensity of roasting increased, the yield of ApV increased, and the brown color and molecular weight of ApV respectively became darker and higher. Increasing the degree of roasting also decreased the zinc-chelating activity of ApV. The reducing activities of ApVs estimated by the indophenol method were stronger than those of ascorbic acid. Both the antioxidative activity estimated by the ABTS assay and the reducing activity of ApV increased with roasting. When milk was added to instant coffee and its ApV was prepared, the zinc-chelating activity of ApV was not changed.  相似文献   

12.
In this study, Brazilian coffee beans processed to different stages of roast at 210, 220, 230, and 240 °C were analyzed for pH value, titratable acidity, moisture content, and color lightness. Fourier transform infrared (FTIR) spectroscopy, in conjunction with principal component analysis, was conducted to study the effects of process time and temperature on the IR-active components of the acetyl acetate extract of the roasted coffee. The results showed that high-temperature-short-time resulted in higher moisture content, higher pH value, and higher titratable acidity when the beans were roasted beyond the start-of-second-crack stage, as compare to low-temperature-long-time process (LTLT). The LTLT process also resulted in greater IR absorbance for aldehydes, ketones, aliphatic acids, aromatic acids, and caffeine carbonyl bands on the FTIR spectra. Clusters for principal component score plots were well separated, indicating that the changes IR-active components in the coffee extracts, due to the different roasting treatments, can be discriminated by the FTIR technique. On the basis of the loading plots of principal components, changes of IR-active compounds in the coffee extract at various stages of roasting were discussed.  相似文献   

13.
The mycotoxin ochratoxin A is degraded by up to 90% during coffee roasting. In order to investigate this degradation, model heating experiments with ochratoxin A were carried out, and the reaction products were analyzed by HPLC-DAD and HPLC-MS/MS. Two ochratoxin A degradation products were identified, and their structure and absolute configuration were determined. As degradation reactions, the isomerization to 14-(R)-ochratoxin A and the decarboxylation to 14-decarboxy-ochratoxin A were identified. Subsequently, an analytical method for the determination of these compounds in roasted coffee was developed. Quantification was carried out by HPLC-MS/MS and the use of stable isotope dilution analysis. By using this method for the analysis of 15 coffee samples from the German market, it could be shown that, during coffee roasting, the ochratoxin A diastereomer 14-(R)-ochratoxin A was formed in amounts of up to 25.6% relative to ochratoxin A. The decarboxylation product was formed only in traces. For toxicity evaluations, first preliminary cell culture assays were performed with the two new substances. Both degradation products exhibited higher IC50 values and caused apoptotic effects with higher concentrations than ochratoxin A in cultured human kidney epithelial cells. Thus, these cell culture data suggest that the degradation products are less cytotoxic than ochratoxin A.  相似文献   

14.
The formation of 4-vinylguaiacol, guaiacol, and phenol during coffee roasting was monitored in real-time, using resonance enhanced multiphoton ionization and time-of-flight mass spectrometry. A model is proposed, based on two connected reaction channels. One channel, termed the "low activation energy" channel, consists of ester hydrolysis of 5-FQA followed by decarboxylation of the ferulic acid to form 4-vinylguaiacol, and finally polymerization at the vinyl group to form partly insoluble polymers (coffee melanoidins). The second "high activation energy" channel opens up once the beans have reached higher temperatures. It leads to formation of guaiacol, via oxidation of 4-vinylguaiacol, and subsequently to phenol and other phenolic VOCs. This work aims at developing strategies to modify the composition of coffee flavor compounds based on the time-temperature history during roasting.  相似文献   

15.
Initial moisture of green coffee may vary as a function of green coffee processing and storage conditions. The impact of initial moisture and steam treatment on roasting behavior and aroma formation was investigated. Steam treated coffees as well as coffees with initial moisture content of 5.10, 10.04, and 14.70 g water per 100 g wb were roasted. Light and dark roasting trials were carried out using a fluidizing-bed roaster with a batch size of 100 g of green beans. Differences in roast coffee attributes, that is, color, density, and organic roast loss, and odorant concentrations were more marked in light roasted than in dark roasted coffees. The results of roasting steam treated coffee suggest that this step affects roasting behavior primarily by extracting some aroma precursor compounds.  相似文献   

16.
Effect of roasting on the antioxidant activity of coffee brews   总被引:3,自引:0,他引:3  
Colombian Arabica coffee beans were roasted to give light, medium, and dark samples. Their aqueous extracts were analyzed by gel filtration chromatography, UV-visible spectrophotometry, capillary electrophoresis, and the ABTS(*)(+) assay. A progressive decrease in antioxidant activity (associated mainly with chlorogenic acids in the green beans) with degree of roasting was observed with the simultaneous generation of high (HMM) and low molecular mass (LMM) compounds possessing antioxidant activity. Maximum antioxidant activity was observed for the medium-roasted coffee; the dark coffee had a lower antioxidant activity despite the increase in color. Analysis of the gel filtration chromatography fractions showed that the LMM fraction made a greater contribution to total antioxidant activity than the HMM components.  相似文献   

17.
Chemical characterization and antioxidant properties of coffee melanoidins   总被引:1,自引:0,他引:1  
Melanoidins, the brown polymers formed through Maillard reaction during coffee roasting, constitute up to 25% of the coffee beverages' dry matter. In this study chemical characterization of melanoidins obtained from light-, medium-, and dark-roasted coffee beans, manufactured from the same starting material, was performed. Melanoidins were separated by gel filtration chromatography and studied by MALDI-TOF mass spectrometry. Results showed that the amount of melanoidins present in the brews increased as the intensity of the thermal treatment increased, while their molecular weight decreased. The antioxidant activity of melanoidins isolated from the different brews was studied by using different methodologies. Melanoidins antiradical activity determined by ABTS(*)(+) and DMPD(*)(+) assays decreased as the intensity of roasting increased, but the ability to prevent linoleic acid peroxidation was higher in the dark-roasted samples. Data suggest that melanoidins must be carefully considered when the relevance of coffee intake in human health is studied.  相似文献   

18.
Of all plant constituents, coffee has one of the highest concentrations of chlorogenic acids. When roasting coffee, some of these are transformed into chlorogenic acid lactones (CGL). We have studied the formation of CGL during the roasting of coffee beans in Coffea arabica cv. Bourbon; C. arabicacv. Longberry; and C. canephora cv. Robusta. Individual CGL levels were determined by comparison of HPLC peaks with those of synthetic CGL standards. Seven CGL were identified: 3-caffeoylquinic-1,5-lactone (3-CQL), 4- caffeoylquinic-1,5-lactone (4-CQL), 3-coumaroylquinic-1,5-lactone (3-pCoQL), 4-coumaroylquinic-1,5-lactone (4-pCoQL), 3-feruloylquinic-1,5-lactone (3-FQL), 4-feruloylquinic-1,5-lactone (4-FQL), and 3,4-dicaffeoylquinic-1,5-lactone (3,4-diCQL). 3-CQL was the most abundant lactone in C. arabica and C. canephora, reaching peak values of 230 +/- 9 and 254 +/- 4 mg/100 g (dry weight), respectively, at light medium roast ( approximately 14% weight loss). 4-CQL was the second most abundant lactone (116 +/- 3 and 139 +/- 2 mg/100 g, respectively. The maximum amount of CGL represents approximately 30% of the available precursors. The relative levels of 3-CQL and 4-CQL in roasted coffee were reverse to those of their precursors in green coffee. This suggests that roasting causes isomerization of chlorogenic acids prior to the formation of lactones and that the levels of lactones in roasted coffee do not reflect the levels of precursors in green coffee.  相似文献   

19.
Free radicals in two cultivars of Indian monsooned coffee beans, gamma-irradiated for hygienic and quarantine purposes, were examined by entrapping the small amount of samples in potassium chloride powder in ESR quartz tubes. In contrast to a prominent free radical signal at g = 2.002, observed in spermoderm (silver skin) and cotyledon (whole seed without skin) parts of normal coffee beans, the same was not discernible in monsooned coffee bean parts of both cultivars. The ESR signal was found to be more prominent in the spermoderm than in the whole seed portion of the normal coffee beans. Common practices of roasting and powdering were found to generate quantitatively more free radicals in coffee beans than gamma-irradiation alone. Phenols, contributing maximally to observed free radical signals in coffee beans, were significantly different in normal and monsooned coffee beans. These observations on insignificant free radical population in irradiated monsooned coffee beans may be attributed to their inherent possession of high water activity, favoring decay of free radicals produced. Textural studies with monsooned coffee beans, before and after mild heat treatments, supported these findings.  相似文献   

20.
This study is the first of two publications that investigate the phenomena of coffee nonvolatiles interacting with coffee volatile compounds. The purpose was to identify which coffee nonvolatile(s) are responsible for the interactions observed between nonvolatile coffee brew constituents and thiols, sulfides, pyrroles, and diketones. The overall interaction of these compounds with coffee brews prepared with green coffee beans roasted at three different roasting levels (light, medium, and dark), purified nonvolatiles, and medium roasted coffee brew fractions (1% solids after 1 or 24 h) was measured using a headspace solid-phase microextraction technique. The dark roasted coffee brew was slightly more reactive toward the selected compounds than the light roasted coffee brew. Selected pure coffee constituents, such as caffeine, trigonelline, arabinogalactans, chlorogenic acid, and caffeic acid, showed few interactions with the coffee volatiles. Upon fractionation of medium roasted coffee brew by solid-phase extraction, dialysis, size exclusion chromatography, or anion exchange chromatography, characterization of each fraction, evaluation of the interactions with the aromas, and correlation between the chemical composition of the fractions and the magnitude of the interactions, the following general conclusions were drawn. (1) Low molecular weight and positively charged melanoidins present significant interactions. (2) Strong correlations were shown between the melanoidin and protein/peptide content, on one hand, and the extent of interactions, on the other hand (R = 0.83-0.98, depending on the volatile compound). (3) Chlorogenic acids and carbohydrates play a secondary role, because only weak correlations with the interactions were found in complex matrixes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号