首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
赤水河上游主要森林类型水源涵养功能评价   总被引:7,自引:4,他引:7  
以赤水河上游10种主要森林类型为对象,定量评价其土壤层、枯落物层和林冠层的水源涵养能力。结果表明,枯落物储量为3.24~16.13t/hm2,有效拦蓄深为0.66~2.38mm,最大失水深为0.14~0.88mm,分解越彻底则蓄水能力越强。土壤层有效持水深为14.35~54.41mm,表现为阔叶林、针阔混交林优于针叶林,并随土层深度增加而降低。土壤层与枯落物层的持水速率均大于失水速率,在1~2h下降快,后期下降慢,与时间呈幂函数关系。阔叶林林冠截留率高于针叶林,可用林外降雨量和林内穿透雨量预测林冠截留量。水源涵养能力主要受枯落物储量、有效拦蓄深、最大失水深和土壤容重、饱和持水量影响,据此将10种森林类型划分为低持水(柏木林、撑绿竹林和火棘+荚蒾林)、中低持水(杉木林、马尾松+杉木林)、中持水(马尾松+柏木林、马尾松-白栎林)和高持水(丝栗栲林、白栎林和马尾松林)4种类型。综合分析表明恢复森林水源涵养功能的核心是调整林冠组成和结构。  相似文献   

2.
赤水河上游主要树种枯落物调蓄水分效应   总被引:5,自引:0,他引:5  
以赤水河上游27种地带性及乡土树种为对象,从持水和失水2方面研究枯落物调蓄水分效应。结果表明:1)枯落物现存量为0.15~4.50 t/hm2,自然含水率为10.23%~137.66%,最大持水速率为3 122.83~9 555.80 g/(kg·h),饱和持水深为0.04~1.70 mm,有效拦蓄深为0.02~1.27 mm,最大失水速率为209.52~2 423.21 g/(kg·h),失水24 h的含水率为85.02%~256.18%,最大失水深为0.01~0.43 mm;2)所有枯落物持水速率和失水速率均表现出前期大于后期、初期下降更快、后期趋于平缓的特征;3)影响枯落物调蓄水分效应的因素主要有现存量、饱和持水深、有效拦蓄深、最大失水深、叶生活期和叶质地;4)按照持水、失水特征和叶片特征可划分为3类功能群,叶生活期可作为枯落物调蓄水分能力的评定指标。  相似文献   

3.
为明确赤水河上游主要树种根际土壤调控水分能力,通过野外采样和室内分析方法,从容重、含水率和孔隙度等方面入手研究水文生态功能,并划分调控水分功能群。结果表明:32个树种0—60 cm的最大持水量为212.00~357.94 mm、有效贮水量为11.07~85.15 mm,是一个蓄水库;其持水速率大于失水速率,且二者与时间的关系均符合幂函数模型。采用RDA排序时,可将该区的树种划分为5类功能群:功能群Ⅰ包括杨梅、丝栗栲、茶、白栎、马尾松、慈竹;功能群Ⅱ包括杨树、杉木、构树、荚蒾、撑绿竹、枫香、火棘、山胡椒、乌桕、楝树、马桑;功能群Ⅲ包括枇杷、南天竹、李、柏木、梧桐、香椿;功能群Ⅳ包括檵木、黄荆、油桐、毛桐、南酸枣;功能群Ⅴ包括盐肤木、黄连木、柑橘、油茶。土壤容重、含水率、孔隙度等物理特征和持水过程是影响土壤水分调控能力的主因。研究结果可为赤水河上游水源涵养林树种的选择和配置提供理论依据。  相似文献   

4.
以赤水河上游32个树种为对象,采用吸水法和自然失水法测定叶片和枝条的持水能力。结果表明:叶片最大持水倍数为0.33~1.59,表面被毛的叶片持水能力相对较强。枝条的最大持水率多小于自然含水率,说明单位质量枝条的持水能力较叶片低。叶片和枝条均表现为持水速率大于失水速率,二者与时间的关系可用幂函数模型较好地表达。通过叶片最大持水倍数可推导出持水速率与时间的关系式,但不能推导出失水速率与时间的关系式。叶片质地、粗糙度、绒毛、最大持水倍数、持水曲线常数项是决定其持水能力差异的主要因素,通过RDA排序可将32个树种的叶片划分为低持水、中低持水、中持水和高持水4类功能群。上述研究结果可用于赤水河上游水源涵养林树种选择及森林结构配置。  相似文献   

5.
赤水河下游不同林地类型土壤物理特性及其水源涵养功能   总被引:12,自引:3,他引:12  
对赤水河下游地区毛竹林、杉木林和马尾松林的土壤容重、孔隙度、枯落物累积量与持水量以及林地土壤贮水性能等进行了研究.结果表明,不同林分类型的土壤容重和土壤孔隙度差异明显,且土壤容重均随土壤深度的增加而不断增加,土壤总孔隙度与毛管孔隙度均随土壤深度的增加而不断减小;杉木林(1.52 g/cm3)与马尾松林(1.54 g/cm3)平均土壤容重是毛竹林(1.18 g/c,3)的约1.3倍,土壤总孔隙度为:毛竹林>马尾松林>杉木林,非毛管孔隙度为:毛竹林>杉木林>马尾松林;枯落物持水量表现为杉木林(18.01 t/hm2)>马尾松林(14.04 t/hm2)>毛竹林(10.59 t/hm2);土壤平均最大蓄水量为:毛竹林(878.92 t/hm2)>马尾松林(652.80 t/hm2)>杉木林(643.18t/hm2),非毛管蓄水量为毛竹林(49.32 t/hm2)>杉木林(34.65 t/hm2)>马尾松(33.77 t/hm2),平均土壤稳渗速率为:毛竹林>杉木林>马尾松林;根据林地总贮水量的大小,水源涵养能力依次为:毛竹林(889.51 t/hm2)>马尾松林(666.84 t/hmz)>杉木林(661.19 t/hm2).在相同的立地条件下,毛竹林的水源涵养功能最好.  相似文献   

6.
浑河上游水源地不同林型水源涵养功能分析   总被引:3,自引:3,他引:3  
为定量评价浑河上游水源地保护区内不同林型的水源涵养功能,对浑河上游5种林型(阔叶混交林、红松人工林、落叶松人工林、阔叶红松混交林和阔叶落叶松混交林)林下枯落物的现存量、持水能力、有效拦蓄量和土层的物理性质、土壤入渗性能等开展研究,并采用综合评价法对不同林型的水源涵养功能进行评价。结果表明:不同林型枯落物现存量为16.10~37.70t/hm2,有效拦蓄量为36.31~83.39t/hm2;针阔混交林枯落物有效拦蓄量高于阔叶混交林、人工针叶林,针阔混交林的半分解枯落物现存量及持水量(持水率)所占比例明显高于人工针叶林、阔叶混交林,枯落物未分解层和半分解层持水量与浸泡时间关系符合对数函数方程W=Aln t+B;土壤入渗速率随着土层深度的增加而逐渐减小,各层土壤入渗速率和时间关系符合幂函数方程F=at-b;针阔混交林的土壤非毛管孔隙度、总孔隙度、非毛管蓄水量均高于阔叶混交林、人工针叶林;针阔混交林的总蓄水量(枯落物有效拦蓄量与土壤非毛管蓄水量)最高(1 025.28~1 341.59t/hm2),其次是阔叶混交林(823.36t/hm2),人工针叶林最低(422.41~609.06t/hm2)。综上所述,浑河上游水源地保护区内针阔混交林具有较好的涵养水源能力,建议在水源涵养林培育过程中将针阔混交林作为培育目标林分,并采取适当的结构调控措施,将现有人工针叶水源涵养林调整为针阔混交林,以充分发挥森林的水源涵养功能。  相似文献   

7.
为探讨森林植被变化对水文方面的影响,客观评价近年来退耕还林等生态建设所取得的功效,以岷江上游为对象,根据森林植被、枯期径流等的变化,找出其间的关联和相应的规律。利用森林涵养水源能力的评价指标:流域最小月平均流量与年径流量之比,得出了各年段的涵养指数,并将其变化趋势与森林植被、枯期径流相比较。结果表明,森林涵养水源的能力与森林面积有很大的相关性,它随森林面积的减少而降低,随森林面积的增加而升高;尽管岷江上游森林植被遭到严重破坏,但从总体来讲,岷江流域涵养水源的能力还是特别强的,径流变化平稳,枯期水量相对丰富;退耕还林工程功效显著,大面积的退耕还林提高了涵养水源的能力,增加了枯期径流量,增强了岷江上游的生态环境安全。  相似文献   

8.
滦河上游不同密度油松林水源涵养功能研究   总被引:1,自引:0,他引:1  
为了探知不同密度油松林人工林的水源涵养功能高低,选取木兰围场8个密度油松林的枯落物与土壤进行研究,利用水源涵养指数来比较各林分的水源涵养功能的高低,结果表明:(1)枯落物重量与有效拦蓄量变化趋势是随着密度的增加而增大,而枯落物最大持水量处于自身重量的2~4倍,最大持水率在250.61%~310.66%。(2)随着密度的增加土壤的最大持水量、非毛管孔隙度与非毛管蓄水量都是先是增加后减小,而最大持水量在1 800株/hm2达到了最大值为2 868.0 t/hm2;毛管孔隙度、毛管蓄水量与总孔隙度都没有明显的规律可言。(3)随密度的增加油松的水源涵养指数是呈现增加趋势的,其中的最大值是最小值的1.35倍,当密度处于1 500株/hm2时,指数趋于稳定,在1 500~1 800株/hm2时水源涵养指数较高。  相似文献   

9.
托木尔峰自然保护区台兰河上游森林植被水源涵养功能   总被引:4,自引:1,他引:4  
为定量评价托木尔峰自然保护区森林的水源涵养能力,利用综合蓄水能力法,对台兰河上游雪岭云杉森林生态系统的林冠层截留量(C)、枯枝落叶层持水量(L)、土壤层蓄水量(S)及综合水源涵养能力进行估算和分析。结果表明:(1)研究区4样地中,林冠层截留量表现为中海拔云杉林(29.94mm)较高海拔云杉林(20.56mm)高海拔云杉林(11.72mm)低海拔云杉杨树混交林(5.84mm),而茎流量则与之相反。(2)除中海拔云杉林外,各样地枯枝落叶未分解层平均厚度均大于半分解层;其中,未分解层的平均蓄积量中高海拔云杉林最大(79.32t/hm~2),半分解层为中海拔云杉林最大(59.47t/hm~2)。整体来看,枯枝落叶层的最大持水量大小依次为中海拔云杉林(32.55mm)高海拔云杉林(31.05mm)较高海拔云杉林(30.78mm)低海拔云杉杨树混交林(12.84mm)。(3)4样地平均土壤容重变动范围为0.73~1.06g/cm~3;土壤孔隙度的平均值大小均为中海拔云杉林较高海拔云杉林高海拔云杉林低海拔云杉杨树混交林;林下土壤自然含水率随海拔高度的增加呈不断上升趋势。不同样地30cm深土层的非毛管孔隙持水量表现为:中海拔云杉林(37.6mm)较高海拔云杉林(30.7mm)高海拔云杉林(25.73mm)低海拔云杉杨树混交林(13.92mm)。(4)研究区森林生态系统的水源涵养能力在171.27~280.84mm之间,低海拔云杉杨树混交林的总持水量最小,中海拔云杉林最大。土壤层水源涵养贡献率最大,占比在77.75%~89.10%之间;总有效蓄水量虽远小于总持水量,但能够很好地发挥水源涵养功能和水土保持作用。  相似文献   

10.
通过对东北黑土区粮食沟小流域3种具有代表性灌木类型的林分截流、土壤渗透、土壤密度、孔隙度及持水能力进行测定分析。结果表明:树冠枝叶最大吸水率排序为沙棘>胡枝子>灌木柳;在0~20 cm土层内:土壤密度依次为沙棘>灌木柳>胡枝子;土壤总孔隙度为胡枝子>灌木柳>沙棘;非毛管孔隙度为沙棘>胡枝子>灌木柳;毛管孔隙度为胡枝子>沙棘>灌木柳;土壤最大持水量大小顺序是胡枝子>沙棘>灌木柳。  相似文献   

11.
长江上游森林水源涵养功能及空间分布特征   总被引:3,自引:0,他引:3  
以长江上游森林生态系统为研究对象,按照植被类型将研究区域划分成11个评估单元。根据研究区各森林类型林冠层、枯枝落叶层和土壤层的指标数据和2001年NOAA影像,结合野外调查,应用GIS技术对整个长江上游森林水源涵养功能及其在空间上的分布特征进行了探讨。结果表明:(1)长江上游森林水源涵养功能平均值为79.33 mm。林冠层、枯落物层、土壤层水源涵养功能平均值分别为1.29,2.81和75.21 mm。长江上游森林水源涵养总量为1.667 5×1010t。林冠层、枯落物层和土壤层分别占涵养总量的1.63%,3.54%和94.81%。土壤层是森林系统水源涵养总量的主体。(2)长江上游森林水源涵养功能由南向北呈现先增加后减少的抛物线趋势,由西向东表现出近似幂函数曲线的逐渐减少趋势。这与林冠层的变化趋势相反,与土壤层的变化趋势具有一致性。(3)在水平方向上,长江上游森林水源涵养功能以岷山—茶坪山—夹金山—锦屏山—玉龙山一线为界,表现出西强东弱的空间分布格局;在垂直方向上,森林水源涵养功能随着海拔的升高逐渐增加,至海拔4 200 m左右,出现减少的趋势。  相似文献   

12.
长江上游森林涵养水源效益及其经济价值评估   总被引:9,自引:1,他引:9       下载免费PDF全文
 为丰富森林生态系统功能的价值量化研究,客观评价我国西南地区生态建设所取得的效益,以长江上游为对象,根据区域自然地理环境条件的差别,将其划分为暗针叶林、针阔混交林、阔叶林、经济林、竹林、灌木林6个自然地理类型区。利用区域降水量和产流特征参数,计算了长江上游森林涵养水源能力。采用水源调节“替代工程的影子价格”原理,计算了该地区森林生态系统的水源涵养经济价值。结果表明,长江上游地区森林生态系统的年水资源涵养量为1288.5亿m3,主要集中在高山峡谷森林区,涵养水源的年经济价值为431.6亿元。  相似文献   

13.
浑河上游典型水源涵养林降雨再分配过程   总被引:2,自引:1,他引:2  
为明确浑河上游典型水源涵养林的降雨再分配过程,以浑河上游地区5种典型水源涵养林(红松人工林、落叶松人工林、红松混交林、落叶松混交林、阔叶混交林)为研究对象,应用自记式观测记录仪,分析不同林型林冠层对降水再分配过程(穿透雨、树干茎流、林冠截留)的影响。结果表明:各林型穿透雨量(率)、树干茎流量(率)、林冠截留量均随林外降雨量增加而增大;穿透雨量、树干茎流量、林冠截留量均与林外降雨量呈显著的线性正相关;各林型穿透雨率、树干茎流率与林外降雨量呈显著的对数函数关系;红松混交林、落叶松混交林的树干茎流率(32.12%,15.44%)均高于阔叶混交林与红松、落叶松人工林,红松、落叶松人工林的林冠截留能力(80.66%,77.47%)高于阔叶混交林、针阔混交林。该结果为浑河上游地区水源涵养林的最优空间结构配置与经营管理提供科学依据。  相似文献   

14.
水土保持林营造是人工治理黑河流域上游生态环境的重要手段。从苗木选择、起苗、假植、运输、栽培等环节入手 ,系统地总结了黑河流域上游水土保持林营造的技术要求和技术措施  相似文献   

15.
岷江上游植物群落稳定性研究   总被引:2,自引:0,他引:2  
采取定性与定量相结合的方法,评价了岷江上游典型植物群落的稳定性.将植被盖度、多样性、复杂性、演替度等反映植被稳定性的数量特征指标结合气候、地形、土壤等外部环境因子建立评价体系,利用层次分析法确定指标权重,利用综合指数法计算群落稳定性.结果表明:源区植物群落中,云杉林、柳灌丛、窄叶鲜卑花灌丛、冷杉林、绣线菊灌丛有较高的稳定性值,沙棘和小果小檗灌丛稳定性值较低;草甸群落中,苔草草甸和白茅草草甸具有较高的稳定性值,蒿草草甸和高山草甸稳定性值较低.干旱河谷植物群落中,绣线菊灌丛、瑞香灌丛、小花滇紫草灌丛、小马鞍羊蹄甲一白刺花灌丛、莸灌丛有较高的稳定性值,西南野丁香灌丛、驼绒藜灌丛、川甘亚菊灌丛的稳定性值较低.  相似文献   

16.
黄浦江上游近自然混交林和人工纯林水源涵养功能评价   总被引:1,自引:0,他引:1  
以上海黄浦江上游水源涵养林为研究对象,选择近自然混交林、香樟(Cinnamomum camphora)人工纯林和无患子(Sapindus mukorossi)人工纯林,对比了地上部分、枯落物层、土壤层三个垂直层次的持水量,综合评价了其水源涵养功能。结果表明:地上部分持水量近自然混交林与香樟纯林持平,大于无患子纯林,分别为16.36t/hm2,16.85t/hm2,12.54t/hm2;枯落物层最大持水量依次为近自然混交林(0.37t/hm2)无患子纯林(0.004t/hm2)香樟纯林(0.003t/hm2);土壤层最大持水量近自然混交林(2 657.02t/hm2)无患子纯林(2 526.81t/hm2)香樟纯林(2 474.80t/hm2)。土壤层对森林涵养水源功能的贡献最大,但同时离不开地上部分及枯落物层三者间的相互依存和影响。综合评价得到不同类型林分的总持水量为近自然混交林(2 673.73t/hm2)无患子纯林(2 539.35t/hm2)香樟纯林(2 491.65t/hm2)。由此可见,林分复杂、树种多样、林下植被丰富的近自然混交林涵养水源的能力最强,优于单一的无患子纯林,而香樟纯林最差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号